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Adaptive Agent Modelling

* Modelling the policies of teammates has long been an
interest for the Multi-agent Reinforcement Learning
(MARL) community.

— e.g., if the agent knows the policies of the teammates, it can
adjust its own policy accordingly to achieve proper cooperation.

 However, teammates modelling is also a big challenge.

— because the agents are changing their policies continuously
while they are learning concurrently to adapt to each other.

Therefore, there is a great need to design
adaptive agent modelling methods.




Decentralized Policy

* Many real-world multi-agent tasks require distributed
policies, since:
— The agents may be located in different places
— This may be required in the rules of the games
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Thus, there is also a great need to train
decentralized policy for each agent.
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Research Problem
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designing an adaptive agent
modelling method that can train
decentralized policy
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MADDPG (our basic model)

» apply centralized critic to train decentralized policy
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: Ef: : : h : observations and actions of all agents.
cnmiaaral | (@15, a2102]| => lay the necessary foundation to do agent modelling
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The independent actor ; can only get access to its
own observation o;.
=» learn decentralized policies for distributed execution
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Unsolved Problem

« MADDPG adopts a fully-connected neural
network as the centralized critic, which is
not very adaptive.

4 N

adaptive agent modelling?
=>» Attention Mechanism!




Soft Attention Mechanism

The inputs are several source vectors [S4, S>, ..., Sk, ..., Sg]and one
target vector T

The information contained in S;, can be encoded into a contextual
vector C adaptively according to the normalized importance score

Wj as follows: exp(f(T, Si))
T S ea(f(Ts) Z“‘g‘
Besides, the attention weight vector w 2 [wi, ws, .,wg] can also be

seen as a probability distribution because Zk:l we = 1.

\_

/In our method, we will design an attentional\
centralized critic to generate a probability

distribution in an adaptive manner!
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Key Variables

a The joint action of all agents.
a; The local action of agent 1.
a—; The joint action of teammates of agent i.

The action set /T A;, A_; are denoted similarly.

The observation (history) d, 0i, 6—; are denoted similarly.

The policy 7, m;, T—; are denoted similarly.

S The next state after s.

0,0, 0_;,d, a., and d_, are denoted similarly.

T—i The joint policy of teammates of agent i.

. . The probability value for generating a—;

7_i(@—ils) bolicy 7 2 (7 le) =
under policy ;. ¥; ..z 7—i(d-i|s) = 1.

. - The probability distribution over the

W—i(A—ils) -

joint action space A_; under policy 7—;.
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Attentional Critic for Adaptability

« Multi-agent Q-value function

— We define the multi-agent Q-value function relative to
the joint policy of teammates as previous work [10]

Mathematically, Q; milT - “(s,a;) can be calculated by
QI (s,a) = Ea_mr_,[QT (s, 5,d-0) (6)
= X; .ci_[T-ilad-il[s)Q;"(s,a:,d_i)] (7)
— Like single- agent setting, our objective is to find the
optimal policy =7 = argmax., Q7" (s, a;)

Single-agent Q-value function:
In practice, the Q-value function Q™ (s,a) is defined as
Since the outcome of a; taken in s is dependent on d_; Q7(s,0) = E,[G|S=sA=d] (1)

2016-ICML-Opponent modeling in deep reinforcement learning then the optimal policy is derived by x* = arg max, Q" (s, a).

!The detailed derivation can be found in (10].
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Attentional Critic for Adaptability

« Multi-agent Q-value function

Q™ (s,ai) = Ea_,mr_, [QF (s, ai,d=)] (6)
= &'_iEx‘Y—i[ﬁ_i(a’_ils)@?i(s’ai=6—i)] (7)

Equation 7 implies that in order to estimate Q?”ﬁ_i (s,ai),
the critic network of agent 7 should have the abilities:

(1) to estimate QT (s, a;,@_;) for each @_; € A_;;

(2) to calculate the expectation of all Q7% (s, ai,d—i) .

2The expectation is equivalent to the weighted summation, and the
weight of Q7% (s,a;,d—;) is —;(@—i|s) as shown in Equation 7.




Attentional Critic for Adaptability

(1) To estimate Q;" (s, a;, d_;) for each d_; € A
— We design a K-head Module where K = |/T_l-|.

