
Fast Memory State Synchronization for Virtualization-based Fault Tolerance

Maohua Lu*# Tzi-cker Chiueh*#

Stony Brook University* Symantec Research Laboratories#
{mlu,chiueh}@cs.sunysb.edu

Abstract

Virtualization provides the possibility of whole machine
migration and thus enables a new form of fault tolerance that
is completely transparent to applications and operating sys-
tems. While initial prototypes show promise, virtualization-
based fault-tolerant architecture still experiences substantial
performance overhead especially for data-intensive work-
loads. The main performance challenge of virtualization-
based fault tolerance is how to synchronize the memory
states of the Master and Slave in a way that minimizes
the end-to-end impact on the application performance. This
paper describes three optimization techniques for memory
state synchronization: fine-grained dirty region identifica-
tion, speculative state transfer, and synchronization traffic
reduction using active slave, and presents a comprehensive
performance study of these techniques under three realistic
workloads, the TPC-E benchmark, the SPECsfs 2008 CIFS
benchmark, and a Microsoft Exchange workload. We show
that these three techniques can each reduce the amount of
end-of-epoch synchronization traffic by a factor of up to 7,
15 and 5, respectively.
1. Introduction

The holy grail of fault-tolerant system research is to be
able to support seamless fail-over with negligible run-time
performance overhead and in a way that is completely trans-
parent to applications and even operating systems. Because
of its ability to cleanly package and transport the complete
state of any virtual machines, virtualization offers a powerful
building block for building transparent and seamless fault-
tolerant systems. However, the run-time performance cost
of virtualization-based fault tolerance (VFT) is still quite
substantial under realistic workloads. The goal of this project
is to develop and evaluate optimization techniques that can
reduce this performance cost to the level that renders VFT
commercially viable.

The first VFT system that we are aware of is XSFT [1],
which was built at Symantec Research Labs in 2006 with
the first prototype completed in January 2007. As in most
fault-tolerant systems, XSFT assumes that there is a Slave
server as a back-up for every Master server and a Slave will
take over whenever its associated Master fails, and moreover,

both Master and Salve servers are physically embodied
as virtual machines. The type of servers at which XSFT
targets are Internet-facing servers such as Web or DNS
servers, which interact with a large number of external user
machines as well as other servers. Instead of check-pointing
and replaying, XSFT pioneered the concept of transactional
fault tolerance, which requires that a Master should not send
back a response to a request until the memory state updates
triggered by the request are reflected in its corresponding
Slave. More generally, XSFT holds off outgoing network
packets and disk write requests associated with an input
request until the memory states of the Master and the Slave
are synchronized. By enforcing this invariant, XSFT ensures
that a Slave’s state is always consistent with its Master as far
as their external clients are concerned. Consequently, when
a Master fails, its corresponding Slave can immediately pick
up where it is left off since the last externalized responses,
and the fail-over delay is expected to be negligible.

Unfortunately, the transactional fault tolerance model en-
tails a potentially steep performance cost. Every time a
Master receives an input request, it needs to process the
request, then propagates the associated memory updates to
its Slave, and finally commits the associated network send
and disk write actions. Therefore, the delay involved in
propagating memory state updates from Master to Slave is
added to the round-trip latency perceived by the requesting
clients. Increase in the average request latency sometimes
could also lead to decrease in throughput as seen by an in-
dividual client, especially when the underlying flow control
mechanism is based on a stop-and-go model and thus is
quite sensitive to the round-trip delay. To more efficiently
synchronize the memory states of a Master and its Slave,
XSFT aggregates the memory state updates on the Master
that occur within an epoch, say 20 msec, and propagates
them to the Slave at the end of the epoch. This aggregation is
effective because memory state synchronization is typically
done on a page-by-page basis and multiple memory updates
that occur within the same epoch and within the same page
can be propagated with a single page transfer. However, this
epoch-based memory state synchronization approach further
aggravates the perceived request latency.

Although the first XSFT prototype [1] successfully

demonstrated the feasibility of the transactional fault tol-
erance model, it carried a serious run-time performance
overhead, i.e. more than 200% slow-down for realistic data
center workloads when the epoch is set to 20 msec. The main
performance bottleneck identified is memory state synchro-
nization. In this project, we develop three optimization tech-
niques that are aimed to minimize the performance overhead
associated with propagating modified memory pages at the
end of every epoch in an XSFT-like system, and we assume
there is a dedicated gigabit Ethernet link between a Master
and its Slave specifically for memory state synchronization.

The first technique is fine-grained dirty region tracking,
which keeps track of modifications to a Master’s memory
state at a granularity smaller than a memory page in order to
reduce the total number of bytes required to be transported to
its Slave. The second technique is speculative state transfer,
which transports a Master’s dirty regions to its Slave during
an epoch rather than at the end of an epoch in order to mask
some of the performance overhead associated with memory
state transfer. The third technique is synchronization traffic
reduction using active slave, which requires both a Master
and its Slave to run concurrently and reduces the number of
dirty bytes that need to be transported by virtue of the fact
that the memory states of the Master and Slave are likely to
be modified in a similar way because they execute the same
binary and receive the same inputs.

The rest of this paper is organized as follows. Section 2
reviews previous research on fault-tolerant network services
using process state or machine state check-pointing. Section
3 describes the three optimization techniques for memory
state synchronization developed in this project. Section 4
presents the results of a trace-driven evaluation of the three
proposed techniques and their detailed analysis. Section 5
concludes this paper with a summary of main research
results and a brief outline of future work.

2. Related Work
Checkpointing and logging are two widely-used alterna-

tives in modern Fault Tolerance (FT) solutions [2], [3]. For
the checkpointing approach, states of healthy machines are
preserved either locally or remotely. In case of failures,
the system is rolled back to the most recent checkpoint.
However, events and data updates between the most recent
checkpoint and the failure point are lost. In contrast, the
logging technique logs the events of healthy machines.
Logging events are replayed online at the runtime to ensure
identical backup with regard to the primary. For example,
Bressoud et al. [3] proposed a hypervisor-based FT where
the hypervisor logged each instruction-level operation to the
primary and replayed the logged operations on top of the
backup. In general, domain-specific knowledge is required
to log events for the replaying purpose. With the help of
virtualization, the logging can be done within the virtual
machine monitor (VMM) [2]–[5]. Because logging is done

within VMM, no modification is made to the application
or operation systems involved, which makes virtualization-
based logging and replaying approach appealing.

