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Abstract Content delivery networks (CDNs) improve the scalability of accessing static
and, recently, streaming content. However, proxy caching can improve access
to these types of content as well. A unique value of CDNs is therefore in im-
proving performance of accesses to dynamic content and other computer appli-
cations. We describe an architecture, algorithms, and a preliminary performance
study of a CDN for applications (ACDN). Our system includes novel algorithms
for automatic redeployment of applications on networked servers as required by
changing demand and for distributing client requests among application replicas
based on their load and proximity. The system also incorporates a mechanism
for keeping application replicas consistent in the presence of developer updates
to the content. A prototype of the system has been implemented.

1. Introduction

Content delivery networks (CDNs) have become a popular method for pro-
viding scalable access to Web content. They currently provide access to static
and streaming content. However, proxy caches can improve the delivery of
these content types as well. In particular, as shown in [9], if proxies were de-
ployed ubiquitously, the additional benefit of CDNs in delivering static content
would be marginal.

A unique value of CDNs is in delivering dynamic content because this con-
tent cannot be cached by proxies. We refer to such a CDN as an Application
CDN, or ACDN. An ACDN will allow a content provider (application provider
in this case) to not worry about the amount of resources provisioned for its ap-



plication. Instead, it can deploy the application on a single computer anywhere
in the network, and then ACDN will replicate or migrate the application as
needed by the observed demand.

One could implement an ACDN using general utility computing systems
such as Ejacent [1] and vMatrix [3], which migrate the entire dynamic state
of the running application from one server to another. These are complex sys-
tems that have to address all process migration issues that have been a subject
of many years of research. Our key observation is that, because Web service
applications have well-defined boundaries between processing individual re-
guests, and that usually the server that starts processing a request is the one
required to complete it, these applications do not have to be migrated at an
arbitrary time. We exploit this specificity of our target application class by al-
lowing applications to migrate or replicate only at the request boundaries, when
the dynamic state needed to be transferred is minimal. In a sense, instead of
migratingan application to the new server, we simgbploythe application at
the new server. Once the new server is up and running, the system can option-
ally decommission the application at the old server. Automatic deployment of
an application is a much simpler task than the migration of a running appli-
cation used in utility computing. Indeed, the latter is at the same time more
fine-grained, in that the migration can occur at any time, and more heavy-
weight since the transferred state must include the entire memory footprint of
the application at the time of the transfer. We extend a typical approach used
by software distribution systems to implement automatic deployment.

Another simplification is that we currently maintain replica consistency only
for updates to the application by the content provider. For updates that occur
as a result of user accesses, we either assume they can be merged periodically
off-line (which is the case for commutative updates such as access logs) or that
these updates are done on a shared back-end database and hence they do not
violate replica consistency.

This paper presents a system design of an ACDN that uses the above ap-
proach and proposes the algorithms for deciding when and where to replicate
or migrate an application, and how to distribute incoming requests among
available replicas. We also report the results of a preliminary study of the
performance of our approach. A functional prototype of our ACDN has been
implemented and its demo has been presented at SIGMOD’2002 [13].

2. Issues

An ACDN has a fundamental difference with a traditional CDN that delivers
static content. The latter uses caches as CDN servers. Each CDN server is will-
ing to process any request for any content from the subscriber Web site. The
CDN will either satisfy the request from its cache or obtain the response from
the origin server, send it to the requesting client, and store it in its cache for
future use. In contrast, to be able to process a request for an application locally,
an ACDN server must possess a deployed application, including executables,
underlying data, and the computing environment. Deploying an application at
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the time of the request is impractical; thus the ACDN must ensure that requests
are distributed only among the servers that currently have a replica of the appli-
cation; at the same time, the applications are redeployed among ACDN servers
asynchronously with requests.

Thus, ACDN must provide solutions for the following issues that traditional
CDNs do not face:

Application distribution framework: ACDN needs a mechanism to dy-
namically deploy an application replica, and to keep the replica consis-
tent. The latter issue is complicated by the fact that an application typ-
ically contains multiple components whose versions must be mutually
consistent for the application to be able to function properly.

Content placement algorithm: the system must decide which applica-
tions to deploy where and when. Content placement is solved trivially in
traditional CDNs by cache replacement algorithms. However, an ACDN
must make explicit decisions to replicate or migrate an application be-
cause it is too costly to replicate an application, especially at the time of
the request.

