Towards Informed Web Content Delivery

Leeann Bent!, Michael Rabinovich?, Geoffrey M. Voelker!, and Zhen Xiao?

L University of California, San Diego
9500 Gillman Dr. MS-0114
La Jolla, CA 92093-0114 USA
{1bent,voelker}@cs.ucsd.edu
2 AT&T Labs-Research
180 Park Ave.
Florham Park, NJ 07932 USA
{misha,xiao}@research.att.com

Abstract. A wide range of techniques have been proposed, imple-
mented, and even standardized for improving the performance of Web
content delivery. However, previous work has found that many Web sites
either do not take advantage of such techniques or unknowingly inhibit
their use. In this paper, we present the design of a tool called Cassandra
that addresses these problems. Web site developers can use Cassandra to
achieve three goals: (i) to identify protocol correctness and conformance
problems; (ii) to identify content delivery performance problems; and
(iii) to evaluate the potential benefits of using content delivery optimiza-
tions. Cassandra combines performance and behavioral data, together
with an extensible simulation architecture, to identify content delivery
problems and predict optimization benefits. We describe the architecture
of Cassandra and demonstrate its use to evaluate the potential benefits
of a CDN on a large Web server farm.

1 Introduction

A wide range of techniques have been proposed, implemented, and standardized
for improving the performance of Web content delivery, from compression to
caching to content distribution networks (CDNs). However, previous work has
found that many Web sites either do not take advantage of such techniques, or
unknowingly inhibit their use. For example, Web sites do not fully exploit the
potential of persistent connections [6], and indiscriminate use of cookies can un-
necessarily and unknowingly limit the benefits of content delivery optimizations
like caching [5]. This gap between potential and practice is due to a number
of challenging factors. First, HTTP/1.1 is a complex protocol [22| that requires
considerable expertise to fully take advantage of its features. Even achieving
protocol compliance is challenging (as evidenced by intermittent success [17]),
much less optimizing its use. For instance, HTTP /1.1 provides a number of ad-
vanced features for cache coherence so that sites can maximize the effectiveness
of downstream caching mechanisms. However, for Web site developers to take full
advantage of cache coherence, they must understand the complex interactions of

C.-H. Chi, M. van Steen, and C. Wills (Eds.): WCW 2004, LNCS 3293, pp. 232-248 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Towards Informed Web Content Delivery 233

over half a dozen HTTP headers in terms of their standardized semantics, legacy
interactions, as well as practical conventions [25]. Second, the use and content
of contemporary Web sites have complex requirements that, used naively, can
interact poorly with content delivery optimizations. For example, many sites use
cookies to personalize, restrict, or track access, but, again, indiscriminate use
can severely inhibit downstream caching optimizations. Finally, measuring Web
site workloads and evaluating site performance requires considerable time and ef-
fort, and evaluating the potential effectiveness of content delivery optimizations
rarely extends beyond the realm of research. Top-tier Web sites like Google and
Amazon.com may have the resources to aggressively improve their content de-
livery, but even medium-sized and small Web sites can benefit significantly from
a number of improvements [5].

We propose that this gap between potential and practice can be bridged
with a general tool for analyzing and predicting Web site performance and be-
havior. By encapsulating protocol and optimization complexities within a tool,
a much broader user base of Web site developers and maintainers can more eas-
ily quantify the effect of their content delivery decisions and evaluate potential
performance optimizations.

In this paper, we present the design and use of such a tool called Cassandra.
Web site developers can use Cassandra to achieve three goals. First, Cassandra
can identify protocol correctness and conformance issues, such as properly set-
ting cache control and coherence headers. Second, it can identify content delivery
performance problems, such as the indiscriminate use of cookies. Third, it can
evaluate the potential benefits of using content delivery optimizations for a par-
ticular site, such as tuning cache control headers, using cookies more efficiently,
using CDNs, enabling persistent connections, etc. Based on such evaluations, a
site developer can decide whether pursuing a particular optimization is worth
the effort and expense before committing to it.

To achieve these goals, Cassandra’s design combines an extensible architec-
ture of analysis modules with site-specific performance and behavioral data. The
analysis modules model protocol behavior, such as content cacheability, and sim-
ulate performance optimizations, such as compression and CDNs. To apply these
analyses to a particular site, Cassandra can use a combination of raw packet
traces, Web server logs, and active probing to gather workload data as input.

The rest of the paper is organized as follows. Section 2]discusses related work.
Section [3] describes the architecture of Cassandra and outlines its analysis mod-
ules. Section @] describes the prototype implementation of one analysis module,
the analysis of CDN benefits. Section [l presents a case study that applies the
CDN analysis module in Cassandra to the top 100 Web sites in a large server
farm. Section Bl concludes this paper and outlines directions for future work.

