
Execution Replay for Multiprocessor Virtual Machines

George W. Dunlap, Dominic G. Lucchetti,
Peter M. Chen

Electrical Engineering and Computer Science Dept.
University of Michigan

Ann Arbor, MI 48109-2122
{dunlapg,dluccet,pmchen}@umich.edu

Michael A. Fetterman
University of Cambridge Computer laboratory

15 JJ Thompson Avenue, Cambridge, UK, CB3 0FD
Michael.Fetterman@cl.cam.ac.uk

Abstract
Execution replay of virtual machines is a technique which has many
important applications, including debugging, fault-tolerance, and
security. Execution replay for single processor virtual machines is
well-understood, and available commercially. With the advance-
ment of multi-core architectures, however, multiprocessor virtual
machines are becoming more important. Our system, SMP-ReVirt,
is the first system to log and replay a multiprocessor virtual ma-
chine on commodity hardware. We use hardware page protection
to detect and accurately replay sharing between virtual cpus of a
multi-cpu virtual machine, allowing us to replay the entire oper-
ating system and all applications. We have tested our system on a
variety of workloads, and find that although sharing under SMP-
ReVirt is expensive, for many workloads and applications, includ-
ing debugging, the overhead is acceptable.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization]: Performance of Systems — Measurement Techniques;
D.4.1 [Operating Systems]: Process Management — multiprocess-
ing

General Terms Design, Measurement, Performance, Reliability,
Security,

Keywords ReVirt, execution replay, multithreading, determin-
ism, race recording, multiprocessors, virtual machines, Xen, direct
memory access, SPLASH, page protections

1. Introduction
Execution replay gives the ability to reconstruct the past execution
of a system. In conjunction with a checkpoint of the system state, it
gives the ability to reconstruct the entire state at any point in time
over the replay interval. This ability is useful for several different
applications. For debugging, it allows a programmer to inspect the
execution and state of a particular run of a system, even in the face
of non-determinism[9, 14, 5, 8]. For security, it allows a system ad-
ministrator to go back and inspect the entire state of the system be-
fore, during, and after an attack, allowing the system administrator
to determine how the attack took place and observe the attacker’s
activities[6]. For fault tolerance, execution replay allows the state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’08, March 5–7, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-796-4/08/03. . . $5.00

of a system just before a crash to be recovered without the need
for frequent checkpoints[7, 4, 11]. Recent work has also used exe-
cution replay to efficiently collect and store software architectural
traces[19].

A simple way to apply execution replay to a wide range of
software is to implement execution replay for virtual machines[4].
Running softare in a virtual machine capable of being replayed
allows a user to take advantage of execution replay without needing
to modify software running inside the virtual machine. It also has
the advantage of being able to use execution replay on an operating
system kernel.

In order to implement execution replay in a virtual machine,
any non-deterministic event that affects the virtual machine’s state
must be recorded. This state includes all memory allocated to the
virtual machine, the processor registers, and the disk. For a single
processor system, non-deterministic events include any external in-
put (such as keyboard, mouse, or network), as well as the timing
of non-deterministic events like interrupts. The techniques for re-
playing single processor systems are well understood, and are even
available commercially[19].

With the increasing prevalence of multi-core processors, ex-
ecution replay on multiprocessor systems has become more im-
portant. Implementing replay for multiprocessor systems is much
more challenging than single processor systmes, however. Because
writes on one processor can affect reads on another processor, the
results of memory races must be recorded and replayed. Existing
solutions require modification to software, or massive modifica-
tions to hardware.

We have built a system, SMP-ReVirt, which is the first system
to log and replay multiprocessor virtual machines on commodity
hardware. In order to detect and replay the results of memory races,
we use hardware page protections, available on all modern desktop
and server processors. This technique allows us to log and replay
unmodified multiprocessor systems, including multiprocessor ker-
nels running inside of a virtual machine.

Logging makes sharing more expensive, but the end-to-end
impact on performance varies widely depending on the workload.
For some applications it is prohibitively expensive, while for others
there is little impact.

This paper explores execution replay for multiprocessor virtual
machines. Section 2 introduces the basic concepts, terms, and re-
quirements of execution replay for single processor virtual ma-
chines. It then discusses the complications that shared-memory sys-
tems introduce, and describes techniques to address them. Section
3 describes the research prototype we built using the Xen hyper-
visor, describing the implementation of the general principles in
more detail, and describing some of the technical issues involved.
In Section 4, we evaluate our research prototype, investigating the

121

source of overhead and sharing. Finally, Section 5 discusses related
work.

2. Execution Replay
Logging and replay is widely used for recovering state. The basic
concept is straightforward: start from a checkpoint of a prior state,
then roll forward, replaying events from the log to reach the de-
sired state. The type of system being recovered determines the type
of information that needs to be logged: database logs contain trans-
action records, file system logs contain file system data, and so on.
Replaying a virtual machine requires logging the non-deterministic
events that affect the virtual machine’s computation. These log
records guide the virtual machine as it re-executes (rolls forward)
from a checkpoint. Most events are deterministic (e.g. arithmetic,
memory, branch instructions) and do not need to be logged; the vir-
tual machine will re-execute these events in the same way during
replay as it did during the original execution.

In order to replay an execution, we simply log and replay any
non-deterministic event that affects the state of the system. For vir-
tual machines, this includes logging virtual interrupts, input from
virtual devices such as the virtual keyboard, network, or real-time
clock, and the results of non-deterministic instructions such as
those that read the processor’s time-stamp counter (TSC).

There are two aspects of an event which may be non-deterministic:
data, and timing. We call an event which is non-deterministic in
data an input event. An instruction which reads a processor’s TSC
is an example of an input event. The result of the read is non-
deterministic; but the timing of it is synchronous – that is, it always
happens at the same point in the instruction stream. To replay these
events, the replay system needs to log and replay the data changed
by the event.

An event which is non-deterministic in timing is called an
asynchronous event. A virtual interrupt is an example of an asyn-
chronous event. The state change caused by an interrupt is deter-
ministic (writing certain values on the processor’s stack and chang-
ing certain registers), but the point in the instruction stream where
the interrupt is delivered is non-deterministic.

