
Stabilizer: Geo-Replication with
User-defined Consistency

Pengze Li†, Lichen Pan†, Xinzhe Yang‡, Weijia Song⋆, Zhen Xiao†, Ken Birman⋆
†Department of Computer Science, Peking University

‡Pure Storage
⋆Department of Computer Science, Cornell University

The Challenges of Geo-Replication

1

~100 ms~60 ms ~200 ms

~300 ms
• Long latency
• Limited/fluctuating bandwidth

• High overhead of strong consistency

The Challenges of Geo-Replication

2

~100 ms~60 ms ~200 ms

~300 ms
• Long latency
• Limited/fluctuating bandwidth

• High overhead of strong consistency

Latency between
availability zone
regions? ~1ms

The Challenges of Geo-Replication

3

~100 ms~60 ms ~200 ms

~300 ms
• Long latency
• Limited/fluctuating bandwidth

• High overhead of strong consistency

Latency between
availability zone
regions? ~50 us

Latency within a single
data center: as low as
<5us with RDMA

A hierarchy of latencies!

• Applications do need data replication, at scale

• But any “one size fits all” story would impose those geo-WAN
latencies and replication delay is (obviously) bounded by latency

• Challenge: Can one solution be customizable across multiple uses?

4

•Data Mirroring
• Social media
•Banking System
•…

5

Different applications?

• Data Mirroring
• Social media
• Banking System

6
Source: Consistency in Non-Transactional Distributed Storage Systems survey, P Viotti and M Vukolić 2016

… different consistency models!

https://scholar.google.com/citations?user=tNHRM-oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=YL-VvMEAAAAJ&hl=en&oi=sra

User-defined stability

• Stabilizer builds on the idea of stability within user-defined target groups
• User offered flexible ways to define the group
• For example,

Ø “majority in my data center”,
Ø“all regions in some availability zone”
Ø“At least 2 geo-distributed regions”
Ø “A quorum from this set of targets…”

• What should “stability” mean?
• For us, confirmation that the desired target group has the data
• Proof of stability? Flexible: The application itself confirms it

7

A target group

update

User-defined stability

• Examples of application-defined forms of stability:
• For trusting applications, the user code in some region might simply report

that “all data from source S up through update K has been received”
• An application focused on archival safety might change that to:

“all data from source S up through update K has been persisted”
• A less trusting application might, for example, check the integrity of a

blockchain, then report that “region R has persisted chain S to update K”

• Application trusts its members? The update number, K, suffices.
• Less trusting? Application can use cryptographic “witness” signatures

8

Stabilizer

• A geo-replication library for cloud applications
• Abstraction of target regions.

• Data model: Each region is “owner”(primary) of some stream of updates
• Streams can be replicated to any desired target(s) in lossless FIFO channels
• A receiver (backup) is a component of the application that ingests the stream,

announce status via a sequence of stability reports (“certificates”, which can be
signed)

• Signature certificates can include extra application-specific content
• Stability frontier: for a specific target group, all updates from source S have

reached the desired stability level up through update K.
• Each stability frontier advances monotonically
• Certificate through K implies stability for updates [0…K]

9

U0 U1 U2 Uk-1 Uk Uk+1… …
Stability Frontier: K

System Architecture

Server
ID

WAN
node 1

WAN
node 2

WAN
node 3

WAN
node 4

WAN
node 5

WAN
node 6

Sequence
No.

33 25 19 21 23 28

Message 19 Message 20 … Message 41 Message 42 …

Data plane: asynchronously sending with a buffer

Control plane: stability frontier predicate
Storage
System

StabilizerUser

Data Stability
Frontier

Message ACK Recorder

Buffer

WAN
node 2

WAN
node 3

WAN
node 5

WAN
node 4

WAN
node 6

WAN
node 1

10

SOURCE

RECEIVERS

Stability Frontier Predicate

Stability Frontier predicate function
• Domain: the maximum sequence numbers acknowledged by every

receivers
• Output: the maximum sequence number of the “stable” update

We introduced a set of building-block tools to describe such a predicate
• Kth-MAX() and Kth-MIN() operator
• $ALLWNODES, $MYAZNODES
• SIZEOF(), -
• Suffixes: .received, .persisted, .signed

11

Examples of Stability Frontier Predicate

12

1

User

2

Region1:
North California

3 4

Region2:
North Virginia

5

Region3:
Oregon

6

7 Region4:
Ohio

8

An update is considered stable only after it is
confirmed by all receivers.
MIN($ALLWNODES)

An update is considered stable only after it is confirmed
by a majority of receivers.
Kth-MIN(SIZEOF($ALLWNODES)/2+1,$ALLWNODES)

An update is considered stable only after it is
confirmed by a majority of remote regions.
Kth-MIN(3, MAX($AZ North Virginia),MAX($AZ
Oregon),MAX($AZ Ohio))

Performance and Flexibility Design

• The Stability Frontier predicate is compiled to dynamic linked library
and loaded at runtime using gcc-jit.
• Native performance (5x faster than an interpreter approach)
• same flexibility of the interpreter approach

13

Dropbox Latency

14

Pub/Sub application: Stabilizer vs Pulsar

15

Dynamic Stability Frontier Reconfiguration

16

Conclusion

• Design and Implement a geo-replication library that allows the user-
defined stability
• Introduced the stability frontier concepts along with a Domain

Specific Language (DSL) to describe it.
• Build several applications (K/V store, cloud file storage, and pub/sub

system) to demonstrate/evaluate Stabilizer.

17

Thank you!

• Q&A

18

