IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.T1,

JANUARY-MARCH 2019

PISCES: Optimizing Multi-dob Application
Execution in MapReduce

Qi Chen™, Jinyu Yao, Benchao Li, and Zhen Xiao, Senior Member, IEEE

Abstract—Nowadays, many MapReduce applications consist of groups of jobs with dependencies among each other, such as iterative
machine learning applications and large database queries. Unfortunately, the MapReduce framework is not optimized for these multi-
job applications. It does not explore the execution overlapping opportunities among jobs and can only schedule jobs independently.
These issues significantly inflate the application execution time. This paper presents Pipeline Improvement Support with Critical chain
Estimation Scheduling (PISCES), a critical chain optimization (a critical chain refers to a series of jobs which will make the application
run longer if any one of them is delayed), to provide better support for multi-job applications. PISCES extends the existing MapReduce
framework to allow scheduling for multiple jobs with dependencies by dynamically building up a job dependency DAG for current
running jobs according to their input and output directories. Then using the dependency DAG, it provides an innovative mechanism to
facilitate the data pipelining between the output phase (map phase in the Map-Only job or reduce phase in the Map-Reduce job) of an
upstream job and the map phase of a downstream job. This offers a new execution overlapping between dependent jobs in
MapReduce which effectively reduces the application runtime. Moreover, PISCES proposes a novel critical chain job scheduling model
based on the accurate critical chain estimation. Experiments show that PISCES can increase the degree of system parallelism by up to
68 percent and improve the execution speed of applications by up to 52 percent.

Index Terms—MapReduce, job dependency, group scheduling, pipeline

4

273

1 INTRODUCTION

WE are experiencing an age of big data. Internet appli-
cations such as search engines, social networks and

mobile applications bring us not only high quality of service
but also challenges of efficient large-scale data processing.
MapReduce[l], a popular distributed parallel computing
framework with efficiency, convenience and fault tolerance,
has already been widely used in web indexing, log analysis,
data warehousing, data mining, scientific computing, and
other widespread applications.

Many of these applications in MapReduce are written as
groups of jobs with dependencies among each other. Two
common types of multi-job applications are iterative machine
learning applications and large database queries. Iterative
machine learning applications, such as the PageRank algo-
rithm [2], break their computation into multiple iterations with
each iteration being run as a MapReduce job. This generates a
series of separated jobs which are executed one after another.
Large database queries, like Pig or Hive scripts, are translated
into a DAG in which each node represents a MapReduce job.

Despite the popularity of these multi-job applications, the
existing MapReduce system is not optimized for them. First of
all, it does not explore the execution overlapping opportunities

o The authors are with the Department of Computer Science, Peking Univer-
sity, Beijing 100871, China.
E-mail: {chengi, yjy, lbc, xiaozhen)@net .pku.edu.cn.

Manuscript received 28 May 2015; revised 31 May 2016; accepted 12 Aug.
2016. Date of publication 26 Aug. 2016; date of current version 6 Mar. 2019.
Recommended for acceptance by P.B Gibbons.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCC.2016.2603509

between dependent jobs. It requires the jobs to have their
input data ready before submission, which requires a job to
wait for the completion of all its dependent jobs and creates a
synchronization barrier between dependent jobs. MapReduce
Online [3] and HPMR [4] provide execution overlapping
between the map and the reduce stages of a job. MapReduce
itself provides execution overlapping between independent
jobs. However, none of previous work focuses on how to
break the synchronization barrier between dependent jobs.

In addition, MapReduce can only schedule jobs indepen-
dently. MapReduce itself does not maintain any dependency
information among jobs. Although there has already been a
great deal of work providing high quality job schedulers [5],
[6], [7], [8], they only focus on how to schedule collections of
independent jobs. Therefore, users need to arrange the sub-
missions of the dependent jobs in the right order themselves
and submit them one by one. There are also several pieces of
software which provide job dependency analysis and sched-
uling at a higher level, such as Pig [9] for Apache Hadoop
[10], Scope [11] for Microsoft Dryad [12], Tenzing [13] for Goo-
gle MapReduce [1], Hive [14] and RoPE [15]. However, they
only focus on how to translate a query to a good job depen-
dency DAG and simply schedule jobs according to the depen-
dency constraints. They cannot make effective job scheduling
decisions since they lack some important information in Map-
Reduce, such as the input data size, output data size and exe-
cution time of each task, the number of free slots in the
system, and the performance of each worker, etc. Moreover,
since these higher level softwares are independent of each
other, they have to implement their own job scheduling strat-
egy and cannot support job scheduling across different