To replay asynchronous events, an execution replay system
needs to be able to identify the exact point in the instruction stream
where the event occurred, and replay the event at the same point in
the instruction stream during replay. In order to do this, we utilize
the hardware branch counter available on several architectures, in
conjunction with the instruction address. The observation is that if
a given virtual address is executed twice, there must be a branch
between them. Using branch counters allows us to identify a partic-
ular instruction in the instruction stream at which the asynchronous
event occurred, so that we can re-deliver the event at the same point
during replay.

Note that an event may be both asynchronous and an input
event. An example of such an event is DMA from a virtual device,
where both the timing of the DMA, and the data written by the
DMA, must be logged and replayed for the system work correctly.

Input from devices, such as keyboard and network, must be
logged and replayed; however, output, such as writes to a console
or sending network packets, do not affect state and do not need to
be logged or replayed. The data sent will be re-generated by the
replaying system. This data may be discarded without affecting the
reconstruction of the state of the virtual machine. However, it is
frequently useful to involve those devices in replay.

Other devices, such as the disk, allow us a choice. We could
simply log all reads from the disk; but this typically generates
a prohibitive amount of data, even for a moderately short run.
Instead, we can avoid logging input from the disk by including it in
the replaying system. If we checkpoint and restore the disk along
with the rest of the state of the system, writes to the disk will be

(a) (b) (c) (d)

Figure 1. Constraints sufficient to guarantee the order a → d

re-generated, which causes reads to return the same data as during
logging. Thus we can make reads from disk deterministic without
logging them.

2.1 Replaying shared-memory systems
When replaying shared-memory systems, reads from memory by
one processor are affected by writes of another processor. Since
these reads and writes may happen in any arbitrary interleaving, this
introduces fine-grained non-determinism into any shared memory
operation.

In order to reconstruct the state of shared memory, each proces-
sor must view writes to shared memory by other processors as asyn-
chronous events1. We therefore need to preserve the order of exe-
cution between the processors. We do not need a strict instruction-
by-instruction ordering, however. Only reads and writes to shared
memory need to be ordered with respect to each other. More specif-
ically, two instructions need to be ordered only if both of the fol-
lowing are true:

• They both access the same memory.
• At least one of them is a write.

This is the ordering requirement. Any interleaving of instructions
during replay that satisfies the ordering requirement will result in
the same execution2.

We indicate that instruction a is ordered before instruction b by
a → b. This is read, “a happens-before b”. In order to enforce an
order between two processors, we introduce constraints between
instructions. A constraint a → b indicates that the replay system
will ensure that b does not execute until a has executed.

Two points on the instruction stream may be ordered even if
there is no direct constraint from one to the other. Within a sin-
gle processor, there is an implicit ordering, based on the order
the instructions were executed. Furthermore, ordering is transitive:
a → b and b → c implies a → c.

Consider Figure 1. Suppose that a and d are writes to the same
memory, but that b and c are unrelated—a → d is the only ordering
necessary. One constraint sufficient to guarantee the ordering is
a → d. But any of the following constraints would imply the order
a → b as well:

• b → d (because a → b by program order)
• a → c (because c → d by program order)
• b → c (because a → b and c → d by program order)

If b and c are unrelated, we say that the constraints above are
over-constrained, because they cause the replay system to run more
strictly than necessary: either P2 must wait until P1 reaches b

1 We can instead view reads from shared memory as synchronous data input
events. This is the method taken by BugNet[12], discussed in Section 5.
2 See [10] for a more complete exploration of the concept of order and state
in a distributed system.

122

(although the data was ready at a), or P2 stops and waits at c
(although it is not necessary to stop and wait until d), or both. Over-
constraining reduces the potential parallelism during a replay run,
but can be taken advantage of to reduce the number of constraints
or simplify logging.

Suppose instead that a and d are writes to one area of memory,
and b and c were writes to a second area of memory. In this case,
b → c would be a necessary constraint. However, the constraint
a → d would be redundant, because the ordering a → d it is
implied by the constraint b → c. Removing redundant constraints
can decrease the log size.

A logging system for a shared memory system must generate a
set of constraints that will satisfy the ordering requirement, but is
free to choose any set of constraints that will meet that ordering.

To detect which memory operations need to be ordered, we
implement a concurrent-read, exclusive-write (CREW) protocol
between virtual cpus in a multiprocessor virtual machine. This
technique for detecting constraints was first introduced by [9]. The
CREW protocol stipulates that each shared object may be in one of
the following two states:

• concurrent-read: All cpus have read permission, but none have
write permission.

• exclusive-write: One cpu (called the owner) has both read and
write permission; all virtual cpus have no permission.

Each read or write operation to shared memory is checked for ac-
cess before executing. If a virtual cpu attempts a memory operation
for which it has insufficient access, the CREW system must make
requests to the other processors to decrease their permissions, so
that it may increase its own. We call these increases and decreases
in permissions CREW events.

The CREW protocol has the following property: if two mem-
ory instructions on different processors access the same page, and
one of them is a write, there will be a CREW event between the
instructions on each processor. This corresponds precisely with the
ordering requirement. We can take advantage of this property to de-
tect potential races and generate constraints sufficient to replay the
order of accesses for a given execution.

In order to check for access of shared memory reads and writes,
we use hardware page protections, available on all modern desktop
processors. Hardware page protections are enforced by the memory
management unit(MMU), which will check each read and write as
the instruction executes, and cause a fault to the hypervisor on any
violation. Because the checks are done in hardware, the common
case is very fast. It also allows us to interpose on reads and writes
without modifying the software running on the guest.

Generating constraints from CREW events is straightforward.
Each CREW fault will cause two CREW events: a privilege in-
crease on one processor, and a privilege decrease on another pro-
cessor. If a is the point of privilege decrease, and b is the point of
privilege increase, then the constraint a → b will be sufficient to
order any reads and writes associated with this CREW event.