Request distribution algorithm: in addition to load and proximity factors
that traditional CDNs must consider in their request distribution deci-
sions, the request distribution mechanism in ACDN must be aware of
where in the system different applications are currently deployed. In-
deed, while a traditional CDN can process a request from any of its
caches, an ACDN must assign the request to one of the servers that pos-
sess the application.

System stability: under steady demand, the system behavior should reach
a steady state with respect to request distribution and replica placement.
Highly oscillating request distribution necessarily implies periods of highly
suboptimal distribution; endless redeployment of application replicas
only consumes bandwidth and adds load on the servers.

Bandwidth overhead: creating a remote application replica consumes
bandwidth for sending the application from the source to the target server.
Thus, one has to be cautious and create replicas only when there is a rea-
son to believe that the benefits will overweight this overhead.

In the following sections we describe our solutions to these problems.

3.

Architecture Overview

The general architecture is straight-forward and depicted in Figure 1. Its
main goal is to rely completely on the HTTP protocol and Web servers without
any modifications. Not only does this simplify the adoption of the system, but
it also allows easy firewall and NAT traversal and hence a deployment of the
system over public Internet.
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Figure 1. ACDN prototype architecture

Each ACDN server is a standard Web server that also contaiapliaa-
tor, which implements ACDN-specific functionality. In our initial design, we
assume homogeneous servers to simplify the comparison of their loads. The
replicators are implemented as a set of CGI scripts and so are a pure add-on to
any standard Web servefThere is also a globaentral replicatorthat mainly
keeps track of application replicas in the system. Although the central repli-
cator is theoretically a bottleneck, this is not a concern in practice since the
amount of processing it does is minimal; it can in fact be physically co-located
with the DNS server. The central replicator is also a single point of failure.
However, it is not involved in processing user requests. Thus, its failure only
leads to a stop in application migrations or replications and does not affect the
processing of requests by the existing replicas. Furthermore, the central repli-
cator only contains soft state that can be reconstructed upon its recovery or
replacement.

The server replicator contains the following CGI scripts: the start-up script,
the load reporter, the replica target script, the replica source script, and the
updater script. Thetart-up scriptis invoked by the system administrator when

LAl scripts in our prototype are implemented as FastCGl for scalability. Using servlets in place of CGI
scripts is also possible.
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FILE /home/apps/maps/query-engine.cgi 1999.apr.14.08:46:12
FILE /home/apps/maps/map-database 2000.0ct.15.13:15:59
FILE /home/apps/maps/user-preferences 2001.jan.30.18:00:05
SCRIPT

mkdir /home/apps/mapping/access-stats

setenv ACCESPIRECTORY /home/apps/maps/access-stats
ENDSCRIPT

Figure 2. An example of a metafile

(s)he brings a new ACDN server on-line. The script forkdeaision process
that periodically examines every application on the server and decides if any of
them must be replicated or deleted. Tihad reporteris a script periodically
invoked by the central replicator. The script returns the load of the server,
which we measure as an output of a Unptimecommand.

The rest of the scripts implement the application distribution framework and
are considered below.

4. Application Distribution Framework

Our implementation of the framework is based on the concept of a metafile,
inspired by ideas from the area of software distribution such as the technol-
ogy by Marimba Corp. [10]. The next subsection describes the metafile and
the subsequent subsections show how it is used to implement the application
distribution framework.

4.1 The Metafile

Conceptually, the metafile consists of two parts: the list of all files compris-
ing the application along with their last-modified dates; andiniitealization
scriptthat the recipient server must run before accepting any requests. Figure 2
provides an example of a metafilthat represents a map-drawing application
consisting of three files: an executable file that is invoked on access to this ap-
plication and two data files used by this executable to generate responses. The
metafile also contains the initialization script that creates a directory where the
application collects usage statistics and sets the corresponding environment
variable used by the executable. The initialization script can be an arbitrary
shell script. When the initialization script is large, the metafile can include just
a URL of the file containing the script.

The metafile is treated as any other static Web page and has its own URL.
Using the metafile, the entire application distribution framework can be imple-

20ur prototype uses an XML markup for encoding metafiles, which is stripped from the example in Figure 2
for clarity.
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mented entirely over standard HTTP. Indeed, the operations that the framework
must support include replica creation, replica deletion, and replica consistency
control. Migration of an application is accomplished by replica creation fol-
lowed by the deletion of the original replica. Let us consider these operations
in turn.