2168-7161 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9280-9461
https://orcid.org/0000-0001-9280-9461
https://orcid.org/0000-0001-9280-9461
https://orcid.org/0000-0001-9280-9461
https://orcid.org/0000-0001-9280-9461
mailto:

274 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

R

200 maps 100 reduces
10s/map |10s/reduce
>

Job2 Job4

50 maps
10s/map

25 reduces
10s/reduce,

25 maps
10s/map

25 reduces
10s/reduce,

Slots 1 i 100
2 2 [5 5 7 e

time (sec)

10s/map

1
1
Slots I 7] 100
2 2 3 |3 [+« 109

time (sec)
100
3 |4]

Fig. 1. The impact of job scheduling.

Slots T
2

1 5]
2

bttd
EN

time (sec)

softwares. The closest previous work is FlowFlex [16] which
provides a theoretical malleable scheduling for flows of Map-
Reduce jobs. However, the fixed amount of work unit for each
job in its model is hard to measure in the real computing envi-
ronment. Moreover, it is hard to add the new overlapping fea-
ture of dependent jobs into its theoretical scheduling model.

We notice that an efficient job scheduling policy can have
a significant impact on the execution time of multi-job appli-
cations. This is illustrated in a simplified example in Fig. 1
for a system with four jobs. The number of map tasks, reduce
tasks and their required execution times are as shown in the
figure. We can model the dependencies among the jobs as a
DAG. Suppose the MapReduce cluster is deployed in a
group of 50 workers and each worker is configured with two
slots (minimal resource unit required by a task). If job 1 is
executed first, it will occupy the entire cluster and all four
jobs end up executing one after another (the first schedule in
Fig. 1). It will take 110 seconds to finish the group of jobs. On
the contrary, if job 2 is scheduled first, it takes up only half of
slots. The remaining slots can be used to execute part of job 1
in parallel (the middle schedule in Fig. 1). In this case, the
group of jobs can be finished in 80 seconds, a 37.5 percent
improvement. If we further allow data pipelining between
the output phase of an upstream job and the map phase of a
downstream job and assume that the map phase of the
downstream job can be finished soon after the completion of
the output phase of the upstream job (the last schedule in
Fig. 1), the group of jobs can be finished even earlier in about
60 seconds, a further 33.3 percent improvement.

It turns out that maximizing the possible execution over-
lapping among dependent jobs and giving a better job

JANUARY-MARCH 2019

scheduling for those multi-job applications remain to be tough
challenges for us. In this paper, we present a new critical chain
optimization in MapReduce called Pipeline Improvement
Support with Critical chain Estimation Scheduling (PISCES)
to address these challenges. To the best of our knowledge, we
are the first to propose this optimization. Compared to the
previous work, we make the following contributions:

e We extend the existing MapReduce framework to
allow scheduling for multiple jobs with dependen-
cies among each other by building up a dynamic job
dependency DAG for current running jobs.

e We creatively parallelize the output phase (map
phase in the Map-Only job or reduce phase in the
Map-Reduce job) of an upstream job and the map
phase of a downstream job to offer a new execution
overlapping between dependent jobs which effec-
tively reduces the application runtime.

e We accurately predict the execution time for each job
by using a new locally weighted linear regression
(LWLR) model [17] based on the job execution histo-
ries. The prediction precision will reach above 80 per-
cent in general.

e We build a novel “overlapping” critical chain job
scheduling model based on the accurate critical
chain estimation which further improve the perfor-
mance of the system.

Experiment results show that our PISCES system can
increase the degree of parallelism by up to 68 percent and
run applications up to 52 percent faster.

The rest of the paper is organized as follows. Section 2
provides a background on MapReduce, and its data pipelin-
ing and job scheduling support. Section 3 describes the
implementation of our PISCES system, the innovative pipe-
line optimization and the novel critical chain job scheduling
algorithm. Section 4 presents a performance evaluation.
Related work is described in Section 5. Section 6 concludes.

