

Learning Reliable User Representations from Volatile and Sparse Data to Accurately Predict Customer Lifetime Value

Authors: Mingzhe Xing, Shuqing Bian, Wayne Xin Zhao, Zhen Xiao, Xinji Luo, Cunxiang Yin, Jing Cai, Yancheng He

LTV Prediction

1

LTV Prediction

Customer LifeTime Value (LTV):

> measures the value of a user during the lifetime of using an application;

> help reduce user churn and increase retention for user-centric companies.

Challenges

□ Revenue sequences are usually **volatile** and **sparse**.

Challenges

□ Revenue sequences are usually **volatile** and **sparse**.

Volatility Issue

> Solution: incorporate the **wavelet transform technique** to reduce the influence of volatile data.

UNIPERSONAL STREET

Volatility Issue

> Solution: incorporate the **wavelet transform technique** to reduce the influence of volatile data.

Discrete Wavelet Transform

Volatility Issue

- > Solution: incorporate the **wavelet transform technique** to reduce the influence of volatile data.
- Sparsity Issue
 - Solution: learn structural user representations with an attribute similarity graph to enhance temporal user representations.

Volatility Issue

- Solution: incorporate the **wavelet transform technique** to reduce the influence of volatile data.
- Sparsity Issue
 - Solution: learn structural user representations with an attribute similarity graph to enhance temporal user representations.
- Regularization and Fusion
 - Cluster-alignment regularization to reduce the divergence in the two kinds of user representations.
 - Associate temporal and structural representations in the low-pass representation space, which is also useful to prevent the data noise from being transferred across different views.

Problem Definition

- \Box For a user u from a user set U, we have two kinds of data input:
 - $> r_u$ is the revenue sequence of user u.
 - > e_u denotes the feature vector for u consisting of user attributes, e.g., age and activity degree.

Problem Definition

- \square For a user u from a user set U, we have two kinds of data input:
 - > r_u is the revenue sequence of user u.
 - > e_u denotes the feature vector for u consisting of user attributes, e.g., age and activity degree.
- Build attribute similarity graph
 - > Similarity: $s_{u,v} = \exp(-\gamma ||\mathbf{e}_u e_v||^2)$
 - > Connect top-*K* most similar neighbors

Problem Definition

- \Box For a user u from a user set U, we have two kinds of data input:
 - > r_u is the revenue sequence of user u.
 - > e_u denotes the feature vector for u consisting of user attributes, e.g., age and activity degree.
- Build attribute similarity graph
 - > Similarity: $s_{u,v} = \exp(-\gamma ||\mathbf{e}_u e_v||^2)$
 - > Connect top-*K* most similar neighbors

Goal: predict accumulated LTV for the future Δm days

Methodology (Temporal View)

Temporal Trend Encoder

Step 1. Multi-Channel Trainable Wavelet Filters

 $\mathbf{W}_L[i,i+j] = \mathbf{l}[j] \ \mathbf{W}_H[i,i+j] = \mathbf{h}[j]$

 $\mathcal{W}_L = \left[\mathbf{W}_{L,1}; \mathbf{W}_{L,2}, \cdots, \mathbf{W}_{L,C}
ight] \ \mathcal{W}_H = \left[\mathbf{W}_{H,1}; \mathbf{W}_{H,2}, \cdots, \mathbf{W}_{H,C}
ight]$

Temporal Trend Encoder

Step 1. Multi-Channel Trainable Wavelet Filters

Step 2. Multi-Channel Wavelet Decomposition

 $\mathbf{W}_L[i,i+j] = \mathbf{l}[j] \ \mathbf{W}_H[i,i+j] = \mathbf{h}[j]$

$$egin{aligned} \mathbf{X}_{L}^{(d)} &= \mathrm{AvgPool}ig(\sigma(\mathcal{W}_{L}\mathbf{X}_{L}^{(d-1)}+\mathbf{B}_{L})ig) \ \mathbf{X}_{H}^{(d)} &= \mathrm{AvgPool}ig(\sigma(\mathcal{W}_{H}\mathbf{X}_{L}^{(d-1)}+\mathbf{B}_{H})ig) \end{aligned}$$

 $\mathcal{W}_L = \left[\mathbf{W}_{L,1}; \mathbf{W}_{L,2}, \cdots, \mathbf{W}_{L,C}
ight] \ \mathcal{W}_H = \left[\mathbf{W}_{H,1}; \mathbf{W}_{H,2}, \cdots, \mathbf{W}_{H,C}
ight]$