To see why this is so, consider a particular interaction between
two processors, P1 and P2. Suppose that instruction b at P2 writes
to a page which is in concurrent-read mode. This instruction will
cause a fault into the CREW subsystem. The CREW system will
then reduce the privileges of P1, and increase the privileges of P2.
Let us call the instruction this privilege-decrease happens instruc-
tion a. Processor P1 has had read permission from the time it re-
ceived permission through point a. Any instruction during that time
may have read the page that b is about to write. We cannot tell when
the last access was using page protections, but we know that it will
be before a by program order, so constraining a → b will give us
the ordering we need.

Constraining on privilege-reduction events rather than on the
last read does mean that our replay will be over-constrained. This
is because we do not have access to when the last read or write
to the page actually occurred; any instruction executed before the
privilege-reduction event could have accessed the page.

2.2 Direct Memory Access
Modern hardware systems allow physical devices to write directly
to main memory, without involving the processor. This is called
direct memory access (DMA). DMA eliminates the overhead of
the processor copying data from the device to memory.

Replaying DMA presents some difficulties. In DMA, a device
acts as another processor with respect to memory transactions. A
single processor system with DMA-enabled devices is effectively a
multiprocessor system from replay’s perspective. However, unlike
peer processors in an SMP system, the devices do not have an
MMU that we can use to interpose on accesses3. How are we to
involve devices in the CREW protocol?

The key observation is that DMA devices are not generally
self-motivated peers. They only write to memory in response to a
request from a cpu. Requests typically follow a transaction model,
where a cpu will specify an operation and an area of memory. The
device will access the memory during the operation, and inform
the cpu when the operation is completed. After the transaction is
finished, the device will not access to the memory again. While this
transaction is taking place, it is generally not correct for the cpu to
access the memory assigned to the device to do DMA.

If the device follows this type of transaction model, where
the device will only access memory between certain well-defined
boundaries, and the cpu does not need to access memory to the
device until a transaction is completed, and if the hypervisor can
interpose and understand the commands from the guest to the
device and the device’s responses, we can model the device as a
non-preemptible actor in the CREW protocol. A non-preemptible
actor does explicit acquire and release of pages before and after a
transaction, rather than acquiring them on demand and having them
preempted, as preemptible actors such as virtual cpus do. When a
cpu issues a DMA command to the device, the hypervisor informs
the CREW protocol, which acquires the appropriate privileges on
behalf of the device (either concurrent-read or exclusive-write,
depending on the transaction). When the device informs the cpu
that the transaction is done, the hypervisor informs the CREW
protocol, which will release access on behalf of the device.

If any virtual cpu tries to access a page in a way that is incom-
patible with the CREW privileges of some device on a system, the
CREW system must block its execution until the device has fin-
ished the transaction associated with that page. In this way, we do
not need to rely on the correctness of kernels or device drivers in-
side the virtual machine; only on the correctness of the hardware.

During replay, the constraint replay system must ensure that
the DMA is replayed at the proper time with respect to the other
processors. If we do not use the device during replay, we must log
the data from the DMA during logging in order to replay it from the
log during replay; otherwise, we must ensure that the device does
the DMA properly.

3 Some new systems include an IO-MMU, for controlling DMA access to
memory. However, these systems are designed to prevent buggy drivers and
devices from corrupting system state, and do not necessarily provide ways
to continue an interrupted operation after a fault. Re-executing a faulting
operation is fundamental to our technique.

123

3. Prototype system
3.1 The Xen Hypervisor
In order to test the effectiveness of using hardware page protec-
tions to detect sharing, we modified the Xen hypervisor[2]. Xen
supports paravirtualized guests: that is, the guest kernel is modi-
fied to use the interface provided by the hypervisor for privileged
instructions, rather than the hypervisor emulating the interface of
native hardware. Xen’s interface was designed from the ground up
with speed of paravirtualization in mind, which allows Xen to run
kernel-intensive benchmarks (usually the worst case for virtual ma-
chines) at speeds near native[2].

Xen guests use hypercalls to perform privileged operations.
These operations include memory operations, setting trap tables
and interrupt gates, accessing debugging hardware, switching stack
pointers and segment registers, and so on. Xen uses a shared page
for passing certain kinds of information between the guest and Xen;
this is called the shared-info page. Some of this is information that
requires privileges to access directly from the hardware, and may
be read often by the guest: for instance, the speed of the CPU,
what kinds of memory and hardware functionality are available,
and the system time. The shared-info page also has information
about pending and blocked virtual interrupts.

Xen calls a single running instance of a guest virtual machine
a domain. The most important of the domains is the privileged
domain, also known as domain 0. Domain 0 is automatically started
when Xen boots. It contains the drivers to all of the devices on
the system, and runs the software that manages other domains,
which allows the Xen hypervisor to remain a thin layer of code
between the guests and the hardware, rather than becoming a large
and complex piece of machinery like a full kernel.

Unprivileged domains do not have direct access to hardware de-
vices. Instead, they use virtualized devices provided by domain 0.
Access to these virtual devices is paravirtualized as well. The driver
running inside the unprivileged guest is called the front end. The
corresponding part which provides the paravirtualized device from
domain 0 is called the back end. The front end marshals requests
to the virtual device from the unprivileged domain and sends them
to the back end. The back end then satisfies these requests through
domain 0’s kernel and its access to physical devices. The front end
also grants access to the back end for any memory associated with
the transaction. This granting is the Xen analog of DMA. Standard
devices include virtual console, disk, and network devices.

3.2 Replaying Xen
The hardware interface of Xen has few surprises, in regards to
non-determinism. The results of hypercalls are deterministic; these
results do not need to be logged and replayed. The results of
instructions which read the processor’s time-stamp counter (TSC)
must be logged and replayed, and the timing of virtual interrupt
deliveries must be logged. Each virtual cpu has its own log, out of
which it replays non-deterministic events.

Under normal circumstances, Xen gives a guest direct read
access to the pagetables. This is problematic for replay for several
reasons, the most important of which is that during logging, the
permission in the hardware pagetables for a given page may be
less than what the guest has set for that page. Thus when the guest
kernel walks its own pagetables, it may get confusing results.

