Stabilizer: Geo-Replication with
User-defined Consistency

Pengze Lit, Lichen Pant, Xinzhe Yang¥, Weijia Songx, Zhen Xiaot, Ken Birmanx*
TDepartment of Computer Science, Peking University
TPure Storage
xDepartment of Computer Science, Cornell University

The Challenges of Geo-Replication

~60ms ., 100ms e = ~200ms

* Long latency
* Limited/fluctuating bandwidth

4

* High overhead of strong consistency

0 ms

The Challenges of Geo-Replication

Latency between AVAILABILITY

ZONE 2

availability zone
regions? ~1ms

AVAILABILITY
ZONE 1

AVAILABILITY
ZONE 3

~200 ms

eeeeeeeee
aaaaaaaaaaaaaaaaaaaaaa

0 ms

The ChaIIenges of Geo- Repllcatlon

g R ' A >

Latency within a single \
data center: as low as e
<5us with RDMA o

A hierarchy of latencies!

* Applications do need data replication, at scale

I”

e But any “one size fits all” story would impose those geo-WAN
latencies and replication delay is (obviously) bounded by latency

* Challenge: Can one solution be customizable across multiple uses?

Different applications?

* Data Mirroring
* Social media
* Banking System

... different consistency models!

Weak '
fork-lin.}

," Bounded \
f fork-join !
| causal E Timed
: / causal
' Fork ! /
! sequential ;
| Fork*
‘\Fork-join

\
\ causal

Writes-follow-reads
(WFR)

Vol

Sequential

causal :
z \ sequential
: Ar
1
Causal |
/
models

Read-your-writes
RYW)

Real-time

Timed serial

& A T-atomicity

Prefix

Prefix

Monotonic Writes

MW)

-

linearizable

Safe .

.

Monotonic Reads

(MR)

Per-key
sequential

Per-object
causal

Linearizability

Per-object
models

Per-record
timeline
&
Coherence

T~

\
i
1
'
'
'
'
'
'
1
|
'
'
'
i
i
i

1
'
i
'
1
'
'
|
'
'
\
i
i
\
1

.

models

Release

Scope

Entry
Location

Weak ordering

Lazy release

,~Synchronized",
, \

/
’
,
/

/
/

\
\

\

’

’
’

1
1
1
'
I
1
'
1
'
'
I
|
'
'
'
'
'
'
'
i
[l
\
l}
1
v

\
\

'Staleness-based ™,
.
models \
.

Bounded
staleness
&
Delta
k-regular

ﬂt

PBS
\ t-visibility

PBS

k-staleness,”
k-safe ‘

Weak

'
’
/

Eventual
linearizability
Strong
eventual
X Eventual
serializability
| A
": ! Composite and tunable !
' . models '
; |« Hybrid :
; ! e Tunable i
: ! e Rationing |
/ i e RedBlue E
’ i = Conit E
i e Vector-field i
i e PBS <kt>-staleness !
Eventual
Quiescent

Source: Consistency in Non-Transactional Distributed Storage Systems survey, P Viotti and M Vukoli¢ 2016

https://scholar.google.com/citations?user=tNHRM-oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=YL-VvMEAAAAJ&hl=en&oi=sra

User-defined stability

e Stabilizer builds on the idea of stability within user-defined target groups
* User offered flexible ways to define the group ®
* For example,

» “majority in my data center”, ©
> “all regions in some availability zone” .:,
> “At least 2 geo-distributed regions” e | O
> “A quorum from this set of targets...”
* What should “stability” mean? O O
* For us, confirmation that the desired target group has the data A target group

* Proof of stability? Flexible: The application itself confirms it

User-defined stability

* Examples of application-defined forms of stability:

* For trusting applications, the user code in some region might simply report
that “all data from source S up through update K has been received”

* An application focused on archival safety might change that to:
“all data from source S up through update K has been persisted”

* A less trusting application might, for example, check the integrity of a
blockchain, then report that “region R has persisted chain S to update K”

* Application trusts its members? The update number, K, suffices.
* Less trusting? Application can use cryptographic “witness” signatures

Stabilizer :

e e (o

* A geo-replication library for cloud applications stability Frontier: K

* Abstraction of target regions.
e Data model: Each region is “owner”(primary) of some stream of updates
e Streams can be replicated to any desired target(s) in lossless FIFO channels

* A receiver (backup) is a component of the application that ingests the stream,
announce status via a sequence of stability reports (“certificates”, which can be
signed)

» Signature certificates can include extra application-specific content

* Stability frontier: for a specific target group, all updates from source S have
reached the desired stability level up through update K.
 Each stability frontier advances monotonically
* Certificate through K implies stability for updates [O...K]

System Architecture

WAN

node 3
P

Stabilizer

; User

Data plane: asynchronously sending with a buffer
Stability el

Data .