4.2 Replica Creation

The replicator on each ACDN server contains replica target and replica
source CGI scripts. The process of replica creation is initiated by the deci-
sion process on an ACDN server with an existing replica (called the source
server below) and entails the following steps.

1 If the reason for replication is the overload of the source server, the
source server queries the central replicator for the least-loaded server
in the system, which will be asked to create a new application replica
(referred to as the target server). A subsequent negotiation between the
source and target servers prevents a herd effect when many servers at-
tempt to replicate their applications to the the same target server at once.
When the reason for replication is improving proximity to demand, the
source server identifies the target server locally from its replica usage
(see Section 1.5 for details).

2 The source server invokes the replica target CGlI script on the target
server, giving the URL of the application metafile as a parameter. This
URL also serves as a logical application ID inside the system.

3 The replica target script at the target server invokes the replica source
script at the source server, with the metafile URL as a parameter.

4 The source server responds with the tarball of the application, which the
replica target script unpacks and installs. The replica target script also
executes the initialization script from the metafile.

5 Upon the execution of the initialization script, the replica target script in-
forms the central replicator about the new application replica. The cen-
tral replicator sends this update to the DNS server, which recomputes its
request distribution policy based on the new replica set (see Section 1.5).

All the above interactions occur over standard HTTP, and require only a few
CGil scripts.
4.3 Replica Deletion

Replica deletion is initiated by the decision process on a server with the
application replica and involves the following steps.

1 The server sends to the central replicator a request for permission to
delete its replica.
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2 If this is not the last replica in the system, the central replicator sends
the deletion update to the DNS server, which recomputes the request
distribution policy that excludes this replica.

3 Once the DNS server confirms the adoption of the new request distribu-
tion policy, the central replicator responds to the ACDN server with the
permission to delete the replica. The permission response contains the
DNS time-to-live (TTL) associated with the domain name of the appli-
cation.

4 The ACDN server marks the replica as “to be deleted” and actually
deletes it after the TTL time provided by the central replicator. This
delay is required because residual requests for the application might still
arrive due to earlier DNS responses still cached by the clients.

4.4 Consistency Maintenance

In general, an application may change either because of the developer up-
dates, defined as any modification to the application by the application authors
or maintainers, or user updates, which occur as a result of user accesses. De-
veloper updates can affect code (i.e., application upgrades) or underlying data
(i.e., product pricing), while user updates involve data only (i.e., e-commerce
transactions). We so far have implemented a solution to the developer updates,
SO our current prototype is suitable for applications that are read-only from the
user perspective, such as informational sites. For updates that occur as a result
of user accesses, we either assume they can be merged periodically off-line
(which is the case for commutative updates such as access logs) or that these
updates are done on a shared back-end database and hence they do not violate
replica consistency.

There are three related issues in handling developer updates: replica di-
vergence, replica staleness, and replica coherency. Replica divergence occurs
when several replicas receive conflicting updates independently at the same
time. Replica can become stale if it missed some updates. Finally, a replica
can become incoherent if it acquired updates to some of its files but not others
and so there is version mismatch between individual files.

Our system avoids replica divergence by allowing developer updates only
to the primary application replica, so that all the updates can be properly se-
rialized. The primary replica is appointed and kept track of by the central
replicator. In particular, the central replicator selects a new primary before
giving permission to delete the old primary replica.

The metafile provides an effective solution to the replica staleness and co-
herency problems. With the metafile, whenever some objects in the applica-
tion change, the application’s primary server updates the metafile accordingly.
Whenever other Web servers detect that their cached copies of the metafile are
not valid, they download the new metafile and then copy all modified objects
together as prescribed in the metafile.



Thus, the metafile reduces the application staleness and coherency problems
to cache consistency of an individual static page (the metafile). Once a replica
detects that its cached metafile is stale it always obtains the coherent new ver-
sion of the application. Any existing cache consistency mechanism for static
pages can be used to maintain cache consistency of the metafile, including var-
ious validation and invalidation techniques (see [18], Chapter 10). The only
difference is that updating an application must be asynchronous with request
arrivals since doing it at the request time may create a prohibitive delay to
the user latency. In our current prototype, the central replicator periodically
invokes the updater script on all ACDN servers with a replica of the appli-
cation; the updater script then validates the local metafile by issuing a GET
If-Modified-Since request to the primary server, and acquires necessary up-
dates for the corresponding application. In the meantime, the server keeps
using the old version until the new version is ready. The details of the interac-
tion between the server with a stale application and the application’s primary
server should be straightforward given the description of the replica creation
procedure in Section 1.4.2 and omitted for brevity.