Temporal Trend Encoder

Step 1. Multi-Channel Trainable Wavelet Filters Step 2. Multi-Channel Wavelet Decomposition Step 3. Self-attentive Channels and Frequency Components

 $\mathbf{z} - \mathbf{CRI}(\mathbf{z}^{(d)})$

$$\mathbf{W}_L[i,i+j] = \mathbf{l}[j] \ \mathbf{W}_H[i,i+j] = \mathbf{h}[j]$$

 $\mathcal{W}_L = \left[\mathbf{W}_{L,1}; \mathbf{W}_{L,2}, \cdots, \mathbf{W}_{L,C}
ight] \ \mathcal{W}_H = \left[\mathbf{W}_{H,1}; \mathbf{W}_{H,2}, \cdots, \mathbf{W}_{H,C}
ight]$

$$egin{aligned} \mathbf{X}_{L}^{(d)} &= \mathrm{AvgPool}ig(\sigma(\mathcal{W}_{L}\mathbf{X}_{L}^{(d-1)}+\mathbf{B}_{L})ig) \ \mathbf{X}_{H}^{(d)} &= \mathrm{AvgPool}ig(\sigma(\mathcal{W}_{H}\mathbf{X}_{L}^{(d-1)}+\mathbf{B}_{H})ig) \end{aligned}$$

$$egin{aligned} \mathbf{Z} &= \operatorname{GHO}(\mathbf{Z}^{-}) \ \mathbf{Z} &= [\mathbf{z}_1; \mathbf{z}_2; \cdots; \mathbf{z}_D; \mathbf{z}_{D+1}] \ \mathbf{F} &= \operatorname{MHA}(\mathbf{Z}) \ \mathbf{t}_u &= \operatorname{AvgPool}(\mathbf{F}) \end{aligned}$$

Methodology (Structural View)

Methodology (Regularization)

Cluster-Alignment Regularization

Step 1. Distance with cluster centroids

$$egin{aligned} &d_{u,k}^{(1)} = anh(\mathbf{W}_1[\mathbf{z}_{D+1};\mathbf{c}_k]+b_1)\ &d_{u,k}^{(2)} = anh(\mathbf{W}_2[\mathbf{n}_u;\mathbf{c}_k]+b_2) \end{aligned}$$

Cluster-Alignment Regularization

Step 1. Distance with cluster centroids

$$egin{aligned} &d_{u,k}^{(1)} = anh(\mathbf{W}_1[\mathbf{z}_{D+1};\mathbf{c}_k]+b_1)\ &d_{u,k}^{(2)} = anh(\mathbf{W}_2[\mathbf{n}_u;\mathbf{c}_k]+b_2) \end{aligned}$$

Step 2. Soft assignment probabilities

$$egin{aligned} heta_{u,k} &= rac{(1+{d_{u,k}^{(1)}}^2/t)^{-rac{t+1}{2}}}{\sum\limits_{k'}(1+{d_{u,k}^{(1)}}^2/t)^{-rac{t+1}{2}}} \ \phi_{u,k} &= rac{(1+{d_{u,k}^{(2)}}^2/t)^{-rac{t+1}{2}}}{\sum\limits_{k'}(1+{d_{u,k}^{(2)}}^2/t)^{-rac{t+1}{2}}} \end{aligned}$$

Cluster-Alignment Regularization

Step 1. Distance with cluster centroids

$$egin{aligned} &d_{u,k}^{(1)} = anh(\mathbf{W}_1[\mathbf{z}_{D+1};\mathbf{c}_k]+b_1) \ &d_{u,k}^{(2)} = anh(\mathbf{W}_2[\mathbf{n}_u;\mathbf{c}_k]+b_2) \end{aligned}$$

Step 2. Soft assignment probabilities

Methodology (Fusion)

Datasets

□Two datastes:

PI: pre-installation on new mobile phones

> AS: download in app stores

Training / Validation / Test set sizes = 8 : 1 : 1

Table 1: The statistics of our datasets.