However, the virtualization-based logging and replaying
approach is not widely advocated for two reasons. First,
although logging can be easily done with the help of VMM,
a deterministic replay of the logging events relies heavily
on the target architecture [3]. Therefore, each deterministic
replay mechanism requires an implementation on a specific
VMM. Second, for multi-core CPUs, the deterministic re-
play depends on the order in which multiple cores access
shared memory. However, to track the order of shared
memory access is difficult although some projects [6], [7]
suggested promising ad-hoc low-level mechanisms. Flight
data recorder [6] sniffs cache traffic to infer the order in
which shared memory is accessed. Dunlap [7] imposed a
CREW protocol on share memory pages to track down the
access order of the shared memory. Given the high overhead,
it is not clear whether the deterministic replay is a feasible
alternative of FT solutions [8].

Instead, check-pointing involves less domain-specific
knowledge of either hardware or applications. There are two
categories of state check-pointing based-on the granularity,
per-process state check-pointing and the whole machine
state check-pointing, respectively. Similar to the use of
process migration in data center and cluster computing envi-
ronments [2], [9]–[12], operating system virtualization [13]
enables the migration of virtualized operating system and
therefore can be used for the purpose of load-balancing, op-
erating system isolation and efficient utilization of hardware
resources [2], [14], [15].

Virtualization-based machine migration provides an en-
capsulation for migrating critical services [13], [16]–[18]
while avoiding convoluted per-process coordination in mi-
gration. Clark [16] proposed a XEN-based live migration
mechanism to separate the migration of virtualized oper-
ation systems from the external end users. Migration is
divided into 5 stages to minimize the negative impact of
live migration to both external end users and the physical
machine. Services are only stopped at the stop-and-copy
stage. However, only the memory states are migrated instead
of both the memory and storage. Travostino et al. [17]
takes one step further to migrate both the in-memory states
and external storage states over a MAN/WAN. Existing
commercial virtualization product such as VMotion also
supports live migration of virtualized operation system by
moving its in-memory states [18].

Virtualization-based fault tolerance has recently attracted
considerable interest in recent years [1], [8], [19] for its cost-
effectiveness. Memory states of the virtualized operating
system is constantly check-pointed to a standby backup
instance so that the backup can seamlessly take over when
the primary virtualized instance fails. Performance overhead
of such systems roots from the copying of memory states. To

reduce the amount of transferred memory states, Remus [8]
proposed to copy over only those dirtied memory states.
The check-pointing frequency for Remus can be as high as
every 25 msec. The aim of our work is to further reduce the
amount of memory coped over from the primary instance to
the backup instance. Remus buffered external events until
the end of each synchronization between the primary and
the backup virtualized instance. Instead of buffering external
events, Kemari [19] checkpoints the primary instance when
the VMM is going to duplicate the external events to the
backup instance. Our work is orthogonal to the mechanism
of ensuring consistency between the primary and backup
virtualized instance and can compensate for performance
overhead associated with each of such mechanisms.

3. Design Alternatives
3.1. Fine-Grained Dirty Region Tracking

In virtualization-based fault-tolerant systems such as
XSFT and Remus, the states of the Master and Slave
are synchronized at the end of each epoch. An obvious
idea to decrease the performance overhead of this memory
state synchronization operation is to identify the regions of
the Master’s memory modified since the end of the last
epoch and ship only these modified regions to the Slave.
Both XSFT and Remus exploit virtual memory hardware to
detect memory pages that are dirtied within the most recent
epoch. Basically, memory pages are marked as read-only at
the beginning of an epoch; every time a memory page is
modified, a write exception occurs, and the page is recorded
in a dirty page list and turned to read-write; at the end of
each epoch, pages in the dirty page list are sent to the Slave.

Although the above approach is conceptually straightfor-
ward, leveraging virtual memory protection hardware incurs
a non-trivial performance overhead, especially when the
epoch size is small. For example, imagine the overhead
of servicing thousands of write protection faults within an
epoch of 20 msec. To address this problem, XSFT [1] incor-
porates an optimization that exploits the fact that the dirty
page lists of consecutive epochs are significantly overlapped
with each other. This technique proves to be indispensable
for efficient dirty page tracking when the memory state
synchronization frequency is high.

Although virtual memory protection hardware is conve-
nient to use and greatly reduces the run-time performance
cost of identifying modified pages, it also limits the granu-
larity of dirty memory region tracking to individual pages.
This means that even a single byte in a memory page is
modified in an epoch, the entire page is considered dirty and
needs to be transferred to the Slave at the end of the epoch.
We propose a fined-grained dirty region tracking (FDRT)
technique to overcome this limitation.

The minimum unit of dirty region tracking in FDRT
supports is a tracking block, which is smaller than the
typical memory page size (4KB). At the beginning of an

epoch, FDRT computes a hash value for each tracking block
of every page and stores these hash values in a memory-
resident fingerprint database. At the end of the epoch, FDRT
computes a hash value for every tracking block of every page
in the epoch’s dirty page list, compares each such hash value
with its counterpart in the fingerprint database, and if they do
not match, marks the corresponding tracking block as dirty
and replaces the stored fingerprint with the newly computed
hash value. In the end, only the dirty tracking blocks are
transferred to the Slave.

The smaller the tracking block size is, the more accurately
FDRT can approximate the true dirty region, but the larger
the in-memory fingerprint database needs to be. Assuming
each hash value takes 8 bytes, the memory overhead associ-
ated with FDRT’s fingerprint database is about 3.1% if the
tracking block size is 256 bytes, 6.3% if the tracking block
size is 128 bytes and 12.5% if the tracking block size is 64
bytes. One possible optimization to reduce the fingerprint
database’s memory overhead is to keep hash values not for
all memory pages, but only for recently dirtied pages. In this
scheme, if the fingerprint database does not have old hash
values for a newly dirty page, every tracking block in that
page is considered dirty. This technique enables the use of
smaller tracking block size while minimizing the fingerprint
database’s memory overhead.