5. Algorithms

Two types of algorithms are inherent in any ACDN: an algorithm for con-
tent placement, which decides on the number and location of the application
replicas, and an algorithm for request distribution, which chooses a replica for
a given user request. We consider these algorithms in the next two subsections.

5.1 Content Placement Algorithm

The algorithm is executed periodically by an ACDN server, which makes a
local decision on deleting, replicating, or migrating its applications. Allowing
each server to decide autonomously ensures the scalability of our approach.
The algorithm for a given application is shown in Figure 3. The algorithm
utilizes three parameters, tldeletion thresholdthe redeploymenthreshold,
and themigrationthreshold. The deletion threshold characterizes the lowest
demand that still justifies having a replica. In our experiments, it is expressed
as the total number of bytes served by the server since the previous run of
the of the algorithrh. The choice of the deletion threshold depends on the
characteristics of the application as well as the underlying system and network.

The redeployment threshold reflects the amount of demand from the vicinity
of another server that would warrant the deployment of an application replica
at that server. Consider the decision to replicate the application at sebedr
B; be the total number of bytes the current server served to clients from the
vicinity of server; since the previous run of the algorithm. Létbe the total
size of the application tarball (possibly compressed), @nlge the total size

3An alternative is to express it as the request rate. The implications and analysis of these two ways to
express the deletion threshold are left for future work.
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DecidePlacement():
/* Executed by serves */
if loads > HW , offloading = Yes
if loads < LW, offloading = Ng
for each applicatiompp
if Btotal S D
deleteapp unless this is the sole replica
elseif B;/(A+ U) > R AND B; > D for some servef
replicateapp on server
elseif B; / Biota1 > M AND B;/A > R for some servei
if serveri acceptsipp migrateapp to server
endif
endfor
if no application was deleted, replicated or migrated
AND offloading = Yes
find out the least loaded servefrom the central replicator
while loads > LW AND not all applications have been examined
let app be the unexamined application with the highest
ratio of non-local demand3;ot.1/Bs;
if B > DandB; > D
replicateapp ont
loads = loads — loads(app,t)
else
if servert acceptsipp
migrateapp to ¢
loads = loads — loads(app)
endif
endif
endwhile
endif
end

Figure 3.  Replica placement algorithmZLoads denotes load on servet loads(app,t)
denotes load on serverdue to demand for applicatiagpp coming from clients in server's
area, andoad, (app) denotes load on serverdue to applicatiompp.

of updates received in the same periodB}f (A + U) > 1 then the amount

of bandwidth that would be saved by serving these requests from the nearby
server; would exceed the amount of bandwidth consumed by shipping the
application to servei and by keeping the new replica fresh. Hence, the band-
width overhead of replication would be fully compensated by the benefits from
the new replica within one time period until the next execution of the place-
ment algorithm provided the demand patterns remain stable during this time.
In fact, we might choose to replicate even if this ratio is less than one (e.g., if
we are willing to trade bandwidth for latency), or only allow replication when
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this ratio exceeds a threshold that is greater than one (e.g., to safeguard against
arisk that a fast-changing demand might not allow enough time to compensate
for the replication overhead). Hence, the algorithm provides the redeployment
thresholdR, and replicates the application on servérB; /(A + U) > R.

One caveat is the possibility of a vicious cycle of creating a new replica with-
out enough demand, which will then be deleted because of the deletion thresh-
old. Thus, we factor in the deletion threshold into the replication decision and
arrive at the following final replication criterion: To create a replica on server
i, the demand froni's vicinity, B;, should be such tha®; /(A + U) > R and
B; > D.

The migration threshold/ governs the migration decision. The application
is migrated only if the fraction of demand from the target server excééds
B;/Byotar > M, and if the bandwidth benefit would be sufficiently high rela-
tive to the overhead;/A > R. Note that the latter condition does not include
the updates bytes because migration does not increase the number of replicas.
To avoid endless migration back and forth between two servers, we require that
the migration threshold be over 50%; we set it at 60% in our experiments.