2 Related Work

Most of the previous studies that analyze Web sites were conducted on a small
scale (sometimes just a single, highly popular site) [13,17,20,2T[24]. Some of

234 L. Bent et al.

them (e.g., [17,20,24]) only consider access patterns to root pages. Moreover,
they typically only focus on a specific aspect of the Web site. For example, the
work in [I7] focuses primarily on protocol compliance, while the work in [20]
focuses on persistent and parallel connection usage. While these studies may
yield valuable insights on certain Web site design issues, their results are not as
comprehensive as those obtainable a tool like Cassandra. The benefits of using
a CDN for content delivery were previously studied in various contexts. Jung et
al. investigate the ability of a CDN to protect a Web site from a flash crowd by
analyzing known flash events that occurred on two Web sites [14]. Krishnamurthy
et al. conducted a comparative performance study on the download time of pre-
selected pages through various CDNs [19]. In contrast, the focus of Cassandra is
to evaluate the general effects of the CDN on an entire Web site.

There are several existing tools that measure Web server performance by
generating various HTTP workloads. httperf is a commonly used tool that pro-
vides a flexible interface for constructing various benchmarks [23]. It supports
the HTTP /1.1 protocol and can be easily extended to new workload generators
and performance measurements. Similar to httperf, Web-Polygraph is a tool for
constructing Web benchmarks [28]. Web-Polygraph includes standard workloads
generated from real Web content and supports HT'TP and SSL content. SURGE
(Scalable URL Reference Generator) generates references that match empiri-
cal measurements of various request distributions (e.g., request size, relative file
popularity, temporal locality) [4]. Banga et al. proposed a method for Web traffic
generation that can create heavy, concurrent traffic through a number of client
processes. It can generate bursty traffic with peak loads that exceed the capacity
of the server [3]. Although such tools are helpful in measuring server performance
and protocol compliance, they use synthetic workloads and thus are not specific
to a given Web site. In contrast, Cassandra produces site-specific recommenda-
tions and a comprehensive set of “what-if” analyses, which greatly facilitate the
understanding and improvement of Web site performance.

There are also numerous commercial tools and services for monitoring and
testing the performance of Web sites. These generally fall into two categories.
The first set of tools are designed to monitor the current state or performance of
a Web site. They answer questions such as “Is my Web site up?” or “How long is
an average transaction on my web taking from South America?”. Some examples
of these are Keynote’s Web Site Perspective [15] and AlertSite’s Server/Website
Monitoring [I]. The second set are tools designed to stress test the performance
of a Web site, answering questions such as “How should I provision my site for
search transactions?”. Some examples include Keynote’s Performance tune, Em-
pirix’s e-Test suite [I0], and AlertSite’s Web Load Testing Services. These tools
focus on measuring server and transaction performance. While useful for analyz-
ing existing Web site performance, these tools do not easily facilitate “what-if”
analysis like Cassandra.

Finally, there are free tools for testing the performance and cacheability of
Web pages, e.g www.web-caching.com [{] or www.websiteoptimization.com
[29]. While cachability is only one aspect of the Cassandra tool, Cassandra also

Towards Informed Web Content Delivery 235

provides a means for detecting pervasive problems throughout a Web site rather
than on individual pages.

3 The Cassandra Architecture

The high-level goal of the Cassandra tool is to make it easier for Web site de-
velopers and maintainers to both quantify the effect of their content delivery
decisions, as well as to evaluate potential optimizations for improving content
delivery performance. We envision Cassandra helping Web sites achieve these
goals in three ways.

Protocol Compliance. HTTP is a complex protocol with complicated se-
mantics, particularly with respect to caching and coherence. Due to the nature
in which the HTTP protocol has evolved over time, taking full advantage of
protocol features is a difficult task. In addition to a detailed understanding of
standardized protocol semantics, it also requires understanding how protocol
features interact with legacy implementations of caches and browsers as well as
practical conventions for dealing with ambiguous aspects of the protocol [25].
Cassandra could be used to evaluate protocol compliance and report anomalous
behavior, such as inconsistencies among the cache-control headers.

Performance Debugging. Web sites can make content delivery decisions
that can unknowingly have a profound impact on site performance. For example,
when many Web sites use cookies, they often implement cookie use by requiring
all requests to the site to use a cookie [5]. Using cookies in this fashion is often
unnecessary, yet severely limits the cacheability of a site’s content. Cassandra can
identify such behavior, estimate the performance impact of a site’s use of cookies
(e.g., additional server load and bandwidth consumed), and identify content that
may not require cookies (e.g., embedded images versus container pages).