2 BACKGROUND

2.1 MapReduce Overview

A typical MapReduce cluster consists of one master node
and several worker nodes. The master node is responsible
for receiving jobs, scheduling tasks, and managing all the
worker nodes. A worker node executes the map and the
reduce tasks issued by the master. A specific job execution
procedure is as follows:

e A user uploads input data into a distributed file sys-
tem (e.g., GFS [18]), and submits a job to the MapRe-
duce framework.

e The MapReduce client divides the input data into
multiple splits (each split is 64 MB by default), gener-
ates the split info (including the storage location, the
start position and the real size of each split), and sub-
mits the job and split info to the master.

e The master generates multiple map tasks according
to the split info (one map task for each split), and
then schedules them to different worker nodes for
parallel processing.

e Each map task converts input (k;, v;) pairs into inter-
mediate (ky,v9) pairs according to the user defined

CHEN ET AL.: PISCES: OPTIMIZING MULTI-JOB APPLICATION EXECUTION IN MAPREDUCE 275

TABLE 1

Example of a Pig Script
T1 = LOAD “visits.txt” AS (user, url, date);
T2 = LOAD “pages.txt” AS (url, pagerank);
T3 = FILTER T1 BY date = “2013/07/20”;
T4 = FILTER T2 BY pagerank > = 0.5;
T5= JOIN T3 BY url, T4 BY url;
T6 = GROUP T5 BY user;

map and combine functions, partitions them into mul-
tiple parts by their keys according to a user defined
partitioner, and stores them onto a local disk.

e When the percentage of finished map tasks reaches a
certain threshold, the master begins to issue reduce
tasks.

e Eachreduce task copies its input parts from each map
task, sorts them into a single stream according to their
keys by a multi-way merge after all map tasks com-
plete, transforms the intermediate result into the final
(k3,v3) pairs according to the user defined reduce
function, and finally outputs them into the user speci-
fied directory in the distributed file system.

In the steps above, the master does not make job execution
plans. It simply arranges jobs in queues according to the order
of their submissions. It is the responsibility of the user to sub-
mit the jobs in the right order. There are several prior
approaches focused on extending the MapReduce framework
to support complex queries. They support easy-to-use query
languages (e.g., SQL-like language) to simplify the program-
ming of MapReduce. Complex queries written in the SQL lan-
guage are analyzed and decomposed automatically to
generate a job execution plan for MapReduce. Table 1 gives an
example of a Pig script which consists of multiple Pig queries.
The job execution plan made by Pig is shown in Fig. 2. From
the figure, we can see that Pig divides these queries into four
MapReduce jobs that have dependencies with each other.

Moreover, jobs running in the MapReduce framework
must have their input data ready before the submission.
This is because the MapReduce client will divide their input
data into splits as soon as they are submitted in order to
determine the number of map tasks needed before the jobs
start running. Therefore, jobs whose input are not ready
must wait until all of their dependent jobs complete.

2.2 Challenges for Multi-Job Applications

As introduced before, there are two challenges left for us:
i) How to maximize the possible execution overlapping
among dependent jobs, ii) How to provide better job sched-
uling for multi-job applications.

For the first challenge, the most difficult problem is that
the downstream job needs to consume the output data of all
its upstream jobs. Therefore, we cannot run the downstream
job before all of its input data are produced. MapReduce
Online [3] and HPMR [4] provide intermediate data pipe-
line support between the map and the reduce stages within
a job, which creatively breaks the synchronization barrier
between the map and the reduce stages of a job. Can we
take this idea to the dependent jobs? Before we answer this
question, we need to face the following challenges: i) Where
are the output data of a job before its completion? ii) How
to decide which jobs these data should be pipelined to?

T
T3
=Filter T1
T5 6
, ' =JoinT3T4 " =Group T5
T4 r . g
=Filter T2 l
e
T2

Fig. 2. Example of the Pig execution plan.

iii) How to make the downstream job run with dynamically
growing input data? iv) How to ensure the execution
correctness of the downstream job? v) How to provide fault
tolerance for this pipeline mechanism?

For the second challenge, the difficulties are: i) How to
build up a dynamic job dependency DAG for the current run-
ning jobs? ii) How to accurately predict the execution time for
each task within a job so that we can find the critical chain cor-
rectly? iii) How to create a critical chain job scheduling model
so that we can take advantage of the innovative job pipeline
mechanism and finish the query as quickly as possible?

In the following, we show how PISCES can solve these
challenges nicely.

3 THE PISCES SYSTEM

In this section, we present a new system called PISCES, a criti-
cal chain optimization, to address the challenges for multi-job
applications. PISCES provides an innovative job pipeline
mechanism and a new job scheduling strategy for data-inten-
sive jobs that have dependency with each other. In the rest of
this section, we will introduce PISCES system in detail.