The above considerations hold when the server wants to improve proximity
of servers to client requests. Another reason for replication is when the cur-
rent server is overloaded. In this case, it might decide to replicate or migrate
some applications regardless of their proximity or their demand characteris-
tics. So, if the server is overloaded, it queries the central replicator for the
least-loaded server and, if the application cannot be replicated there (because
the new replica might be deleted again), migrates the application to that server
unconditionally. To add the stability to the system, we use a standard water-
marking technique. There are two load watermarks, high waterd&ykand
low watermarkLW . The server considers itself overloaded if its load reaches
the high watermark; once this happens, the server continues considering itself
overloaded until its load drops below the low watermark.

Again, one must avoid vicious cycles. The danger here is that after migrat-
ing an application to server, the current server’s load drops to the normal
range, and the application would then migrate right back to the current server
(because its initial migration worsened the client proximity). To prevent this,
the target server only accepts the migration request if its projected load after re-
ceiving the application will remain acceptable (that is, below low watermark).
This resolves the above problem because the current server will not accept the
application back. This also prevents a herd effect when many servers try to
offload to an underloaded server at once. To allow load predictions, the source
server must apportion its total load to the application in questiani(app),
and to the requests that come from the target server's iaxed,(app, t). As a
crude estimate, we can apportion the total load in proportion to the number of
relevant requests.
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for each region R do
for every servey in the system
Prob(j) = 0;
endfor
for each servei;, with a replica of the application do
if load(ix) < LW

Prob(ix) = 1;
elseifload(ir) > HW
Prob(ix) =0
else
Prob(iy) = (HW — load(iy))/(HW — LW)
endif
endfor

residue = 1.0
Loop through the servers with a replica of the application
in the order of increasing distance from regin
for each such serveéy, do
Prob(ir) = residue x Prob(ix)
residue = residue — Prob(iy)
endfor
let total be the sum of thérob array computed above
if total > 0
for each servei;, with a replica of the application
Prob(ir) = Prob(ix)/total
endfor
else
for each servei;, with a replica of the application
Prob(iy) = 1/n, wheren is the number of replicas
endfor
endif
output(R, Prob)
endfor

Figure 4.  Algorithm for computing request distribution policy for a given application.

5.2 Request Distribution Algorithm

The goal of the request distribution algorithm is to direct requests to the
nearest non-overloaded server with a replica of the application. However, an
intuitive algorithm that examines the servers in the order of increasing distance
from the client and selects the first non-overloaded server for the request (sim-
ilar to the algorithm described in [4]) can cause severe load oscillations due
to a herd effect [6]. Furthermore, our simulations show that randomization in-
troduced by DNS caching may not be sufficient to eliminate the herd effect.
The algorithm used in the RaDaR system [17] does not suffer from the herd
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effect but often chooses distant servers even when closer servers with low load
are available. Thus, our main challenge was to find an algorithm that never

skip the nearest non-overloaded server and yet reduce oscillations in request
distribution.

An additional challenge was to make the algorithm compatible with our
system environment. We use iDNS as our load-balancing DNS server [4]. For
a given applicatiohiDNS expects aequest distribution policyn the form of
tuples (R, Prob(1),..., Prob(N)), whereR is a region andProb(i) is the
probability of selecting serverfor a request from this region. Regions can be
defined in a variety of ways and can be geographical regions (e.g, countries) or
network regions (e.g., autonomous systems or BGP prefixes). For the purpose
of this paper, we assume that each seiverthe system is assigned a region
R; (represented as a set of IP addresses) for which this server is the closest.
We also assume some distance metric between a rdégjiand all servers that
allows one to rank all servers according to their distance to a given region. The
guestion of what kind of a distance metric is the most appropriate is a topic of
active research in its own right; different CDNs use proprietary technigues to
derive these rankings, as well as to divide client IP addresses into regions.

In our ACDN, the central replicator computes the request distribution pol-
icy in the above format and sends it to iDNS. The policy is computed period-
ically based on the load reports from ACDN servers (obtained by accessing
load reporter scripts as discussed in Section 1.3), and also whenever the set of
replicas for the application changes (i.e., after a replica deletion, migration or
creation)? The computation uses the algorithm shown in Figure 4.