Optimization Evaluation. A wide range of technologies have been devel-
oped over time to improve Web content delivery, such as compression, prefetch-
ing, and CDNs. However, most of these technologies are only selectively deployed,
if at all. A significant hurdle for adopting a technology is evaluating to what ex-
tent it would benefit a particular Web site. Cassandra could be a valuable tool
for Web site operators to address this problem by facilitating the evaluation
of various technologies on a particular Web site. Based on the results of such
an evaluation, Web site operators can make an informed decision regarding the
optimal content delivery methods for their Web site.

We have implemented an initial prototype of Cassandra, as well as an analysis
module for evaluating the benefits of using CDNs for Web sites. In the rest of
this section, we discuss the Cassandra architecture and outline two other analysis
modules that we plan to implement. Then, in Sections [and Bl we describe in
detail the CDN analysis module that we have implemented and evaluated as an
example demonstration of using Cassandra.

236 L. Bent et al.

Analysis Modules

*

Eitt |
2 @ Detailed Results

p=

¥

e

Packet Traces \ I

=

--’b
—_—

Summary Results

Fig. 1. Cassandra Architecture.
3.1 Architecture

To achieve the above goals, Cassandra’s design combines an extensible architec-
ture of analysis modules with site-specific performance and behavioral data. As
illustrated in Figure [[] Cassandra provides a framework for incorporating work-
load data as input, evaluating that data according to specified analyses, and
providing support for producing user feedback in terms of tabular and graphical
results of analyses as output. In our usage model, Web site maintainers gather
the workload data, invoke Cassandra to perform the desired analysis, and inter-
pret the evaluation results to decide whether they should make content delivery
changes to their site.

The ability of Cassandra to perform its analyses depends on the site work-
load data available to it. Cassandra can use any combination of raw packet traces
(such as from the Gigascope network appliance [9] or tcpdump [27]) , Web server
logs, and active probing for workload analysis. Packet traces provide the most
detailed workload data, since they include headers, payload, and timing infor-
mation. If packet traces are unavailable, Cassandra can use Web server logs to
obtain higher level workload information, such as identifying popular content
or content that affects Web site performance most significantly. After identify-
ing important content, Cassandra can combine active probing or short tcpdump
traces with server logs to obtain header and performance data. This detailed
data drives its performance analyses.

Cassandra uses an extensible architecture of analysis modules to support a
large range of Web site analyses. The analysis modules model protocol behavior
and simulate performance optimizations. For example, a coherence module can
model the cache coherency policies and mechanisms of HT'TP, and a CDN mod-
ule can model the potential benefits of using a CDN for a Web site. Cassandra

Towards Informed Web Content Delivery 237

provides a framework in which analysis modules can be developed and used in-
dependently, as well as in combination. For example, Cassandra implements a
Web cache simulator, and this simulator can be used in combination with other
analyses such as those that modify the cacheability of site content.

Our goal is for Cassandra to be able to support a wide range of Web site
analyses and content delivery optimizations, from caching to prefetching to per-
sistent connections. We are developing modules for a wide range of common
analyses, such as caching, cache coherence, compression, and CDN usage. The
Cassandra architecture also makes it straightforward for other researchers to
extend Cassandra with their own analyses.

In addition to analyzing individual Web sites, Cassandra supports the simul-
taneous analysis of multiple Web sites using workloads containing interleaved
accesses to those sites, and the reporting of results on a per-site basis. Such
support is useful for situations where a hosting service provider wants to ana-
lyze performance across a number of its Web site customers. With this support,
Cassandra avoids the need to split the trace into individual Web site accesses
and simplifies the per-site analysis. We use this feature for our case study in
Sections [and [l

3.2 Cacheability Analysis Module

A cacheability analysis module can evaluate the use of a Web site’s cache-
coherence mechanisms and policies. Content cacheability is important because it
increases the effectiveness of downstream proxies and browser caches. Our pre-
vious work in [5] motivates a number of problems that this analysis module can
identify. For example, in that workload study only a small fraction of responses
(9%) used cache-controlling headers, thereby requiring downstream caches to
use heuristics and historical practices to provide coherency for the objects in the
responses. Explicit and pervasive use of such headers can greatly assist caches
in managing cached content, further reducing server load and bandwidth. The
cacheability analysis module can identify content that could benefit from using
cache-controlling headers, model the effect of using those header on a site’s work-
load, and predict the caching benefits of doing so. As another example, sites often
use cookies indiscriminately on their content. Such indiscriminate use severely
limits the benefits of caching, and is often unnecessary. For instance, when us-
ing cookies to track user accesses, it is typically sufficient to track accesses to
container pages and infer accesses to embedded objects. The cacheability anal-
ysis tool can measure cookie use, flag excessive usage, identify content that may
not require cookies (e.g., embedded objects), and predict the caching benefits of
using cookies in a more informed approach.

