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The Challenges of Geo-Replication
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* Long latency
* Limited/fluctuating bandwidth
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* High overhead of strong consistency
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The Challenges of Geo-Replication
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The ChaIIenges of Geo- Repllcatlon
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Latency within a single \
data center: as low as e
<5us with RDMA o




A hierarchy of latencies!

* Applications do need data replication, at scale
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e But any “one size fits all” story would impose those geo-WAN
latencies and replication delay is (obviously) bounded by latency

* Challenge: Can one solution be customizable across multiple uses?



Different applications?

* Data Mirroring
* Social media
* Banking System



... different consistency models!
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https://scholar.google.com/citations?user=tNHRM-oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=YL-VvMEAAAAJ&hl=en&oi=sra

User-defined stability

e Stabilizer builds on the idea of stability within user-defined target groups
* User offered flexible ways to define the group ®
* For example,

» “majority in my data center”, ©
> “all regions in some availability zone” .:,
> “At least 2 geo-distributed regions” e | O
> “A quorum from this set of targets...”
* What should “stability” mean? O O
* For us, confirmation that the desired target group has the data A target group

* Proof of stability? Flexible: The application itself confirms it




User-defined stability

* Examples of application-defined forms of stability:

* For trusting applications, the user code in some region might simply report
that “all data from source S up through update K has been received”

* An application focused on archival safety might change that to:
“all data from source S up through update K has been persisted”

* A less trusting application might, for example, check the integrity of a
blockchain, then report that “region R has persisted chain S to update K”

* Application trusts its members? The update number, K, suffices.
* Less trusting? Application can use cryptographic “witness” signatures



Stabilizer :

e e (o

* A geo-replication library for cloud applications  stability Frontier: K

* Abstraction of target regions.
e Data model: Each region is “owner”(primary) of some stream of updates
e Streams can be replicated to any desired target(s) in lossless FIFO channels

* A receiver (backup) is a component of the application that ingests the stream,
announce status via a sequence of stability reports (“certificates”, which can be
signed)

» Signature certificates can include extra application-specific content

* Stability frontier: for a specific target group, all updates from source S have
reached the desired stability level up through update K.
 Each stability frontier advances monotonically
* Certificate through K implies stability for updates [O...K]



System Architecture
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Stability Frontier Predicate

Stability Frontier predicate function

* Domain: the maximum sequence numbers acknowledged by every
receivers

e Output: the maximum sequence number of the “stable” update

We introduced a set of building-block tools to describe such a predicate
o K"-MAX() and K"-MIN() operator

* SALLWNODES, SMYAZNODES
 SIZEOF(), -
 Suffixes: .received, .persisted, .signed



Examples of Stability Frontier Predicate

Region3:

Oregon

Region1: Region2:
North California  North Virginia

Region4:
Ohio

An update is considered stable only after it is
confirmed by all receivers.

MIN(SALLWNODES)

An update is considered stable only after it is confirmed
by a majority of receivers.

Kth-MIN(SIZEOF(SALLWNODES)/2+1,$ALLWNODES)

An update is considered stable only after it is
confirmed by a majority of remote regions.
Kth-MIN(3, MAX(SAZ North Virginia), MAX(SAZ
Oregon),MAX(SAZ Ohio))
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Performance and Flexibility Design

* The Stability Frontier predicate is compiled to dynamic linked library
and loaded at runtime using gcc-jit.
* Native performance (5x faster than an interpreter approach)
* same flexibility of the interpreter approach
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file size (MByte)

Dropbox Latency

NETWORK STATUS BETWEEN NORTH CALIFORNIA AND OTHER REGIONS

Lat (ms) [ Thp (Mbit/s) Half Thp (Mbit/s)
North California* 3.7 667 333.5
Ohio 53.87 89 445
Oregon 23.29 113 56.5
North Virginia 64.12 74 37
*The network status between availability zones in North California region
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Pub/Sub application: Stabilizer vs Pulsar

NETWORK PERFORMANCE BETWEEN UTAH1 AND OTHER SERVERS

Utah2 | Wisconsin | Clemson | Massachusetts
Thp(Mbit/s) | 9246.99 361.82 416.27 437.11
Lat(ms) 0.124 35.612 50.918 48.083
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Dynamic Stability Frontier Reconfigurati o
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Conclusion

* Design and Implement a geo-replication library that allows the user-
defined stability

* Introduced the stability frontier concepts along with a Domain
Specific Language (DSL) to describe it.

* Build several applications (K/V store, cloud file storage, and pub/sub
system) to demonstrate/evaluate Stabilizer.



Thank you!

* Q&A
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