Let the system contain servets..., N, out of which servers,..., i,
contain a replica of the application. The algorithm, again, uses low watermark
LW and high watermark HW, and operates in three passes over the servers.
The first pass assigns a probability to each server based on its load. Any server
with load above HW gets zero weight. If the load of a server is below low
watermark, the server receives unity weight. Otherwise, the algorithm assigns
each examined server a weight between zero and unity depending on where
the server load falls between the high and low watermarks. In the second pass,
the algorithm examines all servers with a replica of the application in the order
of the increasing distance from the region. It computes the probabilities in the
request distribution policy to favor the selection of nearby servers. The third
pass simply normalizes the probabilities of these servers so that they sum up to
one. If all servers are overloaded, the algorithm assigns the load evenly among
them.

4We assume that every application uses a distinct (sub)domain name.

5Technically, the policy is computed by a control module within iDNS that we modified; however, because
this module can run on a different host from the component that actually answers DNS queries, we chose to
consider the control module to be logically part of the central replicator.



Computing on the Edge: A Platform for Replicating Internet Applications 13

6. Performance

In this section, we evaluate the performance of ACDN using a set of simula-
tion experiments. We first evaluate the effectiveness of the request distribution
algorithm in achieving a good balance of load and proximity. We then study
the effectiveness of our content placement algorithm in reducing bandwidth
consumption and user latency.

6.1 Request Distribution

A request distribution algorithm would ideally direct client requests to their
nearby replicas in order to reduce latency. At the same time, it must avoid
overloading a replica in a popular region with too many requests. The simula-
tion was conducted in a system with three replicas with decreasing proximity
to the clients: replica 1 is closest to the clients, replica 2 is the next closest, and
replica 3 is the farthest. The high watermark and the low watermark for the
replicas are 1000 and 200 requests per second, respectively. Initially, there are
10 clients in the system. Each client starts at a randomized time and sends 5
requests per second. Then we gradually increase the number of clients to study
the behavior of the algorithm when the replicas are overloaded. After that, we
gradually decrease the number of clients to the original level to simulate a situ-
ation where the “flash crowd” is gone. To simulate the effect of DNS caching,
each client caches the result of replica selection for 100 seconds. The results
are shown in Figure 5. The top figure plots the number of requests served by
each replica in sequential 100-second intervals. The bar graph on the bottom
plots the request distribution every 10 minutes.

As can be seen from the figures, when the number of clients is small, the
closest replica absorbs all the requests — the request distribution is determined
by proximity. As the number of clients increases, load balancing kicks in and
all replicas begin to share the load. Proximity still plays a role, however: note
that replica 1 serves more requests than replica 2, which in turn serves more
requests than replica 3. Also note that the load of none of the replicas ever ex-
ceeds the high watermark, which is usually set to reflect the processing capac-
ity of the underlying server. When the number of clients decreases, the load in
the three replicas decreases accordingly. Consequently, proximity starts play-
ing an increasingly important role in the request distribution algorithm. When
the load falls back to the original level, replica 1 again absorbs all the requests.
The results indicate that our algorithm is efficient in utilizing proximity infor-
mation while avoid overloading the replicas.

As targets for comparison, we also simulated two other algorithms: a pure
random algorithm and the algorithm previously used in CDN brokering [4].
The pure random algorithm distributes requests randomly among the replicas
regardless of the proximity. As can be seen from Figure 6, it achieves perfect
load balancing among the three replicas. However, the clients might suffer
unnecessarily from high latency due to requests directed to remote replicas
even during low load.
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The request redirection algorithm in the previous CDN brokering paper [4]
works as follows:

= Select the closest replica whose load is less than 80% of its capacity. In
our simulation, we set the capacity of all replicas to 1000 requests per
second, the same as the high watermark used in ACDN.

= If no such replica exists, distribute the load evenly across all replicas.

The results are shown in Figure 7. When the load is low, replica 1 absorbs
all the requests. When the load increases, the algorithm exhibits oscillations
between the first and the second replicas, while the third replica remains unuti-
lized. Moreover, note that the load on replica 1 can go substantially above the
high watermark. These results show that, although this algorithm also takes
into account both load and proximity, it does not perform as well overall as
our ACDN algorithm. This is because it relies on a single load threshold (i.e.
80%) to decide whether a replica can be selected, which makes it susceptible to
the herd effect. Although residual requests due to DNS caching add random-
ization to load balancing, they were not sufficient to dampen the herd effect.
In contrast, our algorithm uses a pair of high watermark and low watermark
to gradually adjust the probability of server selection based on the load of the
server.