The cacheability analysis module can perform other analyses as well. It can
check that the cache control headers are internally consistent (e.g., Date, Age,
Cache-Control and Expires headers). And the module can predict the effect
on overall workload of tuning time-to-live (TTL) values. For example, repeated
If-Modified-Since requests to an object might indicate that the site is setting

238 L. Bent et al.

the object’s TTL value too low, and Cassandra can estimate the resulting impact
on server load and bandwidth consumption of such settings.

Cassandra can use object headers, obtained by either probing objects on a
Web site or by looking at packet traces, to obtain cacheability information about
the objects on a Web site. Packet traces would allow both request and response
object headers to be examined; probing would only allow response object headers
to be examined. Such headers include Pragma headers, Cache-Control headers,
Cookie headers, Age, Expires, and Last-Modified. The cacheability analysis
module would use these headers, combined with object access information, to
identify and report specific problems with a Web site’s content cacheability or
delivery. Object cacheability would be determined according to the HTTP/1.1
specification [12] as well as known prevalent caching policies used in practice.

3.3 Compression Analysis Module

A compression analysis module for Cassandra can simulate the benefits of using
compression on some or all of the content of a Web site. Content compression
is useful because it can reduce the bandwidth demands of a Web site, as well
as reduce the download latency of objects. For example, Google compresses the
results of search queries to reduce the number of packets required to return search
results [8]. The goal of this module is to estimate the benefits of compression
(bandwidth and latency reduction) as well as the costs of using the optimization
(e.g., additional server load).

Since compressing all content on a Web site might be prohibitively expen-
sive, we plan to model compression of only a subset of objects on a site. These
objects can be chosen according to their popularity and contribution to band-
width consumption as determined from server logs or packet traces. To estimate
compressibility, we intend to use Cassandra’s site prober to actually download
objects or tcpdump to reconstruct these objects from network traces. After ob-
taining the objects, we will apply a common compression utility to them. Once
objects are obtained and compressed, we have a measure of object size in bytes,
both with and without compression. We can compute bandwidth reduction for
a particular site or group of sites by replaying access logs with both compressed
and uncompressed objects.

In addition, we can also consider compression in conjunction with CDN usage.
Most Web access are image downloads, which are already in a compressed format,
thus undermining the effectiveness of compression. However, while images are
responsible for most downloads, they are also the object most amenable to CDN
caching. For a site using a CDN, most of the residual (non-image) content is
compressible. Further, static content can be stored in compressed form and does
not incur computation overhead, while compression of dynamic content might
have lower relative overhead because it already requires more computation to
be generated. Cassandra can test whether objects are dynamic by the presence
or absence of the Last-Modified header together with the response code. This
heuristic can be used to determine whether it would be beneficial to compress
the object, and how to do so. We can study the effect of using a CDN (both

Towards Informed Web Content Delivery 239

ideal and realistic) with compression, similar to the way we study the effect of
using a CDN with cacheability improvements. Cassandra would compute the
benefit of applying compression with a CDN by compressing those objects as
identified above, and using those compressed objects in the CDN simulation as
in Section @l

Compression can also be used to decrease client download times. It is a little
more difficult to compute download latency and we do not lay out a complete
blueprint here. However, we can make a preliminary estimate of download la-
tency improvements for individual objects by comparing the download time of
the original objects with objects that are approximately the same size as com-
pressed objects.

Thus, Cassandra will be able to analyze realistic benefits of compression for a
Web site, taking into account pre-compression of static objects, and considering
compression in combination with CDN caching. Since the CPU overhead of com-
pression depends on the exact platform used, Cassandra can be used in initial
analyses to ascertain whether compression would be worthwhile to consider. In
addition, some CDNs offer compression services, and Cassandra could help Web
site administrators weigh the benefits promised by these services.

4 Analysis of CDN Benefits

Content delivery networks (CDNs) deploy caches throughout the Internet to
move content closer to the client and decrease client access time. CDNs are also
used to decrease hit rate and bandwidth consumption at the Web site. Without
Cassandra, Web site operators must decide whether to subscribe to a CDN
based on faith or intuition. Cassandra provides the means to make an informed
decision.