Instead, we use a feature of Xen called shadow pagetables for
replaying guests. The guest’s pagetables are virtualized and not
used directly by the MMU. Instead, the hypervisor creates copies,
or shadows, of the guest’s pagetables, which are used by the actual
hardware. By introducing this level of indirection we lose some
performance, but we gain an abstraction that is much easier to work
with. Each virtual cpu on a multi-virtual-cpu guest domain can

have its own shadow of a shared pagetable, and any reductions in
protections due to the CREW protocol are not visible to the guest.

All memory allocated to the guest is visible by all guest pro-
cessors; so any changes to this memory must be involved in the
CREW protocol. Each virtual cpu and device is a different actor
in the CREW protocol. Each actor has a CREW event count that
is incremented on every CREW event (any increase or decrease in
permissions). A particular CREW event is represented as a tuple of
the actor and the CREW event count.

There are three sources of reads and writes that must be involved
in the CREW protocol: guest read and write instructions, virtual de-
vice DMA, and hypervisor access to guest state. For each type of
access, we must determine how we will detect accesses, enforce
CREW permissions, and replay constraints. Note that we modify
the hypervisor and virtual devices in order to enforce CREW per-
missions and enable correct logging and replay. We do not, how-
ever, require any cooperation from a guest. We discuss each of these
sources of reads and writes in turn in the following sections.

3.3 Guest access to shared state
Guest read and write instructions are detected using the hardware
page protections. Constraints are generated and logged at privilege-
increase events. Privilege-decrease events generate CREW count
increment events in the log. These events allow the system to re-
produce the CREW event count at the proper point during replay,
which is necessary to determine when a constraint has been satis-
fied. Both constraint events and CREW count increments are asyn-
chronous events. Using the MMU allows us to interpose on all guest
accesses without any assumptions about the software running in the
guest.

During logging, before a privilege-increase event can happen,
corresponding privilege decreases and the resulting CREW count
increment logs must happen on other processors. Doing this prop-
erly requires some care. The log must be taken on the other proces-
sor, because certain information (such as the registers and hardware
performance counters) are only directly available on that physical
cpu while it is running. Furthermore, the TLB must be flushed there
as well, to make sure that modifications made to the pagetables are
actually reflected in the TLB of the processor.

The most simple option is to send an inter-processor interrupt
(IPI) to the other processor, and have the other processor do every-
thing: remove permissions, flush the TLB, and take the log. How-
ever, removing permissions can be a long process. While this is
happening, the processor which is being preempted is busy remov-
ing permissions, and the one trying to gain permissions is waiting
for it to be done.

However, we can improve this process with a clever trick. The
shadow pagetables in Xen are protected by one lock per domain,
called the shadow lock. This lock is called at the beginning of
handling a shadow page fault (which is a super-set of CREW
fault handling), and held until the fault is done. We also acquire
the shadow lock whenever we are doing any CREW action. This
enables us to have the one processor which is requesting more
permissions do the removal of permission from the pagetables,
sending the IPI only to make the log and do the TLB flush. This
allows the other processor to continue running while the brute-
force search is going on, as long as it doesn’t access the page being
removed. If it does access the page, it will spin waiting for the
shadow lock until the entire operation is completed. In either case,
the point the log is taken is after the last access could possibly have
happened.

3.4 Virtual device access to shared state
Virtual devices are implemented as non-preemptible actors. In or-
der to log and replay virtual devices, we instrument the back-end of

124

the device in domain 0. The back-end does an explicit acquire and
release of read or write permission from the CREW system for any
pages involved in the transaction before fulfilling the request. The
“acquire” corresponds to the privilege increase, and the “release”
corresponds to the privilege decrease. Each device has its own log,
in which it records CREW count increases, constraints, any infor-
mation necessary about the interaction with the guest to be able to
replay properly, such as the order in which block requests were sat-
isfied. During replay, the back-end will make calls into the CREW
system to inform it of CREW count increments and to wait for con-
straints to be satisfied. It will also replay any appropriate device
interaction with the guest.

The kinds of information logged and replayed depends on the
device. For the console driver, the data from console input is logged
and replayed. Output is re-executed; the guest device’s reads from
memory are ordered by constraints generated by the CREW proto-
col, so we are guaranteed that at the point of read, the memory is in
the same state.

When logging the block device, we do not log the data read from
the disk. Instead, we restore the disk to its original state, and re-
execute both read and write requests during replay. During replay,
a request is not passed to the back-end until the constraint has been
met. The constraints guarantee that the same data goes from the
virtual machine to the disk.

Most disk controllers (including Xen’s paravirtualized back-
end) can re-order outstanding requests, so that they finish in a dif-
ferent order than requested. Because we use the disk device dur-
ing replay, we have the possibility that the order in which accesses
complete during replay may differ than the order in which they
complete during logging. The replay driver must therefore log the
original order, and re-order these request completion notices dur-
ing replay to match the order seen by the guest during logging.
This may involve delaying request-completion messages being for-
warded to the guest until other requests are completed. The CREW
protocol will guarantee that the different order of writes into guest
memory will not affect guest execution.

Logging and replaying the network driver has yet not been
implemented.

3.5 Hypervisor accesses to guest state
Hypervisor access to guest state requires special consideration, for
several reasons. First, the hypervisor’s execution changes between
logging and replay. Secondly, the hypervisor makes private map-
pings of guest memory which are not subject to the CREW pro-
tocol. Finally, because the hypervisor does not save its stack on
a context switch, it cannot effectively block. This section discuss
these issues, and how we solved them.

The hypervisor reads and writes guest-visible memory in the
following places:

• When performing hypercalls on behalf of the guest
• The shadow code reads guest page table entries in order to

generate shadow tables. It also sets dirty and accessed bits of
page-table entries.

• Updating data on the shared-info page.
• Virtual interrupt delivery. The hypervisor needs to read the

shared-info page to determine pending and blocked interrupts.
The hypervisor writes the interrupt frame on to the guest stack.

There are two distinct problems to be solved: interposing on ac-
cess to guest state, and replaying the ordering of multiple accesses
within the hypervisor.