6.2 Content Placement

The goal of the content placement algorithm is to detect hot regions based
on observed user demands, and replicate the application to those regions to
reduce network bandwidth and client perceived latency. The simulation was
conducted using the old UUNET topology with 53 nodes which we used for
our previous study [17]. 10% of the nodes represent “hot” regions: they gen-
erate 90% of the requests in the system. The rest 90% of the nodes are “cold”
regions and generate 10% of the requests. In this simulation, the request rates
from each hot region and each cold region are 810 and 10 requests per sec-
ond, respectively. The simulation starts with an 100 second warm-up period
during which clients in each region start at randomized times. To simulate the
effect of changing demand patterns, the set of hot regions changes every 400
seconds. The application size used in the simulation is 10M bytes. The size of
an application response message is 20K bytes. Every minute we introduce an
update into the system that needs to be propagated to all the replicas. The size
of the update is 5% of the application size. The redeployment threshold used
in the simulation is 4. The deletion threshold is set to half the redeployment
threshold times the size of the application. The algorithm makes a decision
whether it needs to replicate or migrate every 100 seconds.

We compare our approach with two other algorithms: a static algorithm and
an ideal algorithm. In the static algorithm, a replica is created when the simu-
lation starts and is fixed throughout the simulation. In the ideal algorithm, we
assume that the algorithm can get instantaneous knowledge as which regions
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Figure 5. Request distribution in ACDN.

are hot or cold and then replicates or deletes applications accordingly. It rep-
resents the optimal case which cannot be implemented in practice. The results
of the simulation are shown in Figure 8. The top figure shows the amount of
network bandwidth consumed in the simulation per second. This is measured
as the product between the number of bytes sent and the number of hops they
travel. For example, if a replica sends 1000 bytes to a client which is 3 hops
away, the amount of network bandwidth consumed is 3000 bytes. The bottom
figure shows the average response latency among all clients in the system. We
assume that the latency on each link in the topology is 10ms. For this pre-
liminary study, we also assume that the processing overhead at the replicas is
negligible. Both figures indicate that our ACDN algorithm can quickly adapt to
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the set of hot regions and significantly reduce network bandwidth and response
latency. The spikes in the top figure are caused by the bandwidth incurred dur-
ing the application replication proce$sThe migration algorithm was never
triggered in this simulation because no region contributed enough traffic.

6Note that in some part of the curve the ACDN algorithm appears to perform slightly better than the ideal
algorithm. This is due to random fluctuation in the simulation.
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Figure 7. Request distribution in the brokering system.

6.3 Redeployment Threshold

Choosing an appropriate value for the redeployment threshold is essential
for achieving good performance of the protocol. With a low threshold, more
replicas will be created in the system. This allows more requests to be served
efficiently by a nearby server, but increases the overhead for application repli-
cation and update propagation to all the replicas. On the other hand, a high
redeployment threshold will result in fewer replicas, with less overhead due
to application replication or updates, but also with less efficient processing of
application requests.
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Figure 8. Effectiveness of dynamic replication in ACDN.

Finding the right threshold is not trivial as it depends on many factors: the
size of the application, the sizes and frequency of its updates, the traffic pattern
of user requests, etc. We did a preliminary experiment to explore this trade-off
for a 100M bytes application in the UUNET topology. In this simulation, the
request rates from each hot region and each cold region are 81 and 1 requests
per second, respectively. As before, we introduce an update into the system
every minute that needs to be propagated to all the replicas. We used higher
application size and lower request rates in this experiment to emphasize the
effects of the overhead of creating and maintaining extra replicas relative to
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the benefits from increased proximity of replicas to requests. We vary the
redeployment threshold and see its impact on the total amount of traffic on the
network. The results are shown in Figure 9. The x-axis is the redeployment
threshold used in the protocol, and the y-axis the total amount of bandwidth
consumed in the entire simulation. The figure indicates that there is a “plateau”
of good threshold values for this application: thresholds that are either too high
or too low result in increased bandwidth consumption. As future work, we plan

to investigate algorithms for adjusting the threshold automatically to optimize

the performance of an application.

7. Related Work

The importance of supporting dynamic content in a CDN has been recog-
nized and several proposals have been described that address this problem to
various extents. Most of this work concentrates on caching dynamic responses
and on mechanisms of timely invalidation of the cached copies, or on assem-
bling a response at the edge from static and dynamic components [7, 2, 19, 11].
The fundamental difference between ACDN and these approaches is that the
former replicates the computation as well as the underlying data used by the
application while the latter handles only responses and leaves the computation
to the origin server.