4.1 CDN Analysis Module

Cassandra currently implements a model of a full-time revalidation CDN, which
assumes that all user requests are routed through CDN caches, and uses a stan-
dard time-to-live (TTL) approach to decide the validity of cached responses.
For expired responses, Cassandra’s CDN module simulates If-Modified-Since
requests. The CDN analysis module in Cassandra simulates the benefits of us-
ing a CDN through trace-driven simulation. Our current implementation uses a
packet-level trace gathered using the Gigascope appliance [9]. The trace includes
the first packet of every request and response and contains all HTTP header in-
formation. In the future, we forsee using a less rich Web access logs as input,
augmenting them with Web site probing or short tcpdump traces as discussed
in Section [3. We assume that CDN caches have unlimited cache capacity given
plentiful disk resources.

To map clients to CDN caches, we group clients into clusters using a network-
aware clustering tool [I8]. Cassandra assigns clients to CDN caches at the gran-
ularity of clusters: all clients in the same cluster forward requests through the

240 L. Bent et al.

same cache. Client clusters are randomly assigned to a cache when the cluster’s
first client generates its first request, and that cache is used throughout the sim-
ulation. We do not measure latency effects in this study, hence a different cache
assignment will not change our results in any significant way.

The Cassandra CDN analysis module generates estimates of the lower and
upper bounds of the potential benefits of using a CDN on a workload. It gener-
ates the upper bound by assuming ideal content cacheability: it assumes unlim-
ited lifetimes for cached objects and allows CDN caches to serve all subsequent
requests to an object. It generates the lower bound by modeling actual con-
tent cacheability and consistency: it simulates the effects of existing cookie and
cache-controlling headers in the trace, and considers the trace response sizes in
simulating bandwidth consumption. In practice, CDNs will fall between these
bounds. The upper bound is idealistic because it assumes that all content is
cacheable and never changes. The lower bound is overly conservative in terms of
bandwidth consumption because a shared CDN cache can convert some requests
(e.g., those with cookies) from unconditional downloads to If-Modified-Since
requests.

Web sites can benefit from these results in two ways. First, the lower bounds
indicate the potential benefits of using a CDN on its current workload. Second,
the upper bounds indicate to what extent the site could benefit from improving
the cacheability of its content (e.g., by making more informed, targeted use of
cookies), and how such changes increase the benefits of using a CDN. Based
upon these results, sites can decide whether it is worthwhile to pursue the use
of a CDN, or to improve the cacheability of its content.

Due to the highly extensible nature of Cassandra, one can easily add modules
for other flavors of CDNs, such as server-driven invalidation CDNs, content push
CDNs, or overflow CDNs (which is engaged by a Web site dynamically at peak
loads). A discussion of the trade-offs involved among different flavors of CDNs
can be found in [IT].

4.2 Validation

Eventually, we will validate the simulation models used in the Cassandra tool
with real implementations. Our approach is to do this validation on a per-analysis
module basis. Here, we explain how we could validate one optimization: CDN
caching. We show the validation architecture in Figure 2l The validation setup
contains a workload generator driven by requests from the original trace, the
server stub, which supplies responses of the proper size and with proper HTTP
headers taken from the trace, and a real CDN cache in the middle. For the
current CDN analysis module we are only interested in validating hit rate and
byte rate for CDNs. These two metrics are straightforward to compute based on
proxy cache statistics.

The workload generator, or simulated clients, could be any tool which allows
replay of the request stream such as Medusa [16], httpperf [23], or wget [30]. The
server stub would mirror either the actual response content from the Web site or
mimic responses of the appropriate size. These objects would be served with the

Towards Informed Web Content Delivery 241

Web Site Trace

:
= ED = [PFrivate l

Private \
=
“

o Y
’J‘}%) —— Private
Actual CDN Cache

Fig. 2. Validation of Cassandra recommended improvements.

appropriate headers taken from the trace, modified as necessary to change the
cacheability properties of the objects. The server stub would serve these objects
using either a standard Web server implementation, such as the Apache HTTP
Server [2], modified as necessary, or a custom Web server stub implementation.
Finally, the CDN cache would be a real proxy cache implementation, such as
the Squid Proxy Cache [26]. For our validation, both the server stub and the
CDN cache will operate on separate machines connected by a LAN. The workload
generator will also be connected via LAN to the CDN cache, however, depending
on the workload requirements, more than one machine may be necessary.