For each tracking block, FDRT incurs an additional over-
head of computing its hash value besides its data transfer
cost. On our test machine, the measured throughput of
MD5 hash computation is about 320 Mbytes/sec, which is
much higher than the sustained throughput of the dedicated
Gigabit Ethernet link used for memory state synchronization,
which is about 100 Mbytes/sec. Let DP (T) and DB(T) be
the number of dirty pages and dirty blocks, respectively,
when the epoch size is T . The hash value computation
cost is Chash = DP (T)

320Mbytes/sec and the data transfer cost

is Ctransfer = DB(T)
100Mbytes/sec . To a first approximation, the

total delay of an end-of-epoch memory state synchronization
transaction takes MAX(Chash, Ctransfer), because hash
value computation of a tracking block can be easily pipelined
with its transmission.

3.2. Speculative State Transfer
In XSFT, pages dirtied in an epoch are sent from the

Master to the Slave at the end of that epoch. One way
to decrease the amount of time required to transfer dirty
pages is to reduce the total number of bytes that need to be
exchanged, and the other way is to speculatively ship some
of the dirty pages during an epoch rather than at the end of
an epoch. Speculative state transfer (SST) overlaps memory
state transport with normal application execution, and thus
can potentially mask some or even all of the end-of-epoch
memory state synchronization overhead. Because we assume
that there is a dedicated network link between the Master
and Slave specifically for memory state synchronization,

the impact of speculative state transfer on the networking
performance of application execution is expected to be small.
Moreover, the same idea can be applied to the computation
used in memory state synchronization, e.g., computing the
per-tracking-block hash values in FDRT during rather than
at the end of an epoch.

If a page is sent to the Slave as soon as it is modified, the
same page may be sent multiple times during an epoch even
though only the last send is necessary. In the worst case, it is
possible that SST generates so many redundant page trans-
fers that even the dedicated synchronization network link
cannot handle and the overall memory state synchronization
delay is actually increased rather than decreased. Therefore,
the main technical challenge of SST is how to balance the
trade-off between the benefit of overlapping memory state
synchronization with application execution and the risk of
creating too much unnecessary synchronization traffic.

To strike a good balance between these two considera-
tions, we perform a characterization of the temporal write
patterns to memory pages. In particular, we measure each
memory page’s write burst length, which is the temporal
distance between the first write and the last write to a
memory page during an epoch. A page with a large write
burst length means writes to the page are spread over a larger
portion of an epoch. Empirically, we found the majority of
memory pages have a write burst length of 1 msec or less for
an epoch of 20-30 msec, although there is no easy way to
identify pages that have a large write burst length. Based on
this observation, the current speculative state transfer design
uses the following heuristics:

• Schedule a dirty page to be sent to the client one msec
after its first write, and mark the page as clean.

• At the end of an epoch, send the dirty pages in the dirty
list. These pages correspond to those whose write burst
length is larger than 1 msec, or whose write burst length
is shorter than 1 msec but whose first write occurs
within 1 msec away from the end of an epoch.

The above SST design guarantees each memory page
is sent to the Slave at most twice, and is able to mask
a significant portion of the memory state synchronization
overhead (as shown in Section 4), because the write burst
length of most memory pages under the workloads used in
our study is smaller than 1 msec.
3.3. Synchronization Traffic Reduction Using Ac-

tive Slave
In both XSFT and Remus, the Slave is passive in the

sense that the Slave is not actively running but is ready to
go when the Master dies. In the passive Slave design, a Slave
never consumes any CPU resource of the physical machine
on which it resides. Therefore, a single physical machine
can host multiple passive Slaves simultaneously, i.e., N+1
fault tolerance rather than 1+1 fault tolerance.

An alternative to the passive Slave design is the active

Slave design [20], in which the Slave runs concurrently with
the Master, which is the only entity that directly interacts
with external machines. To ensure that the Master and Salve
receive the same network inputs, every input packet that the
Master receives is duplicated, transformed and sent to the
Slave. Proper transformation on the input packets is required
because some sequence number fields in network protocols
are randomly initialized, e.g., TCP. To ensure that the Slave
is able to seamlessly continue the Master’s interactions with
external machines after the Master dies and it takes over,
the Master returns a response to an external machine only
after it receives the corresponding response from the Slave.

Because Master and Slave run the same code, receive
the same network inputs and are frequently synchronized
with respect to their responses to incoming requests, their
memory states should be largely the same at the end of an
epoch and accordingly the amount of data to be transferred
for memory state synchronization is expected to be small.
Because there is still non-determinism in the system, e.g.,
timer interrupts, the memory states of the Master and Slave
are not identical to each other. The third optimization
technique to decrease the memory state synchronization
overhead is to run the Slave in the active mode.

In the active Slave configuration, at the end of each epoch,
the Slave sends its dirty page list, which includes the page
number and hash value of each dirty page, to the Master,
which compares the received dirty page list with its own
dirty page list and categorize the Slave’s pages into the
following 4 types: (A) clean pages that are also clean in the
Master, (B) dirty pages whose new contents are available on
the Slave, (C) dirty pages whose new contents must come
from the Master, and (D) clean pages whose new contents
must come from the Master because they are in the Master’s
dirty page list. The Master only needs to transfer pages that
are of Type (C) and (D). Because the Master and Slave share
many common dirty pages whose page number in the Master
is different from that in the Slave, we decide to include per-
page hash values into the dirty page list so as to classify
such dirty pages into Type (B) pages rather than Type (C).

Even though the active Slave configuration could poten-
tially cut down the memory state synchronization overhead,
it incurs an implicit performance cost in addition to con-
suming more hardware resources: The response to every
incoming request can be returned to the requesting client
only when the slower of the Master and Slave successfully
processes the request and responds. This performance cost
could become quite visible if the Master and Slave each
share a physical machine with other virtual machines and
the hypervisors on the Master’s and the Slave’s machines
are not coordinated.
3.4. Put Together

The above three optimization techniques contribute to the
reduction of the memory state synchronization traffic in a
way that is largely orthogonal to one another, and thus can

be combined together to minimize the overall memory state
synchronization overhead at the end of each epoch.