Interposing on hypervisor access to guest state is fairly straight-
forward. Hypercalls and writes to the guest stack use the guest’s
virtual address space. If it reads or writes a page for which the

CREW has reduced permissions, it will fault and go through the
CREW handler just like any guest access. We therefore need to do
nothing to interpose on these accesses. Other hypervisor accesses,
such as reads and writes to the guest pagetables and accesses to the
shared-info page, use the hypervisor’s private mapping. For these
accesses, we instrument the code to acquire the page required on
behalf of the virtual cpu that caused the access.

Because virtual cpus are preemptible actors, we need to ensure
that access is not preempted before the hypervisor access finishes.
We therefore require that the shadow lock be held continuously
from the time the page is acquired until the access to the page is
complete. Since the shadow lock must be acquired to gain permis-
sion, this guarantees that no other cpu can remove the code’s per-
mission before its operation is complete.

Replaying the ordering of accesses within the hypervisor poses
a more difficult problem. Consider the following potential races:

• A hypercall on one virtual cpu accesses page A, then page B; a
hypercall on another cpu, executing concurrently, accesses page
B then page A.

• A hypercall writes to page A and B. Between the two writes,
the other virtual cpu, in guest mode, reads the modified page A,
and the unmodified page B.

• A hypercall writes to a guest pagetable. Concurrently, the
shadow code of another virtual cpu is reading the guest pagetable
to generate a new shadow entry, which is about to be used.

Unfortunately, it is difficult to log and replay asynchronous
events (including constraints) within the hypervisor. The main rea-
son is that since the hypervisor is doing the logging and replay-
ing, execution within the hypervisor is necessarily different be-
tween logging and replay. Determining where to deliver the inter-
rupt using instruction counters becomes impossible in this case.
Furthermore, unlike the Linux kernel, the hypervisor has no per-
vcpu stack; if it calls schedule(), it loses all its context. So the
only acceptable form of blocking while waiting for a constraint to
be satisfied is to spin, an action which could lead to deadlocks.

We considered many potential solutions to this problem, but in
the end they added a lot of complication to an already complicated
system, with the only gain being more parallelism between hyper-
calls. What we would like is to avoid hypervisor races entirely,
treating all hypervisor operations as atomic operations, so that if a
hypervisor operation (such as a hypercall) accesses the same mem-
ory as an instruction or another hypervisor operation (and at least
one of them is a write), the one will happen either entirely before
or entirely after the other.

In order to implement atomicity, we use a global lock (called
the “hypervisor lock”) that allows only one virtual cpu in a given
domain inside a hypercall or fault handler at a time. When entering
a hypercall or shadow fault handler, the hypervisor tries to acquire
the domain lock on behalf of the virtual cpu. If it successful, it con-
tinues; if not, it waits until the lock is available before continuing.
While a virtual cpu is in a hypercall or hypervisor fault handler, we
also delay interrupt-driven changes like interrupt pending and TSC
offset updates.

The hypervisor lock allows us to treat a hypercall as an atomic
unit for ordering purposes. Any constraints generated during the
hypercall are pushed logically to the beginning of the hypercall.
Any CREW events will be pushed until after the end of the hy-
percall. (These modifications are consistent with the rules for over-
constraining, discussed in Section 2.1.)

The hypervisor lock solves both hypercall-hypercall races and
hypercall-guest races. Consider the hypercall-guest race mentioned
in the list above. Before the virtual cpu can read the modified
version of page A, it must get read access; but to get read access, it

125

has to complete a shadow fault. The fault cannot execute until after
the hypercall has completed. So any virtual cpu reading A or B will
either see the state before the hypercall or the state after, but not in
the middle.

Using the hypervisor lock for hypercalls reduces the potential
parallelism if two hypercalls happen at the same time, but this is
an unusual case. In our measurements, the vast majority of the
overhead measured at this point is related to the CREW subsystem
(including waiting for the shadow lock); very little is attributable to
a hypercall waiting for a hypercall lock.

4. Evaluation of multiprocessor ReVirt
4.1 Workloads
To evaluate how well traditional SMP workloads run under ReVirt,
we ran the SPLASH2 benchmark suite from Stanford University[16].
This is a well-studied suite of computationally intensive parallel
applications designed to evaluate the design of parallel processors.
Most of the tests have parameters or input values that can be set.
The test comes with a set of default parameters and input; however,
it was tuned to state-of-the-art systems of over ten years ago. Using
those parameters on modern processor, most applications finished
in a small fraction of a second. This is not enough time to distin-
guish the actual workload from start-up effects. We chose input
parameters such that the tests ran for around 60 seconds. The tests
we ran were FMM, LU, ocean, radiosity, radix, and water-spatial4.

We also ran two more server-oriented workloads. They are as
follows:

• kernel-build: parallel build of the Linux kernel. This is a build
of the stock Linux kernel with the default configuration. We use
gcc version 3.4.5, and Linux kernel version 2.6.17. In order
to make this a parallel workload we used the -j option of
make, which tells make how many outstanding child processes
to try to keep at one time (maintaining build dependencies).
Our experience indicates that -j n+1 produces the optimum
throughput on a domain with n virtual cpus. The extra process
allows efficient overlap of computation and I/O.

• dbench: a filesystem benchmark for Linux that’s meant to emu-
late a workload that a Linux Samba server might generate under
the NetBench Windows file server benchmark. As one might
expect, the workload is almost entirely in the kernel.

4.2 Workload characteristics
Based on our knowledge of the workloads, we should be able to
predict aspects of their results. The execution of these workloads
can be divided into two levels: process-level and kernel-level. For
most of the tests, the kernel plays only a supporting role. The
exception is dbench, where the kernel itself is being tested, and the
process-level workload is only intended to generate the kernel-level
workload.

To understand what to expect from a workload, it is important to
understand the properties of both levels: first, what are the sharing
characteristics of the processes; and secondly, how much does the
workload involve the kernel, and what are its sharing characteris-
tics.

Most of the SPLASH2 benchmarks have very little kernel inter-
action. Because their sharing properties have been studied in detail,
we should be able to understand how SMP-ReVirt affects each of
them.

Woo et al. [16] did a comprehensive study of the SPLASH2
benchmarks on idealized hardware to learn how different hardware

4 We were unable to find input for some workloads to run longer than
“perceptibly instantaneous”. We do not present results for those tests here.

parameters, such as cacheline size and latency, affected their run-
time. The key workload characteristics include concurrency, work-
ing set size, communication to computation ratio, and spatial local-
ity.