3.1 System Overview

The MapReduce framework in which we choose to imple-
ment PISCES is the latest stable Hadoop-2.7.1 version. We
improved the current Hadoop design to provide complex
job workflow scheduling for the multi-job applications. We
labeled the jobs of an application with the same workflow
ID, submitted them concurrently and dispatched them to
the same application master for scheduling. In the applica-
tion master, we extended the architecture by adding follow-
ing three new modules (shown in Fig. 3):

e Dependency Analyzer: analyze the dependency
among a group of jobs according to their input and
output directories.

e Job Time Estimator: estimate the execution time for
each job according to the job configuration and the
job execution history.

e Job Scheduler: make scheduling decisions for the
submitted jobs according to their dependency DAG
and estimated job execution time.

276 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

Dependency Analyzer

Job Time Estimator

“ J

Job Scheduler

A -

Schedulable Job List]
G-
oo |

Job Execution List
Fig. 3. System architecture.

3.2 Dependency Management and Data Pipelining
3.2.1 Dependency Management

Traditional job dependency analysis in higher level soft-
ware like Pig [9], Scope [11] and Tenzing [13] usually con-
tains the following two steps: i) translate a query into an
internal parse tree, ii) convert the tree to a physical execu-
tion plan by traversing the tree in a bottom-up fashion. In
PISCES, this procedure is much easier: i) A user submits a
group of jobs with the same workflow ID in a parallel
mode, ii) PISCES dispatches these jobs to the same applica-
tion master, iii) PISCES builds up a dynamic job depen-
dency DAG according to their input and output directories
and maintains a schedulable job list which contains all the
jobs whose whole input data are ready (the leaf jobs in the
job dependency DAG) in the application master. Each time
new jobs arrive or current running jobs complete, the
dependency analyzer will update the job dependency DAG.
Note that there is a special case that we should also take
into consideration when building the job dependency DAG:
the user code directly accesses the HDFS through the
DFSClient during the job execution. For example, in the
KMeans clustering application, the input data for map tasks
are the whole points set. However, each map task in each
iteration should also read the whole cluster centers gener-
ated by the previous iteration to decide the current nearest
cluster to which each point belongs. Therefore, the files stor-
ing the cluster centers cannot simply be added as the input
of the MapReduce job. Instead, it should be read from the
HDFS directly by each map task. In this case, there also exists
a job dependency relationship between the previous itera-
tion job and the current iteration job, although they do not
have an input-output dependency. Therefore, we should
also add a dependency edge between these two jobs. This
can be done easily by comparing all the HDFS read paths of
one job with the output paths of the other jobs. We call this
kind of job dependency relationship “hard dependency”.

3.2.2 Data Pipelining Among Jobs

In the current MapReduce framework, there exists a syn-
chronization barrier between the upstream and the

JANUARY-MARCH 2019

downstream jobs. This is because MapReduce itself does not
maintain the job dependency DAG and cannot decide the
downstream jobs to which a data block from an upstream job
should be pipelined. Consequently, a job cannot be issued
until all of its input data are ready, which means that a job
needs to wait for the completion of all its dependent jobs.

Inspired by the intermediate data pipeline mechanism
between the map and the reduce stages within a job
provided by MapReduce Online [3] and HPMR [4], we
wondered whether we could provide the same pipeline
mechanism between dependent jobs. Since a map task in
the downstream job only needs to deal with a continuous
data block with a fixed size and all the map tasks within a
job are independent with each other, the corresponding
map task can be issued as soon as its input data block is pro-
duced by the upstream job. Therefore, it seems feasible in
theory to provide the data pipeline mechanism between
dependent jobs. But we first need to answer the five ques-
tions proposed in the Section 2.2.

i) Where are the Output Data of a Job Before Its Completion?

We notice that in Apache Hadoop [10], in order to sup-
port the roll back of failed jobs and tasks, the output of a
reduce task is first written to a temporary directory in
HDEFS. It will be moved to the real destination directory
when the task completes successfully. Moreover, as soon as
a data block (default is 64 MB in Hadoop) is produced by a
reduce task, it will be flushed to the HDFS. Therefore, we
can read a data block from the temporary output file of a
reduce task as soon as it is produced.

ii) How can we Decide the Jobs to Which These Data Should be
Pipelined?

Since we have maintained a dynamic job dependency
DAG for all the submitted jobs by using our dependency
analyzer, we can simply pipeline a data block from the
upstream job to all its downstream jobs according to the
dependency relationships in the DAG (excluding the “hard
dependencies”).

iii) How to Make the Downstream Job Run with Dynamically
Growing Input Data?

