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LTV Prediction
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LTV Prediction

p Customer LifeTime Value (LTV):

Ø measures the value of a user during the lifetime of using an application;

Ø help reduce user churn and increase retention for user-centric companies.
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Challenges
p Revenue sequences are usually volatile and sparse.
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Our Solution
p Volatility Issue

Ø Solution: incorporate the wavelet transform technique to reduce the influence of volatile data.
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Our Solution
p Volatility Issue

Ø Solution: incorporate the wavelet transform technique to reduce the influence of volatile data.

p Sparsity Issue

Ø Solution: learn structural user representations with an attribute similarity graph to

enhance temporal user representations.
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Our Solution
p Volatility Issue

Ø Solution: incorporate the wavelet transform technique to reduce the influence of volatile data.

p Sparsity Issue

Ø Solution: learn structural user representations with an attribute similarity graph to

enhance temporal user representations.

p Regularization and Fusion

Ø Cluster-alignment regularization to reduce the divergence in the two kinds of user 

representations.

Ø Associate temporal and structural representations in the low-pass representation space, which 

is also useful to prevent the data noise from being transferred across different views.

8



Problem Definition
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p For a user u from a user set 𝑈 , we have two kinds of data input:
Ø 𝑟! is the revenue sequence of user 𝑢. 

Ø 𝑒! denotes the feature vector for 𝑢 consisting of user attributes, e.g., age and 
activity degree.
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Problem Definition
p For a user u from a user set 𝑈 , we have two kinds of data input:

Ø 𝑟! is the revenue sequence of user 𝑢. 

Ø 𝑒! denotes the feature vector for 𝑢 consisting of user attributes, e.g., age and 
activity degree.

p Build attribute similarity graph
ØSimilarity: 𝑠!,# = exp(−𝛾||e! − 𝑒#||$)
ØConnect top-𝐾 most similar neighbors 

p Goal: predict accumulated LTV for the future Δ𝑚 days
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Methodology (Temporal View)
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Temporal Trend Encoder
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Step 1.
Multi-Channel Trainable Wavelet Filters



Temporal Trend Encoder
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Step 1.
Multi-Channel Trainable Wavelet Filters

Step 2.
Multi-Channel Wavelet Decomposition



Temporal Trend Encoder
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Step 1.
Multi-Channel Trainable Wavelet Filters

Step 2.
Multi-Channel Wavelet Decomposition

Step 3.
Self-attentive Channels and Frequency Components



Methodology (Structural View)
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Methodology (Regularization)
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Cluster-Alignment Regularization
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Step 1. Distance with cluster centroids



Cluster-Alignment Regularization
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Step 1. Distance with cluster centroids

Step 2. Soft assignment probabilities



Cluster-Alignment Regularization
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Step 1. Distance with cluster centroids

Step 2. Soft assignment probabilities

Step 3. Cluster-alignment regularization



Methodology (Fusion)
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Datasets

pTwo datastes: 

Ø PI: pre-installation on new mobile phones

Ø AS: download in app stores

pTraining / Validation / Test set sizes = 8 : 1 : 1
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Compared Methods
p Four categories of baselines

Ø LTV prediction
l Two-stage XGBoost
l Group RandomForest
l WhalesDetector

Ø Time series forecasting
l DSANet
l LSTNet
l Nbeats

Ø Graph neural network
l GAT
l GraphSAGE
l Graph WaveNet

Ø User behavior model
l TiSSA
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Performance Comparison
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Ablation study
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p Four variants are compared: 

Ø T : use only the temporal representation to 

predict LTV; 

Ø S : use only the structural representation to 

predict LTV; 

Ø TS : directly fusing the two representations 

to predict LTV; 

Ø TSC : our complete model.



Ablation study
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S < T < TS < TSC

p Four variants are compared: 

Ø T : use only the temporal representation to 

predict LTV; 

Ø S : use only the structural representation to 

predict LTV; 

Ø TS : directly fusing the two representations 

to predict LTV; 

Ø TSC : our complete model.



Performance Tuning
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Case Study
p The raw time series is in blue and the 

decomposed low- and high-frequency 

components are in red and green.
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Churn users

Return users



Case Study
p The raw time series is in blue and the 

decomposed low- and high-frequency 

components are in red and green.

p The first 30-day and future sequence are in 

black and blue, respectively.
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Online A/B Test
p Return on Investment (ROI)
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Conclusion
p We proposed a Temporal-Structural user representation model for LTV prediction.

31



Conclusion
p We proposed a Temporal-Structural user representation model for LTV prediction.

p For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable 

temporal user representations;

32



Conclusion
p We proposed a Temporal-Structural user representation model for LTV prediction.

p For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable 

temporal user representations;

p For structural encoder, we leveraged GAT to learn structural user representations over attribute 

similarity graph.

33



Conclusion
p We proposed a Temporal-Structural user representation model for LTV prediction.

p For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable 

temporal user representations;

p For structural encoder, we leveraged GAT to learn structural user representations over attribute 

similarity graph.

p Cluster-alignment regularization technique was proposed to align the two kinds of user 

representations.

34



Conclusion
p We proposed a Temporal-Structural user representation model for LTV prediction.

p For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable 

temporal user representations;

p For structural encoder, we leveraged GAT to learn structural user representations over attribute 

similarity graph.

p Cluster-alignment regularization technique was proposed to align the two kinds of user 

representations.

p Future work

Ø incorporate other influencing factors such as bursty social events;

Ø leverage other kinds of user correlation data such as social graphs  to learn better structural user 

representations. 35
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