e““”@ »

AR Z)t z J, 4

EE 579y =
1558 PEKING UNIVERSITY

Learning Reliable User Representations from Volatile and Sparse

Data to Accurately Predict Customer Lifetime Value

Authors: Mingzhe Xing, Shuqging Bian, Wayne Xin Zhao, Zhen Xiao,
Xinji Luo, Cunxiang Yin, Jing Cai, Yancheng He

Tencenit Eifl




LTV Prediction




LTV Prediction

O Customer LifeTime Value (LTV):
> measures the value of a user during the lifetime of using an application;

> help reduce user churn and increase retention for user-centric companies.



Challenges

O Revenue sequences are usually volatile and sparse.
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O Revenue sequences are usually volatile and sparse.
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Our Solution

O Volatility Issue

» Solution: incorporate the wavelet transform technique to reduce the influence of volatile data.
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Our Solution

O Volatility Issue
» Solution: incorporate the wavelet transform technique to reduce the influence of volatile data.
O Sparsity Issue

> Solution: learn structural user representations with an attribute similarity graph to

enhance temporal user representations.




Our Solution

O Volatility Issue
» Solution: incorporate the wavelet transform technique to reduce the influence of volatile data.
O Sparsity Issue

> Solution: learn structural user representations with an attribute similarity graph to

enhance temporal user representations.
O Regularization and Fusion

> Cluster-alignment regularization to reduce the divergence in the two kinds of user

representations.

> Associate temporal and structural representations in the low-pass representation space, which

is also useful to prevent the data noise from being transferred across different views.



Problem Definition

O For a user u from a user set U , we have two kinds of data input:

> 17, IS the revenue sequence of user u.

> e,, denotes the feature vector for u consisting of user attributes, e.g., age and
activity degree.
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O For a user u from a user set U , we have two kinds of data input:

> 17, IS the revenue sequence of user u.

> e,, denotes the feature vector for u consisting of user attributes, e.g., age and
activity degree.

O Build attribute similarity graph
> Similarity: s, , = exp(—y|lex — ey||?)
» Connect top-K most similar neighbors
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Problem Definition

O For a user u from a user set U, we have two kinds of data input:
> 17, IS the revenue sequence of user u.

> e,, denotes the feature vector for u consisting of user attributes, e.g., age and
activity degree.

O Build attribute similarity graph
> Similarity: s, , = exp(—y|lex — ey||?)
» Connect top-K most similar neighbors

O Goal: predict accumulated LTV for the future Am days
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Methodology (Temporal View)
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Temporal Trend Encoder

Multi-channel DWT
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Temporal Representation

Step 1.
Multi-Channel Trainable Wavelet Filters

Wili,i+ j] = 1[]]
Wigli,i + j] = hlj]

WL =[Wri; Wgra, -, Wg ]

Wie = [Wg1;Wga, -, W] 13



Temporal Trend Encoder

Multi-channel DWT
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Step 1. Step 2.
Multi-Channel Trainable Wavelet Filters Multi-Channel Wavelet Decomposition

Wili,i+ j] = 1[]]

(d) (d-1)
T . X}’ = AvgPool(c(WrX + Bp)
Wi, i+ j] = h[j] . ( . )

Xg) = AvgPool (J(WHXE—Jd_l) + Bg))

WL =[Wri; Wgra, -, Wg ]

Wie = [Wg1;Wga, -, W] 14



Temporal Trend Encoder

Multi-channel DWT
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Methodology (Structural View)

Multi-channel DWT
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Methodology (Regularization)

Multi-channel DWT
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Cluster-Alignment Regularization

Step 1. Distance with cluster centroids
dq% = tanh(W1|zp.1; ¢k + b1)
df;ﬂ = tanh(W3[ny; ci| + be)
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Cluster-Alignment Regularization

Step 1. Distance with cluster centroids
dq(il;ﬁ = tanh(W1|zp.1; ¢k + b1)
df;€ = tanh(W3[ny; ci| + be)

Step 2. Soft assignment probabilities
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Cluster-Alignment Regularization

Step 1. Distance with cluster centroids
dq% = tanh(W1|zp.1; ¢k + b1)
dfiC = tanh(W3[ny; ci| + be)

Step 2. Soft assignment probabilities
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Methodology (Fusion)

Multi-channel DWT
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Datasets

O Two datastes:

> PIl: pre-installation on new mobile phones

> AS: download in app stores

OTraining / Validation / Test set sizes=8:1: 1

Table 1: The statistics of our datasets.

