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Resource Autoscaling

ODefinition

> Dynamically allocating computing resources, e.g., CPU, GPU or

memory;

> Job-level autoscaling and Task-level autoscaling, i.e., assigning

resources to jobs or fine-grained tasks.

OAutoscaling methods

» Heuristic-based methods

> Reinforcement-learning-based methods



Motivation

OFine-grained autoscaling

» More precise resource management;

> Better performance in multiple computing scenarios, e.g., 11-x faster

execution speed for web services and 35% gain on GPU utilization by

previous work. Autoscaling Level
TVW-RL [Mondal et al., 2021] T DeepRM [Mao et al., 2016]

N Job-level @
Streaming Job Batch Job——> Job Type
> DREAM [Ni et al., 2020]
Task-level @

© (Ours) DeepWave [Sun et al., 2020]

Figure 1: The categories of RL-based autoscalers, which have shown
their superiority over heuristic-based methods in previous work.




Motivation

OLarge temporal dimension
> Running online for months or even years;
> Produce massive records of job states;

> Heavy computation overhead (stream computing is time-critical).
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Figure 2: The MDP formulation of autoscaling process of streaming

jobs. The running states of jobs (i.e., snapshots) can be formatted as
spatio-temporal graphs G.

Optimization objection:
® minimize latency

® maximize resource utilization ratio

Tt = —Alt -+ (1 — A)ut



Neural Variational Subgraph Sampler

OMotivation: It is unnecessary to model all job state snapshots
OSubgraph sampling

> Temporal dimension:

e \Weighted video stream sampling
e Underlying importance weights distribution along temporal dimension

> Spatial dimension:
e Graph Neural Network
e A subset of spatial neighbors is most relevant

OPros:
» Reduce redundant or noisy information

> Lower computation cost
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Figure 3: The overall architecture of our proposed approach. It shows an example to sample a subgraph for task node v2, and then make
autoscaling decision for this task node. L, K, k, and k2 are set as 5, 4, 3 and 2 in this example. “FFN” denotes the feed forward network.
The steps labeled with @, @, ® and @ correspond to the four steps introduced in Section 4.1,

Under this sampling procedure, the marginal likelihood of subgraph is
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Subgraph Mutual Information

OMotivation: explicitly encourage to sample representative

subgraphs
OLarger Ml indicates that the two variables are more correlated
max I(f(g), £(G)) = H(f(9)) — H(£(9)I£(9))
OOptimization lower bound v, g) — o6k, .15, 1(f(9), £(9))
2> (- KL @@19) @, )

_ (Eloglﬂ +(Q—w)'S7HQ - p) + CEQ,Q))

+ EqlogI(f(9), f(g)))’
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Training with Reinforcement Learning

ORL objective function:

J() = 5 Egzl logmy R,

O Total loss:

L=-J-a3My,



Experiments

Olmplement a simulation environment for stream computing.

OUse ClarkNet Trace as workloads, which describes the number

of HTTP requests to the servers.

OSelect jobs in Alibaba Cluster Dataset that were running for

more than 2,000 minutes.

OSample six jobs with different task numbers:

> Small-1, Small-2, Medium-1, Medium-2, Large-1 and Large2



Experiments

OPerformance comparisons

Small-1 Small-2 Medium-1 Medium-2 Large-1 Large-2 | Average
Heuristic-based HPA -0.17 1.16 -2.69 -0.90 -1.28 -2.35 -1.04
DeepWave -2.77 -1.23 0.16 -0.97 0.69 0.32 -0.63
RL-based DREAM 0.50 -0.23 0.23 -0.11 0.92 -1.14 0.03
TVW-RL 0.26 0.66 0.08 -0.40 0.95 0.85 0.40
Spatial-temporal GNN ASTGCN 0.26 -0.66 0.36 1.09 -1.24 0.29 0.02
CCRNN 0.48 0.97 0.24 1.12 -0.57 0.46 045
Ours SURE 0.52 1.41 1.19 1.81 1.02 0.95 1.15

Table 1: Performance comparison with baselines on Small, Medium and Large job settings, respectively. The best, second best and third best

results are in bold, underline and gray cell, respectively.
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Experiments
oParameter sensitivity | ~—— |
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Figure 4: Sensitivity analysis by varying k1 and A for Large-1 job. 1



Conclusion

OContributions:

> We are the first to give an MDP formulation of autoscaling streaming jobs.

> We design a Neural Variational Subgraph Sampler, which can greatly save the
graph learning time.

> We propose an objective function based on mutual information to guide the sampler
to extract more representative subgraphs.

OFuture Work:

> We will apply our method to solve other classical spatio-temporal graph modeling
tasks, such as traffic forecasting and pose detection, which also suffer from the
large temporal dimension issue.
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