4. Comparative Evaluation
4.1. Methodology

We used an emulation approach to evaluate the effec-
tiveness of the proposed three optimization techniques and
assess how their performance is affected by relevant system
configuration parameters. More concretely, we ran the three
benchmarks on a test-bed consisting of two physical ma-
chines, one of them running one or multiple client virtual
machines and the other running one or multiple server virtual
machines. The hypervisor used in this study is Xen, and
the server and client VMs ran either Linux or Windows,
depending on the benchmark. The client machine is 3.20-
GHz Pentium IV machine with 1 GB memory and a 5400
RPM and 160-GB SATA disk. The server machine is 2.66-
GHz Pentium IV machine with 2 GB memory and a 7200
RPM and 250-GB SATA disk. The three benchmarks used
in this study are as below:

• TPC-E Workload
TPC-E [21] is a newly-introduced OLTP benchmark
that simulates the OLTP workload of a brokerage firm.
DBT-5 [22] is an open-source TPC-E implementation
using PostgreSQL as the backend DBMS. DBT-5 ini-
tializes the brokerage database with 5,000 customers,
the scale factor to 500 and the number of initial trade
days to 200, and runs the TPC-E transactions for
1 minute for the active slave technique, and 1 hour
for the other two optimization techniques. The TPC-E
workload is a largely random workload with very poor
data locality. The average disk read/write size is 8 KB,
with 43% of the disk I/O requests being writes and the
rest being reads.

• CIFS Workload
The CIFS benchmark in SPECsfs 2008 [23] is a
synthetic workload simulating the typical load on
production-mode Windows file servers. In this work-
load, there are 10 concurrent client processes and 1
server, and the number of sustained CIFS operation
increases from 10 to 100 with 10 as the increment.
Each experiment run lasts for one minute under the
active slave scenario but lasts for 10 minutes for the
other two optimization techniques. The average disk
I/O request size for reads and writes in the resulting
trace is 4 KB. 25% of the disk I/O requests are writes
and the remaining are reads.

• Exchange Workload
The Exchange workload runs a Windows Exchange
2003 server with a load generator called LoadGen [24]
developed by Microsoft Corporation. LoadGen simu-
lates the workload of a medium-sized corporation’s
email server. The load generator runs for 1 minute with
1,000 email accounts and 1 user group. The average

number of sustained tasks in each email is 132. The
average disk I/O request size for reads and writes is
16 KB and 4 KB, respectively. 99% of the disk I/O
requests are write requests and the remaining are read
requests.

To evaluate the effectiveness of FDRT, we ran the Master
server in a VM, marked all its memory pages as read-only,
implemented a write exception handler in the Xen hypervisor
to maintain a dirty page list, chose a tracking block size
and computed per-tracking-block hash values for the Master
VM’s memory, stopped the test-bed at the end of each epoch,
identified the tracking blocks that are modified during each
epoch based on the dirty page list and per-tracking-block
hash values, and compute the total number of bytes that need
to be transferred at the end of each epoch for the chosen
tracking block size. This set-up is referred to as the FDRT
configuration hereafter.

To evaluate the effectiveness of SST, we used the FDRT
configuration with the following modification: at the end
of every msec during every epoch, the dirty page list is
appended to an in-memory log and then cleared, and all
the memory pages are marked as read-only. At the end of an
epoch, we calculated the write burst length (at the granularity
of msec) of every page modified in the epoch, and computed
the number of dirty pages that need to be transferred to the
Slave at the end of the epoch with varied eagerness delay.

To compare the difference in memory states between the
active and passive slave configurations, we set up a Master
VM and a Slave VM on the server machine, and modified the
network driver in DOM0 to duplicate every incoming packet
destined to the Master VM with proper TCP/CIFS sequence
number rewriting and forward it to the Slave VM, and to
defer an outgoing packet from the Master after receiving
the corresponding packet from the Slave. In addition, at
the end of every epoch, we stopped the Master and Slave
VMs, computed the difference in the memory states of the
Master and Slave VMs based on their per-page hash values,
modified Xen’s VM suspend/resume mechanism to copy
the Master’s VM state to the Slave over the network, and
proceeded to the next epoch.

In all the experiments, we stopped the client VMs at
the end of each epoch as well, so that the end-of-epoch
processing delay due to statistics collection and bookkeeping
is not visible to the clients, and therefore won’t affect the
input workloads.
4.2. Fine-Grained Dirty Region Identification

Figure 1(a) shows the average number of bytes transferred
at the end of each epoch during the experiment runs under
the Exchange workload, the TPC-E workload and the CIFS
workload, when the tracking block size of fine-grained dirty
region tracking is varied from 64 bytes, 256 bytes and 1024
bytes to 4096 bytes. Let’s call a contiguous range of bytes
that are modified within an epoch a dirty region and divide
each tracking block into 4 subblocks. When increasing the

 0

 500

 1000

 1500

 2000

 64 256 1024 4096D
at

a
Tr

an
sf

er
re

d
A

t t
he

 E
nd

 o
f A

n
E

po
ch

 (U
ni

t:
K

B
)

Tracking Block Size (Unit: Byte)

Exchange
TPC-E

CIFS

 10

 100

 1000

 10000

 1 10 100 1000D
at

a
Tr

an
sf

er
re

d
A

t t
he

 E
nd

 o
f A

n
E

po
ch

 (U
ni

t:
K

B
)

Epoch Size (Unit: msec)

Exchange
TPC-E

CIFS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30D
at

a
Tr

an
sf

er
re

d
A

t t
he

 E
nd

 o
f A

n
E

po
ch

 (U
ni

t:
K

B
)

Eagerness Delay (Unit: msec)