Dataset || #users | average consumption frequency | average LTV
PI 33,505 14.46 2.01
AS 36,264 14.35 2.00
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Compared Methods

O Four categories of baselines

> LTV prediction
e Two-stage XGBoost
e Group RandomForest
e WhalesDetector

> Time series forecasting
e DSANet
e LSTNet
e Nbeats

> Graph neural network
o GAT
e GraphSAGE
e Graph WaveNet

> User behavior model
e TiSSA
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Performance Comparison

PI AS

Methods 30-day 90-day 30-day 90-day

NRMSE | NMAE | NRMSE | NMAE || NRMSE | NMAE | NRMSE | NMAE
Two-stage XGBoost 0.8786 0.5709 1.0386 0.6237 0.9012 0.5834 1.0422 0.6275

Group RandomForest 0.6681 0.4625 0.8910 0.5984 0.6853 0.4777 0.8978 0.6107

WhalesDetector 0.5396 | 0.3167 0.8456 | 0.4681 0.5467 | 0.3256 0.8915 0.4935
DSANet 0.7248 | 0.3619 0.9916 | 0.5889 0.7273 | 0.3436 1.0168 0.6302
LSTNet 0.6671 0.3265 0.8860 | 0.5821 0.7251 0.4075 0.9685 0.6559
NBeats 0.5843 | 0.3513 0.8834 | 0.5211 0.5489 | 0.3392 0.9245 0.5403

GraphSAGE 0.7868 | 0.5271 0.9886 | 0.6328 0.7499 | 0.5101 1.0397 0.6437

Graph WaveNet 0.6266 | 0.3306 0.9599 | 0.4482 0.7343 | 0.4378 0.9582 0.4830

TiSSA 0.7521 0.5478 0.9949 | 0.7333 0.7756 | 0.5744 1.0141 0.7311

TSUR (our method) 0.4274 | 0.2464 | 0.7193 | 0.4220 || 0.4432 | 0.2542 | 0.6863 | 0.3915
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Ablation study

o Four variants are compared:

> T :use only the temporal representation to
predict LTV,

> S : use only the structural representation to
predict LTV,

> TS : directly fusing the two representations

to predict LTV,

> TSC : our complete model.
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Ablation study

o Four variants are compared:

> T :use only the temporal representation to
predict LTV,

> S : use only the structural representation to
predict LTV,

> TS : directly fusing the two representations
to predict LTV,

> TSC : our complete model.

Future Variant PI AS
horizon NRMSE | NMAE | NRMSE | NMAE
T 0.4660 0.2655 0.4853 0.2792
30 days S 0.7242 0.4817 0.7304 | 0.4715
fl i 0.4379 0.2504 | 0.4594 | 0.2611
TSC 0.4274 | 0.2464 | 0.4432 | 0.2542
T 0.7501 0.4434 0.7511 0.4404
90 days S 0.9847 0.6009 1.0208 0.6957
TS 0.7448 0.4241 0.7119 0.4026
TSC 0.7193 | 0.4220 | 0.6863 | 0.3915

S<T<TS<TSC
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Performance Tuning
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(a) The number of clusters. (b) The ratio of training data.
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Case Study

O The raw time series is in blue and the
decomposed low- and high-frequency

components are in red and green.
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Case Study

O The raw time series is in blue and the
decomposed low- and high-frequency

components are in red and green.

Return users

O The first 30-day and future sequence are in First 30-day __ Future First30-day  Future

black and blue, respectively. \«MMWW. L : A JA/\MAA



Online A/B Test

O Return on Investment (ROI)

Net Return on Investment

ROI =

Cost of Investment

Methods ROI-10 | ROI-20

WhalesDetector || 0.1420 | 0.3571
TSUR 0.1636 | 0.3699
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Conclusion

O We proposed a Temporal-Structural user representation model for LTV prediction.
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Conclusion

O We proposed a Temporal-Structural user representation model for LTV prediction.

O For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable

temporal user representations;
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Conclusion

O We proposed a Temporal-Structural user representation model for LTV prediction.

O For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable

temporal user representations;

O For structural encoder, we leveraged GAT to learn structural user representations over attribute

similarity graph.
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Conclusion

O We proposed a Temporal-Structural user representation model for LTV prediction.

O For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable

temporal user representations;

O For structural encoder, we leveraged GAT to learn structural user representations over attribute
similarity graph.

O Cluster-alignment regularization technique was proposed to align the two kinds of user

representations.
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Conclusion

O We proposed a Temporal-Structural user representation model for LTV prediction.

O For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable

temporal user representations;

O For structural encoder, we leveraged GAT to learn structural user representations over attribute
similarity graph.

O Cluster-alignment regularization technique was proposed to align the two kinds of user
representations.

O Future work

> incorporate other influencing factors such as bursty social events;

> leverage other kinds of user correlation data such as social graphs to learn better structural user

representations. 35
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