The main challenge in validating a CDN simulation is to model accurately
a large number of CDN caches. Clearly, it is impractical to replicate the entire
CDN network. Our trick to do this is as follows. Our stub origin server inserts
a Cache-Control:Private header in every response it sends to the sole CDN
cache we are using. This header allows our cache to store and use the responses
for repeated requests from the same client, but prevents sharing cached responses
across clients. In effect, it compartmentalizes the cache into partitions serving
each client separately. Further, we assign each client in the trace to a CDN cache
in our target CDN configuration, so we end up with client groups corresponding
to each CDN cache. Finally, we associate a “pseudo-client” with each of these
client groups. When sending a request to the cache, our workload generator
replaces the real client information in the request headers with the pseudo-client
associated with the client group to which the real client belongs. Thus, the cache
will use cached responses to service all requests from the same pseudo-client. In
other words, the cache partitions are done for pseudo-clients, not real ones.
Since each pseudo-client aggregates all requests that would have gone to the
corresponding CDN cache in the target CDN, this results in exactly the same
caching behavior assuming our validation cache has enough cache space.

242 L. Bent et al.

5 Results of CDN Analysis

To provide a concrete example of using Cassandra, we now use it to evaluate
the potential benefits of an optimization on Web sites. In this case study, we
use a simulator of CDN caches as the optimization and apply it to a workload
of HTTP requests and responses to and from a Web server farm in a large
commercial hosting service of a major ISP. We simulate the use of 20 CDN
cache nodes based on a known CDN provider’s configuration. We focus on the
top 100 Web sites in the following analyses because these sites are the ones most
impacted by the use of a CDN. This trace workload consists of over 17 million
request /response pairs to 3,000 commercial Web sites over the course of 21 hours
in July, 2003 [3].

For the experiments in this paper, we make the following modifications to
the trace. Our CDN simulations require cacheability information, which is not
present in all responses, specifically 304 Not Modified responses (other re-
sponses with no cacheability information are negligible [5]). When a 304 Not
Modified response is the first response to a request for an object, our simula-
tion must discard it, since this response contains no meaningful information for
our CDN cache (remember that we are simulating If-Modified-Since requests
for objects once they are in-cache). Subsequent responses for this same object
may contain cacheability information, which we use. This reduces the range of
requests to 2.04 million requests for the most popular site and less than 100
requests for the least popular site. The request rates to the 100 most popular
Web sites change only slightly.

5.1 Peak Request Rate

We start by examining the impact on the peak request rates of the Web sites
when using a CDN. Reducing the peak request load on origin servers is one of the
key benefits of using a CDN. Figures B] and [4 show the peak request rate of the
100 most popular Web sites with and without using a CDN. Figure[3 shows peak
request rates using the actual content cacheability characteristics of the requests
and responses in the trace. Figure Hlshows peak request rates assuming content
is ideally cacheable: cached objects have unlimited lifetimes, and CDN caches
can serve all subsequent requests to an object. Note that Figure Hl repeats the
optimistic CDN simulation from [5], but 304 Not Modified request/response
pairs are removed when they are the first access to the object. Figure [§ shows
new results from a more advanced simulator that accurately models content
cacheability and consistency in detail.

We compute the peak request rate for each Web site at the granularity of
10 seconds across the entire trace. Each bar corresponds to a Web site and the
Web sites are shown in order of decreasing request popularity. The entire bar
shows the peak request rate for that Web site across our trace without using a
CDN. The dark part of each bar corresponds to the peak request rate of that
Web site when a CDN is used. The white part of each bar shows the portion of

Towards Informed Web Content Delivery 243

Peak Request Rate (reqs/10 secs)

Web Sites by Popularity

Fig. 3. Comparison of peak request rate with a CDN (dark part of each bar) and the
peak request rate without a CDN (total height of each bar). Models content cacheability
and consistency.

1000 ~
900
800
700 4

600 3

500 -

Peak Request Rate (reqs/10 secs)

Web Sites by Popularity

Fig. 4. Comparison of peak request rate with a CDN (dark part of each bar) and the
peak request rate without a CDN (total height of each bar). Assumes ideal cacheability.
Similar to [5].

244 L. Bent et al.

the peak request rate handled by the CDN. It shows directly the benefit of using
the CDN for that Web site in terms of the reduction in peak request rate.

Both the maintainers of the Web server farm and individual Web sites can
use results such as these to determine the potential benefits of using a content
distribution network to serve their content. The Web server farm can determine
the effect of using a CDN for all sites it serves. For the 100 most popular sites
shown in Figure Bl a CDN would decrease the peak request rate across all sites
by a factor of 1.4. If the sites improved the cacheability of their content, in
the ideal case a CDN would decrease the peak request rate across all sites by a
factor of 2.5, a 79% improvement.

Apart from the Web server farm as a whole, individual sites can use these
results to make independent decisions about whether to use a CDN to help de-
liver their content. Since some sites benefit significantly from using a CDN while
others do not, different sites will arrive at different conclusions. For example,
Figure [3 shows that the most popular site has its peak request rate more than
halved (reduced by 52%) when using a CDN, but the second most popular site
achieves little benefit (reduced by 1.1%).