Exchange
TPC-E

CIFS

(a) (b) (c)
Figure 1. (a) The average number of bytes transferred at the end of each epoch during the experiment runs under
the Exchange workload, the TPC-E workload and the CIFS workload, when the tracking block size of fine-grained
dirty region tracking is varied from 64 bytes, 256 bytes and 1024 bytes to 4096 bytes. The epoch size is fixed as 30
msec. (b) The average number of bytes transferred at the end of each epoch during the experiment runs under the
Exchange workload, the TPC-E workload and the CIFS workload, when the epoch size of fine-grained dirty region
tracking is increased from 2 msec to 1 second. The tracking block size is fixed as 256 bytes. (c) The average number
of bytes transferred at the end of each epoch during the experiment runs under the Exchange workload, the TPC-E
workload and the CIFS workload, when the eagerness delay of speculative state transfer is varied from 1 msec to
29 msec. The epoch size is fixed as 30 msec and the tracking block size is 256 bytes.
tracking block size from 64 bytes to 4096 bytes, the total
amount of end-of-epoch synchronization traffic is increased
by a factor of 4.5, 7.8, and 2.7 for the Exchange workload,
the TPC-E workload and the CIFS workload, respectively.

In general, the slope in the increase of the amount
of end-of-epoch synchronization traffic decreases with the
increasing tracking block size. For the CIFS workload, the
majority of the dirty regions are close to 4096 bytes, as a
result using a smaller tracking block size than 4096 bytes
does not provide as much reduction in the amount of end-
of-epoch synchronization traffic as the other two workloads.
For the Exchange and TPC-E workload, the distribution
of the dirty region size follows a bimodal distribution that
concentrates on 64-byte and 4096-byte regions. As a result,
the percentage of subblocks in each tracking block that are
dirty increases with the tracking block size. For example, if
the average dirty region size is 64 bytes, and the average
distance between adjacent dirty regions is 256 bytes, then
the amount of end-of-epoch synchronization traffic for the
64-byte tracking block size would be four times smaller
than that for the 256-byte tracking block size, which in turn
would be the same as that for the 1024-byte or 4096-byte
tracking block size. However, if the average dirty region
size is 256 bytes, and the average distance between adjacent
dirty regions is 2048 bytes, then the amount of end-of-epoch
synchronization traffic for the 64-byte tracking block size
would be the same as that for the 256-byte tracking block
size, which in turn would be four times smaller than that for
the 1024-byte tracking block size, which in turn is half as
that for the 4096-byte tracking block size.

As expected, figure 1(b) shows that the amount of end-of-
epoch synchronization traffic increases with the epoch size,
but the slope of increase is smaller than linear and decreases

with the epoch size because the same tracking block is likely
to receive more updates during an epoch as the epoch size
increases. For all three workloads, the amount of end-to-
epoch synchronization traffic is less than 100 Kbytes or
costs less than 1 msec assuming a 100 Mbytes/sec dedicated
Gigabit Ethernet link, when the epoch size is 10 msec. This
means that FDRT alone can already enable the use of an
epoch size as small as 10 msec because the end-of-epoch
synchronization delay is smaller than 10% of such an epoch.
4.3. Speculative State Transfer

Figure 1(c) shows the average number of bytes transferred
at the end of each epoch during the experiment runs under
the Exchange workload, the TPC-E workload and the CIFS
workload, when the eagerness delay of speculative state
transfer is varied from 1 msec to 29 msec. Assuming the
eagerness delay is D msec, under speculative state transfer,
the pages that are transferred at the end of an epoch are
those pages whose write burst length is larger than D msec,
or those pages whose first write occurs within the last D
msec of an epoch. It turns out that for the Exchange and
CIFS workload, the write burst length of more than 90% of
the pages dirtied in an epoch is less than 1 msec, whereas
for the TPC-E workload, more than 82% of the pages dirtied
in an epoch have a write burst length of less than 1 msec.
Therefore, for all three workloads, most of the pages that
are transferred at the end of an epoch are pages whose first
write occurs within the last D msec of an epoch. As D
increases, the number of such pages is increased, and so
does the amount of end-of-epoch synchronization traffic.

When the eagerness delay is increased from 1 msec to 29
msec, the amount of end-of-epoch synchronization traffic
is increased by a factor of 10.8, 9.9, and 15.1 for the
Exchange, TPC-E and CIFS workload, respectively. Because

Workload Percentage of Dirty States (Unit: %)
Master-Only Common Slave-Only

TPC-E 8 83 9
Exchange 9 79 12

CIFS 17 65 18

Table 1. The average percentage of different types of dirty
pages in a Master operating in the active Slave configuration

under the three workloads. The epoch size is 15 msec.
the percentage of dirty pages whose write burst length is less
than 1 msec is smaller in the TPC-E workload than the other
two workloads, the impact of pages whose first write occurs
within the last D msec of each epoch on its curve is less
and consequently its curve is less smooth than the other the
curves associated with the other two workloads.

Although speculative state transfer could mask some of
the memory state synchronization delay, it does this at the
expense of transferring more data than absolutely necessary.
Fortunately, Figure 2(a) demonstrates that the total number
of bytes transferred during and at the end of an epoch when
speculative state transfer is turned on is 1.09, 1.08, and 1.22
times that when speculative state transfer is disabled under
the Exchange workload, the TPC-E workload and the CIFS
workload, respectively. This results suggests the amount of
unnecessary data transfer in speculative state transfer is kept
to an acceptable level in practice. Moreover, in all three
workloads, the during-an-epoch data transfer rate required
is well below and thus can be easily accommodated by the
sustained rate of the dedicated Gigabit Ethernet link, i.e.,
100 Mbytes/sec or 3.3 Mbytes per 30 msec.

Surprisingly, Figure 2(b) shows that the amount of end-
of-epoch synchronization traffic remains largely constant
regardless of the epoch size. This result suggests that spec-
ulative state transfer not only can shift most of the memory
state synchronization operations from at the end of an epoch
to during an epoch, it is capable of performing this shifting
equally effectively across all epoch sizes, because updates
to the memory state are rarely concentrated towards the end
of an epoch, no matter what the epoch size is.