— As shown in Figure 3, the K-head Module generates |
K action conditional Q-value Q¥ (s, a;|d_;; w;) for
each d_; to approximate the true Q;"' (s, a;, d_;)

Qi(s, aj|a™y)

— Specifically, Q¥ (s, a;, d_;; w;) is generated using a; e o e g e
and all observations < 0;,,0_; >= 0 £ s
 As for the information about a_;, it is provided by an
additional hidden vector h;(w;), which will be
introduced shortly
* This is why we use Q{‘(s, a;|d_;; w;) instead of
Q{‘(s, a;, d_;; w;) to represent the defined action
conditional Q-value. Figure 3: The attention critic of ATT-MADDPG.
For clarity, we only show the detailed generation of
(Q; using a three-agent example: the discrete action
space is {l,r}, and the agents prefer to take the ac-
tions r, /, and r, respectively. In this case, the second
action conditional Q-value Q7 will contribute more
weights to the computation of the contextual Q-value
Equation 7 implies that in order to estimate Q;r S,ai), Qf, as indicated by thicker red links. We call Q; the

the critic network of agent 7 should have the abilities: real Q-value, Qf the contextual Q-value, and Qf the
(1) to estimate Q™ (8 ai.d ) for each d_,; € A action conditional Q-value. The difference is that Qf
7 ) (2} —1 —1 —19

. 0 oy 2 and Q; are multi-dimensional vectors, while Q; is the
(2) to calculate the expectation of all Ql (_S’ @i, a_") ’ real scalar Q-value used in Equation 10, 11, and 12.
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Attentional Critic for Adaptability

(2) To calculate the expectation of all Qg”(s, a;, d_;)
— The weights T_;(d_;|s) of each Q;" (s, a;, d_;) are also required (as indicated by Equation 7)

QrI™i(s,a)= E ~_L~ﬁ_z[Q’-’i<s ai,@-i)] (6)
— _JEA_ [W—l(a—lls)Q (5’ai:a—i)] (7)

=

— However, it is hard to approximate these weights.

— On one hand, for different s, the teammates will take different a_; with different probabilities T_;(a_;|s)
based on the policy T_;.

— On the other hand, the policy T_; is changing continuously, because the agents are learning concurrently
to adapt to each other.

{ It's time for Attention! ]
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Attentional Critic for Adaptability

(2) To calculate the expectation of all Q?i(s, a;, d_;)

— Difficulties: =» T_;(d_;|s) is different for different s. =» m_; itself is changing continuously.

— We approximate all &_;(d_;|s) € ®_;(4_;|s) jointly by a weight vector W; = [W}, ..., wkX].
« That is to say, we use W; to approximate the probability distribution ﬁ’_i(ﬁ_i|s) rather
than approximating each probability value m_;(d_;|s) separately.
« A good WW; should satisfy the following conditions:
- YK Wk =1,suchthat W, 2 [W,...,WX] is a probability distribution indeed;

- W; & [W3,...,WX] can change adaptively when the joint policy of teammates 7_; is
changed, such that W; can really model the teammates’ joint policy in an adaptive manner.

It's time for Attention: recall that the attention mechanism is intrinsically suitable for
generating a probability distribution in an adaptive manner.

=>» so we leverage it to design an Attention Module.




Attentional Critic for Adaptability

(2) To calculate the expectation of all Qg”(s, a;, d_;)

— We proposed Attention Module to do this task

— |t works as follows:

Firstly, a hidden vector h;(w;) is generated based on all
actions of teammates (i.e., d—;).

Then, the attention weight vector W;(w;) is generated
by comparing h;(w;) with all action conditional Q-values
Q¥ (s, a;|d@—i; w;). Specifically, we apply the dot score function
[19] to calculate the element Wik(wi) € Wi(w;):

Wik(wi) — exp(hi(wi)Qf(sﬁaila—i;wi)) (8)
21{;1 eXP(hi(wi)Qf(S, ai|d—;;w;))

Lastly, the contezrtual Q-value Qf(s,a;,d—;;w;) is calcu-
lated as a weighted summation of WF and QF:

K
Q5 (s, aiyd-i;wi) = > Wi (wi)QF (s, ail@—i; wi) (9)
k=1

real Q —> : fully-connected layer
Attention Q-value | *! [ :

contextual 3
Q-value Qﬁ (s' a’l" a’-rl) i

Qi(s.ajlaZy)

Figure 3: The attention critic of ATT-MADDPG.
For clarity, we only show the detailed generation of
(Q; using a three-agent example: the discrete action
space is {l,r}, and the agents prefer to take the ac-
tions r, /, and r, respectively. In this case, the second
action conditional Q-value Q7 will contribute more
weights to the computation of the contextual Q-value
0, as indicated by thicker red links. We call Q; the
real Q-value, Q¢ the contextual Q-value, and QF the
action conditional Q-value. The difference is that Qf
and Qf‘ are multi-dimensional vectors, while (); is the
real scalar Q-value used in Equation 10, 11, and 12.



Attentional Critic for Adaptability

 Summary

= Ea_,~7_,[Q;(s,ai,d-;)] 6
= i .ci,[T-i(@-i]s)Q;" (s, ai,d-:)] (7)




Key Implementation

« K-head Module: there is no need to set K = |/T_l-|, such that our method is
feasible for large discrete action space and even continuous action space.

— In the experiments, we test K=2, 4, 8, 12 and 16, they all work well.