Average Byte Rate (KBs/10s)

< © AN © O
0 O & O O
—

Web Sites by Popularity

Fig.5. Comparison of average byte rate with a CDN (the dark part of each bar)
and the average byte rate without a CDN (total height of each bar). Models content
cacheability and consistency.

Similarly, each site can compare its more realistic performance with its ideal
performance to determine whether (1) it is worthwhile to improve the cacheabil-
ity of its content, e.g., by making more informed use of cookies, and (2) it can
gain additional benefit from using a CDN as a result. For example, by comparing

Towards Informed Web Content Delivery 245

Average Byte Rate (KBs/10s)

Web Sites by Popularity

Fig. 6. Comparison of average byte rate with a CDN (the dark part of each bar)
and the average byte rate without a CDN (total height of each bar). Assumes ideal
cacheability. Similar to [5].

Figures [3] and B] we see that the second most popular site significantly benefits
from improving the cacheability of its content for delivery by a CDN. With cur-
rent cacheability, a CDN decreases the site’s peak request rate by only 1.1%,
but by improving the cacheability of its content a CDN could decrease the site’s
peak request rate by 75% in the ideal case (an improvement of 67%). Of course,
the ideal case is an upper bound that may be difficult to achieve completely
in practice. Nevertheless, a site can use the difference between the realistic and
ideal cases to determine whether it is worth the effort to examine and consider
the cacheability of its content. In the case of the second most popular site, it
appears worthwhile, while for several other sites (such as 70th and 97th most
popular sites) it does not seem to be the case.

5.2 Average Byte Rate

CDNs also reduce the bandwidth requirements for Web sites, in addition to
reducing server load by alleviating peak request rates. Reducing bandwidth can
directly reduce costs for both individual Web sites and for Web server farms. To
evaluate the impact of CDNs on bandwidth requirements, we study the impact
of our simulated CDN on the average byte rate of the Web sites in our trace.
Figures Bl and [6] show the average byte rate for the 100 most popular Web
sites in our trace with and without a CDN. Figure Bl shows the average byte
rate using the actual content cacheability characteristics of the requests and
responses in the trace, and Figure [6l assumes content is ideally cacheable. Note

246 L. Bent et al.

that Figure [6 repeats the optimistic CDN simulation from [5] where 304 Not
Modified request/response pairs are removed when they are the first access to
the object. Figure [shows new results from a more advanced simulator that
accurately models content cacheability and consistency in detail. We compute
the average byte rate for a Web site by totaling the header and content lengths
of all transactions to the site in the trace, then dividing by the trace duration.
Each bar corresponds to a Web site. The height shows the average byte rate for
the Web site without a CDN. The dark part shows the average byte rate at the
Web site when using a CDN, while the white part shows the average byte rate
handled by the CDN.

As above, the Web server farm and individual sites can use these results
to evaluate the potential bandwidth improvements of using a CDN to deliver
content. For the sites shown in Figure B a CDN would decrease total server
farm bandwidth by a factor of 1.8. These results model the content cacheability
and consistency found in the original trace, and represent a lower bound on
the benefits of a CDN. In contrast, for the results shown in Figure [f] a CDN
would decrease bandwidth by a factor of 3.3. These results model ideal content
cacheability, and represent an upper bound. From both graphs, we see that
using a CDN for the server farm can significantly reduce bandwidth given its
current workload, and that improving the content cacheability of the sites has
the potential to make a CDN even more effective for the server farm.

Individual sites can also use these results to determine the impact of using
a CDN for their content. For example, as with the peak request rate metric,
the second most popular site achieves little benefit in terms of bandwidth on its
current workload (Figure []), but can potentially gain considerable bandwidth
improvements by improving the cacheability of its content (Figure [6).

6 Conclusion and Future Work

This paper describes Cassandra, a tool for analyzing the benefits of various
performance optimizations to a Web site. The main advantages of Cassandra
include extensibility, so that the tool can add new optimization technologies as
they become available, the ability to obtain detailed workload characteristics
of a Web site, and a user interface to simplify the “what-if” analysis. As a
preliminary demonstration of the tool utility, we applied it to analyze the benefits
from content delivery networks that a large server farm and individual Web sites
hosted on that farm can expect. Web site operators currently have to either rely
on intuition in deciding on whether or not to subscribe to CDN services, or to
resort to ad-hoc performance analysis, which require considerable expertise and
time. Cassandra will make this kind of analysis more straightforward.