Figure 2(c) shows the overhead in terms of total numbers
of bytes during a whole epoch. Smaller eagerness delay
leads to larger overhead because pages dirtied multiple times
within an epoch are not clusterred in a narrow range and
smaller eagerness delay transfer more of those dirty pages.
The Exchange workload has a larger ratio of pages dirtied
multiple times within an epoch than the TPC-E workload
and the CIFS workload, while that of the TPC-E workload
is larger than that of the CIFS workload.
4.4. Synchronization Traffic Reduction Using Ac-

tive Slave
When the Slave is active, at the end of each epoch, the

pages at the Master can be classified into 4 types: A, B, C,
and D, as described in Section 4.4. Type C and D pages
need to be transferred from the Master to the Slave, and
Type B pages need to be transferred if the Slave is passive.

Therefore we use the ratio NB
NB+NC+ND as a metric to

evaluate the effectiveness of the Active Slave configuration
in reducing the end-of-epoch synchronization traffic, where
NB, NC and ND represent the number of Type B, Type C
and Type D pages, respectively. Figure 2(d) shows how this
ratio varies with the epoch size under the three workloads.
As expected, the larger the epoch size, the more divergent the
memory states of the Master and Slave are and the smaller
the reduction in end-of-epoch synchronization traffic. When
the epoch size is 15 msec, the ratio is above 83% for the
TPC-E workload, 79% for the Exchange workload, and
65% for the CIFS workload, as shown in Table 1. This
means the Active Salve configuration can reduce the end-
of-epoch synchronization traffic by a factor of 5 for the
TPC-E and Exchange workload but only a factor of 2.8 for
the CIFS workload. When the epoch size is 30 msec, the
synchronization traffic reduction factor is decreased to 3.6,
3.1 and 1.6 for the TPC-E, Exchange and CIFS workload,
respectively.

Because the Master and Slave run the same program and
are fed the same network inputs, the difference between
their memory states mainly comes from non-determinism
in the code, for example, TCP’s sequence number that is
initialized randomly. In the case of the CIFS workload,
the CIFS protocol also has its own sequence number that
appears to be initialized randomly. Therefore, the Master and
Slave are not fed with exactly the same input packets. This
additional non-determinism explains why the Active Slave
configuration is less effective at reducing the end-of-epoch
synchronization traffic for the CIFS workload than for the
other two workloads.

Figure 2(e) shows analytical curves illustrating how the
number of bytes transferred at the end of each epoch varies
with the epoch size. The analytical curves multiply the total
bytes of dirty data blocks with the ratio of Type-B dirty
blocks. As expected, the number of bytes transferred at the
end of each epoch increases with the epoch size.
4.5. Analysis of Performance Overhead

The cornerstone of all optimization techniques to reduce
the volume of the dirty data blocks at the end of each
epoch is the mechanism to track the dirtiness of a data
block. There exists two ways to track the dirtiness of data
blocks: to scan the dirty bitmap of the whole memory
space of the guest virtual machine, or to mark the target
pages as write-protected to trigger an exception whenever
the target page is modified. It is time-consuming to use
the dirty bitmap alone, and it is also expensive to use the
write-protection mechanism (0.164 msec to process a write-
protection exception under XEN). To mitigate the overhead
associated with both of these two techniques, we developed
a mechanism to combine these two techniques together as
follows. At the beginning of each epoch, all pages that are
previously dirtied (denoted as Old-Dirty-Region) do not have
the write-protection, and all other pages have the write-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30D
at

a
Tr

an
sf

er
re

d
A

t t
he

 E
nd

 o
f A

n
E

po
ch

 (U
ni

t:
K

B
)

Eagerness Delay (Unit: msec)

Exchange
TPC-E

CIFS

 0

 10

 20

 30

 40

 50

 1 10 100 1000D
at

a
Tr

an
sf

er
re

d
A

t t
he

 E
nd

 o
f A

n
E

po
ch

 (U
ni

t:
K

B
)

Epoch Size (Unit: msec)

Exchange
TPC-E

CIFS

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30

O
ve

rh
ea

d
of

 T
ra

ns
m

itt
ed

 B
yt

es
 (U

ni
t:

%
)

Eagerness Delay (Unit: msec)

Exchange
TPC-E

CIFS

(a) (b) (c)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 13 15 30 60

P
er

ce
nt

ag
e

of
 C

om
m

on
 M

em
or

y
S

ta
te

s
(U

ni
t:

%
)

Epoch Size (Unit: msec)

TPC-E
Exchange

CIFS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 13 15 30 60B
yt

es
 T

ra
ns

fe
rr

ed
 a

t t
he

 E
nd

 o
f A

n
E

po
ch

 (U
ni

t:
K

B
)

Epoch Size (Unit: msec)

Exchange
TPC-E

CIFS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
er

ce
nt

ag
e

of
 N

ew
ly

 D
irt

ie
d

P
ag

es
 (U

ni
t:

%
)

K

TPC-E
Exchange

CIFS

(d) (e) (f)
Figure 2. (a)The average number of bytes transferred during each epoch for the experiment runs under the
Exchange workload, the TPC-E workload and the CIFS workload, when the eagerness delay of speculative state
transfer is varied from 1 msec to 29 msec. The epoch size is fixed as 30 msec and the tracking block size is 256
bytes. (b) The average number of bytes transferred at the end of each epoch during the experiment runs under
the Exchange workload, the TPC-E workload and the CIFS workload, when the epoch size is varied from 5 msec
to 1 second. The eagerness delay of speculative state transfer is fixed as 2 msec and the tracking block size is
256 bytes. (c)The overhead in terms of bytes transferred during the whole epoch for the experiment runs under the
Exchange workload, the TPC-E workload and the CIFS workload, when the eagerness delay is varied from 1 msec
to 29 msec. The epoch size is fixed as 30 msec and the tracking block size is 256 bytes. (d)The percentage of
common memory states of all dirty memory blocks for both the master machine and the slave machine with varied
epoch size under the Exchange workload, the TPC-E workload and the CIFS workload. The tracking block is 256
byte, and the X axis is in log scale. (e)The average number of bytes transferred at the end of each epoch for the
experiment runs under the Exchange workload, the TPC-E workload and the CIFS workload, when the epoch size
using Active Slave is varied from 1 msec to 60 msec. The tracking block size is 256 bytes. (f)The ratio of newly dirty
data blocks with regard to the previous k epochs under the three workloads when k is varied from 1 to 5,000. The
epoch size is 2 msec.
protection mechanism on. At the end of each epoch, scan
the portion of dirty bitmap corresponding to Old-Dirty-
Region to find out the dirtied pages in the Old-Dirty-Region,
and rely on the write-protection mechanism to track the
dirty pages out of Old-Dirty-Region. If the Old-Dirty-Region
contains dirty pages in the previous k epochs, we denote it
as k-Old-Dirty-Region. If the k-Old-Dirty-Region does not
change significantly across epochs, we can greatly reduce the
overhead associated with the write-page protection mecha-
nism. Unfortunately, for all three workloads, it takes larger
k to retrieve a k-Old-Dirty-Region that has more common
pages with the current epoch. Figure 2(f) shows that the ratio
of newly dirty regions decreases as k increases as expected.
However, the ratio does not fall behind 30% for the TPC-E