Dataset	#users	average consumption frequency	average LTV	
PI	33,505	14.46	2.01	
AS	36,264	14.35	2.00	

Compared Methods

UNIDER MILLING I 8 9 8

- Four categories of baselines
 - LTV prediction
 - Two-stage XGBoost
 - Group RandomForest
 - WhalesDetector
 - Time series forecasting
 - DSANet
 - LSTNet
 - Nbeats
 - Graph neural network
 - GAT
 - GraphSAGE
 - Graph WaveNet
 - > User behavior model
 - TiSSA

Performance Comparison

	PI				AS			
Methods	30-day		90-day		30-day		90-day	
	NRMSE	NMAE	NRMSE	NMAE	NRMSE	NMAE	NRMSE	NMAE
Two-stage XGBoost	0.8786	0.5709	1.0386	0.6237	0.9012	0.5834	1.0422	0.6275
Group RandomForest	0.6681	0.4625	0.8910	0.5984	0.6853	0.4777	0.8978	0.6107
WhalesDetector	0.5396	0.3167	<u>0.8456</u>	0.4681	0.5467	0.3256	<u>0.8915</u>	0.4935
DSANet	0.7248	0.3619	0.9916	0.5889	0.7273	0.3436	1.0168	0.6302
LSTNet	0.6671	0.3265	0.8860	0.5821	0.7251	0.4075	0.9685	0.6559
NBeats	0.5843	0.3513	0.8834	0.5211	0.5489	0.3392	0.9245	0.5403
GraphSAGE	0.7868	0.5271	0.9886	0.6328	0.7499	0.5101	1.0397	0.6437
Graph WaveNet	0.6266	0.3306	0.9599	0.4482	0.7343	0.4378	0.9582	0.4830
TiSSA	0.7521	0.5478	0.9949	0.7333	0.7756	0.5744	1.0141	0.7311
TSUR (our method)	0.4274	0.2464	0.7193	0.4220	0.4432	0.2542	0.6863	0.3915

Ablation study

- Four variants are compared:
 - T : use only the temporal representation to predict LTV;
 - S : use only the structural representation to predict LTV;
 - TS : directly fusing the two representations to predict LTV;
 - > TSC : our complete model.

Ablation study

Four variants are compared:

- T : use only the temporal representation to predict LTV;
- S : use only the structural representation to predict LTV;
- TS : directly fusing the two representations to predict LTV;
- > TSC : our complete model.

Future	Variant	Р	I	AS		
horizon	varialit	NRMSE	NMAE	NRMSE	NMAE	
30 days	Т	0.4660	0.2655	0.4853	0.2792	
	S	0.7242	0.4817	0.7304	0.4715	
	TS	0.4379	0.2504	0.4594	0.2611	
	TSC	0.4274	0.2464	0.4432	0.2542	
90 days	Т	0.7501	0.4434	0.7511	0.4404	
	S	0.9847	0.6009	1.0208	0.6957	
	TS	0.7448	0.4241	0.7119	0.4026	
	TSC	0.7193	0.4220	0.6863	0.3915	

S < T < TS < TSC

Performance Tuning

(a) The number of clusters.

(b) The ratio of training data.

Case Study

The raw time series is in blue and the decomposed low- and high-frequency

components are in red and green.

Case Study

The raw time series is in blue and the decomposed low- and high-frequency

components are in red and green.

The first 30-day and future sequence are in black and blue, respectively.

Online A/B Test

Return on Investment (ROI)

 $ROI = rac{Net \ Return \ on \ Investment}{Cost \ of \ Investment}$

Methods	ROI-10	ROI-20	
WhalesDetector	0.1420	0.3571	
TSUR	0.1636	0.3699	

■ We proposed a **Temporal-Structural user representation model** for LTV prediction.

■ We proposed a **Temporal-Structural user representation model** for LTV prediction.

For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable temporal user representations;

□ We proposed a **Temporal-Structural user representation model** for LTV prediction.

- For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable temporal user representations;
- For structural encoder, we leveraged GAT to learn structural user representations over attribute similarity graph.

□ We proposed a **Temporal-Structural user representation model** for LTV prediction.

- For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable temporal user representations;
- For structural encoder, we leveraged GAT to learn structural user representations over attribute similarity graph.
- Cluster-alignment regularization technique was proposed to align the two kinds of user representations.

□ We proposed a **Temporal-Structural user representation model** for LTV prediction.

- For temporal trend encoder, we developed an improved multi-channel DWT to learn more reliable temporal user representations;
- For structural encoder, we leveraged GAT to learn structural user representations over attribute similarity graph.
- Cluster-alignment regularization technique was proposed to align the two kinds of user representations.
- Future work
 - incorporate other influencing factors such as bursty social events;
 - Ieverage other kinds of user correlation data such as social graphs to learn better structural user representations.

Thank you