Our future work includes extending the analysis module library to incorpo-
rate more optimization techniques outlined in Section [, most notably compres-
sion. We also plan to demonstrate the use of Cassandra on a real Web site and on
different kinds of workloads. Our ultimate goal is to make Cassandra a valuable
tool for Web site operators to deliver Web content in an informed manner.

Towards Informed Web Content Delivery 247

Acknowledgments. We want to thank Oliver Spatscheck for many helpful
discussions and suggestions during this project. We would also like to thank the
anonymous reviewers for comments on an early draft of this paper. Bent was
supported in part by AT&T sponsorship of the UCSD Center for Networked
Systems, and Voelker was supported in part by AFOSR MURI Contract F49620-
02-1-0233.

References

. AlertSite. http://www.alertsite.com/.

2. The Apache HTTP server. http://httpd.apache.org/.

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

. G. Banga and P. Druschel. Measuring the capacity of a Web server. In Proc. of

the USENIX Symp. on Internet Technologies and Systems, 1997.

. P. Barford and M. Crovella. Generating representative Web workloads for network

and server performance evaluation. In Proc. of ACM SIGMETRICS, 1998.

. L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao. Characterization of a large

Web site population with implications for content delivery. In Proc. of the 13th
International World Wide Web Conference, May 2004.

. L. Bent and G. M. Voelker. Whole page performance. In Proc. of the Seventh

International Workshop on Web Content Caching and Distribution, Aug. 2002.

. Cacheability tools. http://www.web-caching.com/tools.html.
. Y.-C. Cheng, U. Hoelzle, N. Cardwell, S. Savage, and G. M. Voelker. Monkey see,

monkey do: A tool for TCP tracing and replaying. In Proc. of the USENIX Annual
Technical Conference, June 2004.

. C. Cranor, T. Johnson, and O. Spatscheck. Gigascope: a stream database for

network applications. In Proc. of ACM SIGMOD, June 2003.

Empirix. http://www.empirix.com/.

7. Fei. A novel approach to managing consistency in content distribution networks.
In Proc. of Web Caching and Content Distribution Workshop, 2001.

R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1 RFC 2616, 1998.

A. K. Iyengar, M. S. Squillante, and L. Zhang. Analysis and characterization of
large-scale Web server access patterns and performance. World Wide Web, 2(1-
2):85-100, June 1999.

Y. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service
attacks: Characterization and implications for CDNs and Web sites. In Proc. of
the 11th International World Wide Web Conference, May 2002.

Keynote. http://www.keynote.com/.

M. Koletsou and G. Voelker. The medusa proxy: A tool for exploring user-perceived
Web performance. In Proc. of the 6th International Web Caching Workshop and
Content Delivery Workshop, June 2001.

B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol compliance on the Web:
A longitudinal study. In Proc. of the 3rd USENIX Symp. on Internet Technologies
and Systems, pages 109122, 2001.

B. Krishnamurthy and J. Wang. On network-aware clustering of Web clients. In
Proc. of ACM SIGCOMM, Aug. 2000.

B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and performance of content
distribution networks. In Proc. of the First ACM SIGCOMM Internet Measure-
ment Workshop, pages 169—-182, Nov. 2001.

248 L. Bent et al.

20. B. Krishnamurthy and C. E. Wills. Analyzing factors that influence end-to-end
Web performance. Computer Networks, 33(1-6):17-32, 2000.

21. S. Manley and M. Seltzer. Web facts and fantasy. In Proc. of the USENIX Symp.
on Internet Technologies and Systems, pages 125—133, Dec. 1997.

22. J. Mogul. Clarifying the fundamentals of http. In Proc. of the 11th International
World Wide Web Conference, pages 444-457, May 2002.

23. D. Mosberger and T. Jin. httperf — a tool for measuring Web server performance.
In Proc. of Workshop on Internet Server Performance, 1998.

24. V. N. Padmanabhan and L. Qiu. The content and access dynamics of a busy Web
site: Findings and implications. In Proc. of ACM SIGCOMM, Aug. 2000.

25. M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison Wesley,
2002.

26. The Squid Web proxy cache. http://www.squid-cache.org.

27. tcpdump. http://www.tcpdump.org/.

28. Web-Polygraph. http://www.web-polygraph.org/.

29. Websiteoptimization.com.
http://www.websiteoptimization.com/services/analyze/.

30. Wget. http://www.gnu.org/software/wget/wget.html.

	Introduction
	Related Work
	The Cassandra Architecture
	Architecture
	Cacheability Analysis Module
	Compression Analysis Module

	Analysis of CDN Benefits
	CDN Analysis Module
	Validation

	Results of CDN Analysis
	Peak Request Rate
	Average Byte Rate

	Conclusion and Future Work