workload even when k = 5, 000. It is surprising at first
but scrutinizing of memory traces show that the average
modification interval of the 30% newly dirtied regions is
more than 10 seconds for the TPC-E workload, which
indicates those pages are dirtied by different processes in
the system and exhibits poor data locality.

Figure 3(a) shows that the ratio of newly dirty blocks
across epochs does not follow a fixed trend with varied
epoch sizes. For the TPC-E and CIFS workload, the ratio
keeps increasing with the epoch size because larger epoch
introduces more new dirty blocks. In contrast, for the Ex-
change workload, the distribution of dirty blocks is more
bursty and the average number of new dirty blocks does not
increase when the epoch increases from 1 msec to 16 msec.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 N

ew
ly

 D
irt

ie
d

P
ag

es
 (U

ni
t:

%
)

Epoch Size (Unit: msec)

TPC-E
Exchange

CIFS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

O
ve

rh
ea

d
(U

ni
t:

%
)

Epoch Size (Unit: msec)

TPC-E
Exchange

Write-Page Protection for Exchange
Hash Computation for Exchange

CIFS

(a) (b)
Figure 3. (a)The ratio of newly dirty data blocks with regard to the previous 10 epochs under the three workloads
when the epoch is varied from 1 msec to 29 msec. (b)The runtime performance overhead with the epoch size
varying from 1 msec to 29 msec when FDRT, SpeccSS and Active Slave are combined for the Exchange, TPC-E
and CIFS workload. The eagerness delay is fixed as 1 msec, the tracking block is 256 bytes, and k = 10.
When the epoch size is larger than 16 msec, the average
number of new dirty blocks increases for the Exchange
workload and the same for the ratio of newly dirty blocks.

Besides the overhead due to page write-protection, the
computation of MD5 hash values of each data block con-
tributes the other significant run-time overhead. It takes on
average 0.05 msec to compute the hash value of a whole
4KB page. As the computation of the MD5 hash value is
proportional to the size of the data block, we assume it takes
0.05 msec to compute hash values of all data blocks within a
4KB page regardless the size of the data block. The overhead
of hash computation is proportional to the number of 4 KB
pages because for each 4 KB page, we have to compute the
hash values for all of its data blocks to figure out the newly
dirtied data blocks in the current epoch.

The performance overhead consists of three components:
1) the overhead due to write-protection page exception, 2)
the computation of hash values, and 3) the transmission of
dirty data blocks. As the computation and the transmission
can be pipelined efficiently and the transmission has a larger
throughput (100 MB/s compared with 80 MB/s for the
computation of hash values), we only model the overhead
due to 1) and 2). Figure 3(b) illusrates the overhead of all
three workloads in terms of elapsed time with varied epoch
sizes. The overhead is largely decided by the number of dirty
4KB pages and the curves follow similar trends as those in
figure 3(a). Another observation is that the overhead does
not necessarily decrease as the epoch size increases. For the
Exchange workload, the overhead is decomposed into two
components corresponding to 1) and 2), respectively. For the
overhead due to 1) and 2), the overhead due to 1) dominates
and attributes to 76% of the overhead.

5. Conclusion and Future Work
The key design decision in virtualization-based fault-

tolerant systems such as XSFT and Remus is an epoch-based

client server model, in which incoming requests received
within an epoch are processed by the Master in a batch, and
their associated external operations, in particular, disk write
accesses and network packets transmission, are deferred until
the memory states of the Master and Slave are synchronized
at the end of each epoch. In general, the larger the epoch,
the lower the memory state synchronization overhead, and
the higher the average request latency as perceived by
external clients. Moreover, for network applications whose
throughput is sensitive to the round-trip delay, larger epoch
size also results in lower perceived throughput. Therefore,
how to reduce the epoch size while minimizing the memory
state synchronization overhead is a key technical challenge
for these high-availability systems. This paper describes the
design of three optimization techniques that are devised to
reduce the memory state synchronization overhead in three
separate orthogonal ways, and presents a comprehensive
evaluation of them under three data-intensive server bench-
marks. More concretely, the contributions of this research to
fault tolerance research include

• A characterization study of the network traffic require-
ment of Master-Slave memory state synchronization in
virtualization-based fault-tolerant systems under data-
intensive server benchmarks.

• Development of three optimization techniques to min-
imize the amount of synchronization traffic at the end
of every epoch, including fine-grained dirty region
tracking, speculative state transfer, and synchronization
traffic reduction using active Slave.

• A comprehensive evaluation of the proposed three
optimization techniques under representative enterprise
server workloads, including their effectiveness individ-
ually.

Both XSFT and Remus require modifications to and thus
are tied with the underlying hypervisor, Xen in both cases.