The Globule system [16] uses an object-oriented approach to content repli-
cation. It encapsulates content into special Globule objects, which include
replication functionality and can be used to distribute static or dynamically
generated content. Compared to our ACDN, Globule gives each object a flexi-
bility to use its own policy for distribution and consistency maintenance while
ACDN applies its policies to all hosted applications. On the other hand, Glob-
ule uses its own protocols to implement distributed objects and it requires com-
piling applications into Globule objects as well as modifying the Web server
to be able to use Globule objects. Our ACDN is built entirely over HTTP,
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which simplifies firewall traversal, and works with existing applications and
unmodified Web servers.

As discussed in the introduction, one can run an ACDN on top of a general
process migration system such as Ejasent and vMatrix [1, 3]. Finally, one
can also run ACDN servers on top of a distributed file system where each
server acts as a client of the global file system and where each file is replicated
among CDN servers through caching within the file system. This approach
replicates computation but is limited to only very simple applications since it
does not replicate the environment, such as resident processes. Also, ensuring
that different components of the application are always mutually consistent
becomes difficult since consistency is maintained for each file individually.

Turning to algorithms, ACDN involves two main algorithms - an algorithm
for application placement and an algorithm for request distribution. Request
distribution algorithms are closely related to load balancing and job schedul-
ing algorithms. In particular, the issue of load oscillation that we faced has
been well-studied in the context of load balancing (see. e.g., [6] and references
therein). However, ACDN has to address the same issue in a new environment
that takes into account client proximity in addition to server load. The algo-
rithms by Fei et al. [8] and by Sayal et al. [20] use client-observed latency
as the metric for server selection and thus implicitly account for both load and
client proximity factors. Both algorithms, however, target client-based server
selection, which does not apply to a CDN.

Many algorithms have also been proposed for content or server placement.
However, most of them assume static placement so that they can afford to solve
a mathematical optimization problem to find an “optimal” placement (see, e.qg,
[5, 21] and references therein). Even with empirical pruning, this approach is
not feasible if content were to dynamically follow the demand. Some server
placement algorithms use a greedy approach to place a given number of servers
into the network. These algorithms still require a central decision point and are
mostly suitable for static server placement. Our ACDN placement algorithm
is incremental and distributed. Among the few distributed placement algo-
rithms, the approach by Leff et al. [14] targets the remote caching context and
does not apply to our environment where requests are directed specifically to
servers that already have the application replica. The strategies considered by
Kangasharji et al. [12] assume a homogeneous request pattern across all re-
gions. Our algorithm can react to different demands in different regions and
migrate applications accordingly. Finally, the strategy mentioned by Pierre et
al. [15] places a fixed number of object replicas in the regions with the highest
demand. Our algorithm allows a variable number of replicas depending on the
demand and takes into account the server load in addition to client proximity
in its placement decisions.

Our ACDN content placement algorithm is an extension of our earlier RaDaR
algorithm [17]. However, because ACDN replicates entire applications, its
placement algorithm is different from RaDaR in that it takes into account the
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size of the application and the amount of application updates in content place-
ment decisions.

8. Conclusions

This paper describes an ACDN - a middleware platform for providing scal-
able access to Web applications. Accelerating applications is extremely impor-
tant to CDNs because it represents CDNs’ unique value that cannot be offered
by client-side caching platforms. ACDN relieves the content provider from
guessing the demand when provisioning the resources for the application and
deciding on the location for those resources. The application can be deployed
anywhere on one server, and then ACDN will replicate or migrate it as needed
using shared infrastructure to gain the economy of scale.

We presented a system design and algorithms for request distribution and
replica placement. The main challenge for the algorithms is to avoid a variety
of “vicious cycles” such as endless creation and deletion of a replica, or migra-
tion of a replica back and force, or oscillations in request distribution, and yet
to avoid too much deviation from optimal decisions in a given instance. Our
preliminary simulation study indicated that our algorithms achieve promising
results.

To date, we only experimented with one read-only application as a testbed
for ACDN [13]. In the future, we would like to gain more experience with the
system by deploying a variety of applications onit. In particular, we would like
to explore various ways to support user updates to the application data, from
relying on a shared back-end database to possibly replicating these updates
among application replicas in a consistent way.
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