Using hardware page protections effectively changes two pa-
rameters. The first is the granularity of sharing, which goes from
a 16-byte cacheline to the 4096-byte page size. The second is the
increased latency from a miss. Our early tests indicated that a re-
mote cacheline miss on our hardware was around 400 cycles; the
average time for a CREW fault is over 40,000 cycles. Therefore we
can expect that workloads that are prone to false sharing for large
cacheline sizes will have unnaturally high amounts of communica-
tion, causing performance to suffer. We also expect that workloads
with a naturally high communication rate regardless of cacheline
size will suffer from the increased latency.

Increasing the granularity of sharing can have two effects, de-
pending on the particular workload. In workloads with lower spa-
tial locality, increasing the granularity of sharing can increase the
false sharing, thus increasing the overall communication required.
In workloads with high spatial locality, on the other hand, increas-
ing the granularity of sharing can “coalesce” what would be indi-
vidual faults or misses into one large one, reducing the amount of
communication required.

This has similar but subtly different effects on caches than
on execution replay. On caches, an increase in false sharing in-
creases both data and communication overhead (thus reducing per-
formance), while the “coalescing” effect decreases the number of
cacheline misses by effectively prefetching data.

SMP-ReVirt is not responsible for actual data transfer, but in-
stead for permission and generating constraints. So although false
sharing will raise the amount of communication, it will not increase
the cache data transferred between cpus, nor will it reduce cache
misses due to spatial locality. There are analogs, however. Increased
granularity can cause increased false sharing, and thus more time
overhead and an increased log size. But the “coalescing” effect for
workloads with high spatial locality may reduce the number of con-
straints needed, compared to cacheline-based logging.

Woo et al listed ocean and LU as tests that have very regular ac-
cess patterns, and are not generally subject to false sharing at higher
cachelines. FMM and water-spatial are listed as workloads which
can be prone to false sharing, depending on how well data struc-
tures fit in cache lines. Radix and radiosity are listed as workloads
that have very random aspects of data accesses, and can be very
prone to false sharing for larger cacheline sizes.

The Linux kernel is a parallel application, and has been finely
tuned to the architectural parameters of the x86. If the kernel is sen-
sitive to high latency and large-granularity sharing, any workload
that involves the kernel will suffer. Kernel-build contains a mix of
unshared process-level computation and kernel interaction. Dbench
is almost entirely a kernel workload. If kernel sharing is expensive,
we expect the performance of kernel-build to suffer somewhat, and
dbench to suffer greatly.

4.3 Results and analysis
The main purpose of this section is to investigate the properties
of using page protections to detect sharing. We want to know the
following:

• For each workload, how much overhead does logging with page
protections generate? This overhead includes time overhead
(how much it slows down compared to a non-logging system),
and space overhead (how much disk space is required to hold
the log).

• Is it worth adding virtual processors to try to increase perfor-
mance? Does it increase performance, and if so, how much?

126

Workload Logging rate (compressed) Fills 300GB disk in
FMM .234 GB/day 1280 days

LU .238 GB/day 1261 days
ocean .232 GB/day 1295 days
radix .292 GB/day 1025 days

water-spatial .231 GB/day 1296 days
kernel-build .562 GB/day 534 days

radiosity .232 GB/day 1295 days
dbench .557 GB/day 1280 days

Table 1. Space overhead of logging a single processor guest.

Workload Logging rate, compressed Fills 300GB disk in
FMM 34.5 GB/day 8.7 days

LU 3.23 GB/day 92 days
ocean 4.34 GB/day 69 days
radix 39.9 GB/day 7.5 days

water-spatial 36.3 GB/day 8.3 days
kernel-build 43.3 GB/day 6.9 days

radiosity 88.4 GB/day 3.4 days
dbench 77.0 GB/day 3.9 days

Table 2. Space overhead of logging a two processor guest.

• Where is the sharing? Is it in the kernel, which we may be able
mitigate by paravirtualizing in future implementations, or in the
application, where we are unlikely to be able to make many
changes?

To distinguish logging in general from logging with page pro-
tections, we first consider the overhead of logging and replaying
uniprocessor guests. Figure 2 shows the normalized runtime for Re-
Virt for uniprocessor workloads in Xen. All workloads are run with
only one thread. Kernel build has approximately 12% overhead.
Some of the workloads of the SPLASH2 suite have approximately
5% overhead, and most have negligible overhead. Table 1 shows
the space overhead. We show the log size in compressed gigabytes
per day, and the time to fill a dedicated 300GB logging disk. These
numbers are similar to those found in [6].

Figure 3 shows the normalized runtime of SMP-ReVirt for a
two processor system, compared to the same test running on un-
modified two processor systems. We also include a single processor
logging system, as a reference to determine if adding a second pro-
cessor gains any performance advantage. In general, the number of
processes for each test is equal to the number of processors in the
virtual machine. The exception is kernel build on multiprocessor
guests, where the number of processes is one plus the number of
processors, to make more efficient overlap of processing and disk
I/O. Table 2 shows the space overhead.

For LU and ocean, the time overhead is negligible. FMM and
water-spatial are significantly slower than an unmodified two cpu
system, but significantly faster than a single processor system.
Radix is only slightly faster than a single processor system. Kernel
build is slower than the single processor system. Radiosity and
dbench perform extremely poorly: Radiosity runs 8.7 times slower
than an unmodified domain with 2 virtual cpus, and dbench runs
7.2 times slower.

All systems have significant log size requirements, but even our
worst case applications can run for several days before filling up a
300GB disk.