Some hypervisors are starting to expose a programming API
for one virtual machine to take control when certain events
in another virtual machine occur, and to access memory
pages or intercept network or disk I/O operations associated
with another virtual machine, e.g., the VMsafe [25] API
from VMware. These APIs offer an opportunity to extend
a hypervisor without introducing third-party code into the
hypervisor. We plan to leverage this kind of programming
APIs to implement the proposed optimization techniques
in a way that is largely portable across different hypervi-
sors. When the Slave in a virtualization-based fault-tolerant
system is passive, a single physical machine can host
multiple Slaves for multiple Masters, each of which runs
on a separate physical machine. However, to prevent the
memory state synchronization transactions associated with
multiple Master-Slave pair from colliding with one another,
the epochs of the Master-Slave pairs serviced by a Slave-
hosting machine should be staggered so that the machine
can service a different pair at a different time slot. How
to coordinate the epoch timing of these Master-Slave pairs
without modifying the underlying hypervisor is a non-trivial
technical challenge.

References
[1] Dharmesh Shah and Sameer Lokray, “XSFT: Next Generation

HA,” Technical Report, Symantec Research Labs, 2008,
http://engweb.ges.symantec.com/cuttingedge/2007/
presentations/SHAH1003 rev0.ppt.

[2] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann,
and Stephen L. Scott, “Proactive Fault Tolerance for HPC
with Xen Virtualization,” in ICS ’07: Proceedings of the 21st
annual international conference on Supercomputing, New
York, NY, USA, 2007, pp. 23–32, ACM.

[3] T. C. Bressoud and F. B. Schneider, “Hypervisor-based Fault
Tolerance,” in SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, New York, NY,
USA, 1995, pp. 1–11, ACM.

[4] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A.
Basrai, and Peter M. Chen, “ReVirt: Enabling Intrusion
Analysis Through Virtual-Machine Logging and Replay,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 211–224, 2002.

[5] Samuel T. King, George W. Dunlap, and Peter M. Chen,
“Debugging Operating Systems with Time-Traveling Virtual
Machines,” in ATEC ’05: Proceedings of the annual con-
ference on USENIX Annual Technical Conference, Berkeley,
CA, USA, 2005, pp. 1–1, USENIX Association.

[6] Min Xu, Rastislav Bodik, and Mark D. Hill, “A ”Flight
Data Recorder” for Enabling Full-System Multiprocessor
Deterministic Replay,” SIGARCH Comput. Archit. News, vol.
31, no. 2, pp. 122–135, 2003.

[7] III George Washington Dunlap, Execution replay for intrusion
analysis, Ph.D. thesis, Ann Arbor, MI, USA, 2006.

[8] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Fee-
ley, Norm Hutchinson, and Andrew Warfield, “Remus: High
Availability Via Asynchronous Virtual Machine Replication,”
in NSDI’08: Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, Berkeley,
CA, USA, 2008, pp. 161–174, USENIX Association.

[9] J. Duell, “The Design and Implementation of Berkeley Lab’s
Linux Checkpoint/Restart,” Technical Report, Lawrence

Berkeley National Laboratory, 2000.
[10] Michael L. Powell and Barton P. Miller, “Process Migration

in DEMOS/MP,” SIGOPS Oper. Syst. Rev., vol. 17, no. 5,
pp. 110–119, 1983.

[11] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Vishal
Sahay, and Andrew Lumsdaine, “The Lam/Mpi Check-
point/Restart Framework: System-Initiated Checkpointing,”
International Journal of High Performance Computing Ap-
plications, vol. 19, no. 4, 2005.

[12] Graham E. Fagg and Jack Dongarra, “FT-MPI: Fault Tolerant
MPI, Supporting Dynamic Applications in a Dynamic World,”
in Proceedings of the 7th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, London, UK, 2000, pp. 346–353.

[13] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield, “Xen and the Art of Virtualization,” in SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles, NY, USA, 2003, pp. 164–177, ACM.

[14] Carl A. Waldspurger, “Memory Resource Management in
VMware ESX server,” SIGOPS Oper. Syst. Rev., vol. 36, no.
SI, pp. 181–194, 2002.

[15] Yang Yu, Fanglu Guo, Susanta Nanda, Lap chung Lam, and
Tzi cker Chiueh, “A Feather-Weight Virtual Machine for
Windows Applications,” in VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments,
New York, NY, USA, 2006, pp. 24–34, ACM.

[16] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew
Warfield, “Live Migration of Virtual Machines,” in NSDI’05:
Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation, Berkeley, CA,
USA, 2005, pp. 273–286, USENIX Association.

[17] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and
Harald Schiöberg, “Live Wide-Area Migration of Virtual
Machines including Local Persistent State,” in VEE ’07:
Proceedings of the 3rd international conference on Virtual
execution environments, New York, 2007, pp. 169–179, ACM.

[18] VMWare Inc, “VMWare VirtualCenter Version 1.2 User’s
Manual,” 2004.

[19] Yoshi Tamura, “Kemari: Virtual Machine Synchronization for
Fault Tolerance using DomT,” Technical Report, NTT Cyber
Space Labs, 2008, www.getxen.org/files/xensummitboston08/
tamura xen summit presentation final.pdf.

[20] Srikant Sharma, Jiawu Chen, Wei Li, Kartik Gopalan, and Tzi
cker Chiueh, “Duplex: A Reusable Fault Tolerance Extension
Framework for Network Access Devices,” in In Proceedings
of 2003 International Conference on Dependable Systems and
Networks (DSN, 2003.

[21] Transaction Processing Performance Council, “TPC Bench-
mark E,” http://www.tpc.org/tpce/tpc-e.asp, 2006.

[22] Mark Wong and Rilson Nascimento, “Digesting an
Open-Source Fair-Use TPC-E Implementation: DBT-5,”
http://www.pgcon.org/2007/schedule/attachments/35-TPC-
Ek-Wong-Rilson-Nascimento.pdf, 2007.

[23] Standard Performance Evaluation Corporation,
“SPEC SFS (System File Server) Benchmark,”
http://www.spec.org/osg/sfs97/, 1997.

[24] Microsoft Corporation, “Microsoft Exchange Load
Generator,” http://www.msexchange.org/articles/Microsoft-
Exchange-Load-Generator.html, Jan, 2007.

[25] VMWare Inc, “VMware VMsafe Security Technology,”
http://www.vmware.com/technology/security/vmsafe.html,
2008.