S Buffer
¢ L L —_— _— _— _— _— _— _— _— _— L L —
Control plane: stability frontier predicate

- - e WAN
—_— — node 4

Storage Server WAN WAN WAN WAN WAN WAN
System ID node 1 node 2 node 3 node 4 node 5 node 6
ﬁﬁguence 33 25 19 21 23 28
SO U RC E Message ACK Recorder

ey N WAN
l 1 node 5
WAN
node 6

RECEIVERS

10

Stability Frontier Predicate

Stability Frontier predicate function

* Domain: the maximum sequence numbers acknowledged by every
receivers

e Output: the maximum sequence number of the “stable” update

We introduced a set of building-block tools to describe such a predicate
o K"-MAX() and K"-MIN() operator

* SALLWNODES, SMYAZNODES
 SIZEOF(), -
 Suffixes: .received, .persisted, .signed

Examples of Stability Frontier Predicate

Region3:

Oregon

Region1: Region2:
North California North Virginia

Region4:
Ohio

An update is considered stable only after it is
confirmed by all receivers.

MIN(SALLWNODES)

An update is considered stable only after it is confirmed
by a majority of receivers.

Kth-MIN(SIZEOF(SALLWNODES)/2+1,$ALLWNODES)

An update is considered stable only after it is
confirmed by a majority of remote regions.
Kth-MIN(3, MAX(SAZ North Virginia), MAX(SAZ
Oregon),MAX(SAZ Ohio))

12

Performance and Flexibility Design

* The Stability Frontier predicate is compiled to dynamic linked library
and loaded at runtime using gcc-jit.
* Native performance (5x faster than an interpreter approach)
* same flexibility of the interpreter approach

13

file size (MByte)

Dropbox Latency

NETWORK STATUS BETWEEN NORTH CALIFORNIA AND OTHER REGIONS

Lat (ms) [Thp (Mbit/s) Half Thp (Mbit/s)
North California* 3.7 667 333.5
Ohio 53.87 89 445
Oregon 23.29 113 56.5
North Virginia 64.12 74 37
*The network status between availability zones in North California region
°
150 -
125 -
100 -
°
75 -
°
50 o
o o®
25 o o .°
°
0| eme em ’w %’c \ ’o dause
16:40:45 16:44:45 16:48:45 16:52:45 16:57:08

time of the trace from 16:40:45 to 16:57:08 in 2012-09-20

. 105 -
g MajorityRegions .
> MajorityNodes s 8
a
£ 10% OneNode s :
c PhxPaxos 4 °
o
[
2 103 -
£
o
O
C
S 102
(©
N
'c
o
G 10! -
c
>
0
103 104 10° 10° 107 108

file size (Byte)

14

Pub/Sub application: Stabilizer vs Pulsar

NETWORK PERFORMANCE BETWEEN UTAH1 AND OTHER SERVERS

Utah2 | Wisconsin | Clemson | Massachusetts
Thp(Mbit/s) | 9246.99 361.82 416.27 437.11
Lat(ms) 0.124 35.612 50.918 48.083
_10° 4
E]
2 10
-§ 101‘; __=»~"" —e— UT2_ Stabilizer —e- UT2 Pulsar
s] ,,r/ —e— WI_Stabilizer —e- WI_Pulsar
& 1 o7 —e— CLEM _Stabilizer =~ —e- CLEM_Pulsar
% 100‘5 MA Stabilizer MA Pulsar
< 10-1-; \—\\’* B

0

2000 4000

6000 8000 10000 12000 14000 16000
sending rate (message/s)

Average Throughput (Mbits/s)

1000 A

800 A

600 -

400 -

200 A

thi

UT2_ Stabilizer
WI_Stabilizer

CLEM_Stabilizer

MA_Stabilizer
UT2 Pulsar
WI_Pulsar
CLEM_Pulsar
MA_Pulsar

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2000 4000

6000 8000 10000 12000 14000 16000
sending rate (message/s)

10

Dynamic Stability Frontier Reconfigurati o

e ol
53 A
| |
| |
52 - ' '
| I
— * ! '
n * | |
E514 « : I
> I I
2 | '
S50 R
©
—
® all sites *
497 4 three sites
+ changing predicate W
48 1 —--- predicate change happens

seconds from start

16

Conclusion

* Design and Implement a geo-replication library that allows the user-
defined stability

* Introduced the stability frontier concepts along with a Domain
Specific Language (DSL) to describe it.

* Build several applications (K/V store, cloud file storage, and pub/sub
system) to demonstrate/evaluate Stabilizer.

Thank you!

* Q&A

18