The majority of the overhead is traceable directly to sharing,
measured in the number of faults. Figure 4 presents the sharing rate
for the two processor guest, broken down by kernel- and process-
level, in faults per second. We calculate the sharing rate by dividing

Workload Logging rate, compressed Fills 300GB disk in
FMM 83.6 GB/day 3.6 days

LU 11.7 GB/day 25.7 days
ocean 28.1 GB/day 10.7 days
radix 88.7 GB/day 3.4 days

water-spatial 58.5 GB/day 5.1 days
kernel-build 90.0 GB/day 3.3 days

Table 3. Space overhead of logging a four processor guest.

the total number of faults in the logging run by the time of the
unmodified Xen guest run. (It may seem more natural to divide
the logging fault count by the logging runtime. However, dividing
by logging runtime gives misleading results. Large fault counts
are made to look less severe by the very overhead they produce.
Dividing by the unmodified guest runtime treats the fault rate as a
property of the workload.)

We can see from Figure 4 that LU and ocean have very little
sharing at all; the little sharing that occurs is in the kernel. This
is consistent with what we expected from our knowledge of the
workload. Water-spatial and FMM have a large amount of process-
level sharing. Because FMM and water-spatial have minimal kernel
sharing, their total sharing is low enough to beat a single processor
system. Radiosity has large amount of process-level sharing, and an
even larger amount of kernel-level sharing. Nearly all of the sharing
in dbench and kernel-build comes from the kernel.

Figure 5 shows the overhead on a 4-cpu system. The system
included two dual-core Xeons (four cores in all). The graph shows
the unmodified domain, as well as 4-cpu and 1-cpu logging runs on
the system. The graph also includes 2-cpu runtimes from the other
hardware, normalized to the 1-cpu logging run on this machine, so
that we can see the impact on runtime as we add virtual cpus. We
did not run radiosity and dbench. Table 3 summarizes the space
overhead.

Interestingly, Kernel-build ran much slower on the four cpu
system than on the two cpu system. Radix and FMM ran slower,
and FMM ran proportionally slower than radix. LU and ocean still
run close to unmodified, although ocean begins to show some more
overhead. Water-spatial runs surprisingly well.

Figure 6 shows the sharing rate, broken down by kernel- and
process-levels. We can compare the results qualitatively to Figure
4, keeping in mind that they were run on different systems. FMM
has considerably more sharing on the four processor guest; about
six times as much for process-level and fourteen times for kernel-
level. Radix’s process-level sharing is comparable to the two cpu
system, but its kernel-level sharing is a more than four times longer.
Water-spatial’s process-level sharing is about the same for two and
four cpus, and although there is twice as much kernel-level sharing,
its overall effect is still small.

We have verified the validity of our logging system by replaying
all of these workloads as well. Execution replay is extraordinarily
sensitive in the presence of asynchronous events: the slightest de-
viation in state or execution path will cause the next asynchronous
event delivery to fail. Furthermore, in the process of developing the
replay system, we developed many tools to verify the state and ex-
ecution of the system. We are therefore confident that our system
accurately duplicates the state and execution of the original run.

5. Related work
The idea of using a virtual machine to achieve the benefits of ex-
ecution replay without needing to modify the software running on
it was first proposed by Bressoud, et al[3, 4]. His system uses exe-
cution replay to enable a high-availability primary-backup system.
The main system (or primary) is logged, and the logs fed to one

127

Figure 2. Overhead of ReVirt for a single processor Xen guest

(a) (b)

Figure 3. Overhead of ReVirt for a two processor Xen guest

Figure 4. Kernel- and process-level sharing rates, in faults per second, for a two processor guest

128

Figure 5. Overhead of ReVirt for a four processor Xen guest. The two processor logging was run on different hardware, so has been
normalized to the single processor logging case on the same hardware.

Figure 6. Kernel- and process-level sharing rates, in faults per second, for a four processor guest

or more backup systems, which replay the logs immediately. This
guarantees that the backup system is in the same state as the log-
ging system, ready to take over in the event of a failure. Since his
system is targeted at single processor virtual machines, he does not
address the issue of sharing.

Execution replay has had a long history in the debugging and
parallel computing fields. The idea of using a CREW protocol to
simplify recording was first discussed in [9]. Subsequent research
using this technique reduced redundant constraints and used other
techniques to optimize logging[13, 15]. The literature in the paral-
lel computing fields is targeted at replaying parallel applications,
and the solutions require the software being replayed to be modi-
fied. (We consider binary instrumentation to be a form of software
modification.) Furthermore, only a single application is logged and
replayed. By using hardware page protections and logging a virtual
machine, SMP-ReVirt can replay an entire system of unmodified
software.

Bacon et. al[1] first proposed supporting multiprocessor replay
in hardware by snooping the cache-coherence protocol. Their sim-
ulated system uses a hardware instruction counter piggy-backed to
cache-coherence messages to identify sharing.

Flight Data Recorder (FDR)[17] explores the idea in much more
detail, using modern commercial workloads. Rather than replaying
the entire execution, FDR focuses on replaying the last one second
of execution before a crash. They instrument the cache-coherence
hardware to detect memory races and generate constraints, using
a modified version of Netzer’s algorithm[13] to reduce redundant
constraints. Input and interrupts are also logged. Checkpoints are
implemented by logging old values of memory as it is modified.
On a crash, the entire memory is dumped, which in conjunction

with the old memory log, allow the state of one second ago to be
re-constructed. The rest of the log allows FDR to replay the en-
tire state of the system as it executed for the last second before
the crash. Afterwords, the FDR team explored various optimiza-
tions to the system, including techniques to reduce the number of
constraints logged and efficiently compress them[18]. These opti-
mizations reduced the constraint log size (around 2 MB/s in [17])
by a factor of 25 on average.

The memory checkpoint data made up the majority of FDR’s
log. However, to analyze a crash, the entire state of the system may
not be necessary. Rather than attempting to checkpoint the whole
state, BugNet[12] logs the first read from shared memory in each
replay interval, or when a data race is detected. Only the state of
the register file (including the instruction pointer) is regenerated by
execution replay. The memory state that affects execution can be
reconstructed from the log. During replay, each processor is capa-
ble of replaying independently of the other processors. Constraints
are recorded only as an aid to debugging, to help correlate the in-
terleaving of processor execution, and are not necessary for correct
execution.

The authors of BugNet went on to develop a different kind
of constraint. Rather than logging constraints between individual
instructions (which they term a point-to-point method), they use
barrier-like logs of memory operations called strata. This technique
lends itself naturally to instrumenting the cache-coherence proto-
col, but more investigation is necessary to see whether it can be
implemented with hardware page protections.