[ See the paper for the details. J




Outline

 Research Problem
« Background

* Design
 Evaluation

* Conclusion




Experimental Settings

 Environments
— The packet routing environments
— The benchmark environments

» Baselines

— [1] MADDPG: the centralized critic is a fully-connected network

— [2] PSMADDPGV2: same as MADDPG, but sharing parameters
among homogeneity agents

— Khead-MADDPG: the ablation model that directly merges the
branches of K-head Module to generate the real Q-value, and
there is no attention mechanism in this model.

— Some rule-based methods: WCMP, Greedy-Pursuit, etc...

[1] Lowe R, Wu Y, Tamar A, et al. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. NIPS 2017.
[2] Chu et al. Parameter Sharing Deep Deterministic Policy Gradient for Cooperative Multi-agent Reinforcement Learning. Arxiv 2017.
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Results of Packet Routing

* Achieve better performance & better scalability
« Stay robust at a wide range of K to achieve good results
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(a) The small topology.
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(b) The large topology.
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Figure 5: The average rewards on small topology.
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Figure 6: The average rewards on large topology.
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Figure 7: The robustness test on small topology.
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Figure 8: The robustness test on large topology.




Results of Packet Routing

e |f Qli<(s, aila)—i; Wi) could group —headl —head2 —head3 —head4 —realQ
similar 3a_;, it will be much AL \AA
more efficient. s\ Y[V

The analysis on the Q-values TV \ [
and the attention weights also Tl 3 s 7 s 131517192123 25 27 29
indicates that our hypothesis data sample index

(a) The different heads’ Q-values.

IS reasonable.

M headl M head2 head3 M head4

c 1
2 0.8
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See the paper .g 5 7 9 11 13 15 17 19 21 23 25 27 29
for the details- (b) The :tatteaniaicr:lplz'::lj;.

Figure 9: The Q-values and attention weights gener-
ated by router B in the small topology.
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Results of Benchmark Tasks

 We see that ATT-MADDPG can obtain more rewards than all
baselines (both RL-based and rule-based) in both environments.

* ltindicates that our method asserts itself with general applicability
and good performance.

Table 2: The average final stable rewards.

agent () predator i
g A P

\ ° * Co. Na. | Pr. Pr.

<4 o prey ATT-MADDPG, K=2 -1.279 | 3.986

° / ATT-MADDPG, K=4 | -1.268 | 3.589

M) ¥ w ATT-MADDPG, K=8 | -1.322 | 3012

randomly Sa ATT-MADDPG, K=12 -1.353 3.170

landmark e - ATT-MADDPG, K—=16 | -1.317 3.004

(a) Cooperative Navigation. (b) Predator Prey. PSMADDPGV2 -1.586 2.473
MADDPG -1.767 1.920

GreedyPursuit -2.105 1.903

Figure 10: The benchmark environments. Khead-MADDPG -2.825 1.899
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Results of Benchmark Tasks

« Figure 11 shows a convergent joint policy learned by ATT-MADDPG
under the cooperative navigation task.
— In the beginning: move to the middle of two landmarks
— After a while: learn the closest landmark and move directly to that landmark

« These behaviors indicate that the agents really learnt a cooperative
joint policy.
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Figure 11: A convergent joint policy learned by ATT-MADDPG under an instance of the cooperative navi-
gation task. L1, L2 and L3 represent different landmarks. A1, A2 and A3 stand for different agents. The red
arrows indicate the agents’ actions. Note that one picture stands for several timesteps.
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Conclusion @ Method

» This paper presents an actor-critic RL method to model and exploit
teammates’ policies in cooperative distributed multi-agent setting.

* Our method embeds an attention mechanism into a centralized
critic, which introduces a special structure to explicitly model the
dynamic joint policy of teammates in an adaptive manner.

« Consequently, all agents will cooperate with each other efficiently.
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Conclusion @ Experiments

 We evaluate our method on both benchmark tasks and the real-
world packet routing tasks.

* The results show that it not only outperforms the several RL-based
methods and rule-based methods by a large margin, but also
achieves good scalability and robustness.

 Moreover, to better understand our method, we also conduct
thorough experiments:

— (1) the ablation model illustrates that all components of the proposed model are
necessary,

— (2) the study on Q-values and attention weights demonstrates that our method
has mastered a sophisticated attention mechanism indeed;

— (3) the analysis of a concrete policy shows that the agents really learned a
cooperative joint policy.




Thanks for listening!

Question?
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Some Discussion

« Attention mechanism selectively attends to more important and
relevant information from all observations and actions of all
agents, and correspondingly ignores unimportant and
irrelevant information

« That is why ATT-MADDPG outperforms other non-attentional
methods, especially when the number of agents becomes large.




Some Discussion

 The Inductive Bias is crucial for the success of Deep Learning

 One promising direction is that trying to inject inductive bias
into your network structure
— Generally, CNN, LSTM, Attention, etc...
— Specially for RL, Dueling DQN, Value Iteration Network, etc...

e g— $im b
1% 4

2016-ICML(best paper)-Dueling Network Architectures for Deep Reinforcement Learning
2016-NIPS(best paper)-Value lteration Networks
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