Using the page protections causes two distinctions between
SMP-ReVirt and both architecture-based and software-based sys-
tems. The first is that the granularity of sharing is limited to the

129

size of the page, which on x86 processors is 4096 bytes. This gran-
ularity is much larger than object and cacheline granularity. As a re-
sult, SMP-ReVirt is likely to be more prone to false sharing, which
causes unnecessary run-time overhead and larger log file sizes.

Secondly, both architecture-based and software-based systems
are able to store information about the last memory access, while
SMP-ReVirt is only being able to store information about the
point of privilege-reduction. As a result, hardware- and software-
based systems can be less over-constrained than SMP-ReVirt, and
can perform certain kinds of optimizations like Netzer’s transitive
reduction[13], while SMP-ReVirt cannot. Over-constraining may
have an impact on the efficiency of replay, but is unlikely to have
an effect on the efficiency of logging or the number of constraints.
Missing opportunities for optimizations will make SMP-ReVirt’s
log larger, but it’s not clear exactly how much; [18] only reports
the results after all optimizations, not one-by-one, and some of the
optimizations may be applicable to SMP-ReVirt.

There are also several distinctions worth noting between SMP-
ReVirt and existing hardware cache-based approaches. First, SMP-
ReVirt runs on commodity hardware, while cache-based approaches
currently exist only in simulation. Secondly, SMP-ReVirt’s goal is
to log an entire execution of a virtual machine onto disk, while FDR
and BugNet log just the last seconds before a crash into memory.

In part, FDR’s one-second limitation is due to the fact that
it logs only to memory. This is in part a result of the fact that
FDR is logging all software running on the system. Everything
must be done in hardware, and certain things are more difficult
to do in hardware, like marshaling the logs onto disk or over the
network, or involving the disk in replay to avoid logging all data
read from disk. SMP-ReVirt allows some software to be involved in
logging and replay, such as the hypervisor and domain 0. This gives
SMP-ReVirt more flexibility for what to do with the log, including
putting it on long-term storage on disk or sending it over a network.

We believe it would be ideal to take a mixed approach: add hard-
ware support for detecting memory sharing and generating con-
straints, which the hypervisor could use instead of implementing
the CREW protocol for normal pages. Hardware support would al-
low us to detect sharing on a cache-line granularity, which has the
potential to greatly reduce the overhead of sharing, while main-
taining both the ability to log unmodified software. Logging guests
from the hypervisor would give us the flexibility of sending the logs
to disk or network, giving us enough storage to log the entire exe-
cution of a virtual machine, rather than only the last few seconds.

6. Conclusion
We have presented our work on SMP-ReVirt, the first system to log
and replay multiprocessor virtual machines on commodity hard-
ware. We use hardware page protections to detect races between
virtual cpus in a multiprocessor virtual machine. This allows us to
log and replay an entire virtual machine, including the kernel and
all applications, without modifying the software.

Using the hardware page protections avoids the overhead of in-
strumenting every read and write in software, but necessitates a
large granularity of sharing and incurs higher overhead when shar-
ing occurs. Some workloads perform poorly, but others perform
surprisingly well. The main factors that influence performance in-
clude how much the workload involves the guest kernel, and how
sensitive the workload is to false sharing at larger sharing granular-
ities.

References
[1] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Replay of

Multiprocessor Programs. In Proceedings of the ACM/ONR Workshop
on Parallel and Distributed Debugging, May 1991.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 2003 Symposium on Operating
Systems Principles, October 2003.

[3] T. C. Bressoud and F. B. Schneider. Hypervisor-Based Fault-
Tolerance. In Proceedings of the 1995 Symposium on Operating
Systems Principles, pages 1–11, December 1995.

[4] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
ACM Transactions on Computer Systems, 14(1):80–107, February
1996.

[5] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. In Proceedings of the 1998 SIGMETRICS
Symposium on Parallel and distributed tools (SPDT), August 1998.

[6] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Logging and
Replay. In Proceedings of the 2002 Symposium on Operating Systems
Design and Implementation, pages 211–224, December 2002.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys, 34(3):375–408, September 2002.

[8] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. Technical Report
CSE-TR-495-04, University of Michigan, August 2004.

[9] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on Computers,
pages 471–482, April 1987.

[10] S. Mullender, editor. Distributed Systems. Addison-Wesley, 1993.
Chapter 6.

[11] J. Napper, L. Alvisi, and H. Vin. A Fault-Tolerant Java Virtual
Machine. In Proceedings of the 2003 International Conference on
Dependable Systems and Networks (DSN), June 2003.

[12] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In
Proceedings of the 32nd Internationals Symposium on Computer
Architecture (ISCA), June 2005.

[13] R. H. B. Netzer and J. Xu. Adaptive Message Logging for Incremental
Program Replay. IEEE Parallel and Distributed Technology, pages
32–39, November 1993.

[14] M. Russinovich and B. Cogswell. Operating System Support
for Replay of Concurrent Non-Deterministic Shared Memory
Applications. IEEE Computer Society Bulletin of the Technical
Commitee on Operating Systems and Application Environments
(TCOS), 7(4), January 1995.

[15] M. W. Shapiro. RDB: A System for Incremental Replay Debugging.
Technical Report CS-97-12, Brown University, July 1997.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-
2 programs: characterization and methodological considerations. In
ISCA ’95: Proceedings of the 22nd annual international symposium
on Computer architecture, pages 24–36, New York, NY, USA, 1995.
ACM Press.

[17] M. Xu, R. Bodik, and M. D. Hill. A ”Flight Data Recorder” for
Enabling Full-system Multiprocessor Deterministic Replay. In
Proceedings of the 2003 International Symposium on Computer
Architecture, June 2003.

[18] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording. In Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October
2006.

[19] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman.
Retrace: Collecting execution trace with virtual machine deterministic
replay. In Proceedings of the 3rd Annual Workshop on Modeling,
Benchmarking and Simulation, MoBS, San Diego, CA, June,
volume 3, pages 4–2, 2007.

130