This is the most important question in the pipeline mech-
anism. We modify the Hadoop framework to allow a job to
generate new map tasks dynamically during its execution
as follows:

e For those submitted jobs which are not in the sched-
ulable job list, we initialize the number of maps that
each reduce task need to wait for to the maximum
integer value so that we can limit all the reduce tasks
to the shuffle phase. The purpose of this step is to
ensure the correctness because the input data of
these jobs has not been produced yet. It will not
introduce performance penalty.

e When PISCES detects that a data block from an
upstream job has been generated, it will notify all of
its downstream jobs (excluding the “hard depend-
ent” downstream jobs) to create a new map task. The
notification includes the file name to read, the start
offset of this block and the end offset of this block.
Instead of only obtaining split information from the
MapReduce client, PISCES can add extra split infor-
mation dynamically during a job’s lifetime.

CHEN ET AL.: PISCES: OPTIMIZING MULTI-JOB APPLICATION EXECUTION IN MAPREDUCE 277

Current processed block pointer

Map il Current write pointer

Fig. 4. Pipeline between an upstream job and a downstream job.

e In the dependency analyzer module, instead of wait-
ing for all of its upstream jobs to complete, we add a
job to the schedulable job list as soon as all of its
upstream jobs enter the output phase (map phase in
the Map-Only job or reduce phase in the Map-
Reduce job) and have generated a certain amount of
data (at least a data block). Note that if a job has
“hard dependent” upstream jobs, we can only add it
to the schedulable job list after all of its “hard
dependent” upstream jobs complete and all of its
other upstream jobs enter the output phase.

e After the completion of all its upstream jobs, PISCES
notifies all the reduce tasks of a downstream job the
correct number of maps. These reduce tasks can then
enter the sort and the reduce phases for execution
after copying all the intermediate data.

Fig. 4 illustrates this pipeline process. As we will see later in
the experiments, the pipelining optimization improves the
execution time of data intensive jobs significantly, especially
for iterative data processing applications like PageRank.

iv) How to Ensure the Execution Correctness of the Down-
stream Job?

This can be separated into two parts: map correctness and
reduce correctness. To ensure map correctness, we should
ensure we will not miss any map inputs or add different map
tasks that process the same input. To ensure this, we keep a
current processed block pointer for each output task in the
upstream jobs (shown in Fig. 4). Each time we increase the
pointer, we will add a map task for all the downstream jobs.
The pointer will never be decreased so that we can ensure
each map task in a downstream job processes a different data
block. Since each time the pointer will only move at most a
data block length, we can ensure all the data blocks have been
processed. To ensure reduce correctness, we first limit all the
reduce tasks in the downstream jobs to the shuffle phase.
They cannot enter the sort and the reduce phases until they
receive the correct number of map outputs.

For those downstream jobs which have “hard dependent”
upstream jobs, we will not pipeline the data blocks between
their “hard dependent” upstream jobs and them since the
whole outputs of their “hard dependent” upstream jobs may
be read by each map task in these downstream jobs. Instead,
we wait for the completion of all of their “hard dependent”
upstream jobs. We will not add these downstream jobs to the
schedulable job list until all of their “hard dependent”
upstream jobs complete and all of their other upstream jobs
enter the output phase. It is also reasonable to ignore these

“hard dependencies” when considering pipeline between
dependent jobs since this kind of dependent data are nearly
always small and therefore will not dramatically impact the
job execution time.

v) How to Provide Fault Tolerance for this Pipeline
Mechanism?

With our new job pipeline mechanism, the map tasks in a
downstream job will first read the output data from the tem-
porary directory of an upstream job. Those map tasks and the
re-executed map tasks (e.g., failed or slow tasks) will experi-
ence read errors when the temporary data are moved to their
final destinations later. To tackle this problem, we implement
a new hard link feature into HDFS to allow multiple inodes
(metadata structure in file systems which stores all the infor-
mation about a file object, such as ownership, creation time,
data block locations, etc.) to point to the same data blocks.
When the reduce task finishes, we create a hard link file in the
destination directory to point to the file in the temporary
directory. The basic semantics of a hard link is that multiple
files (including the original file and the linked files) share the
same data block information. The shared data blocks will not
be deleted if there are any files referencing them. By doing so,
we can avoid the read errors in the map tasks of the down-
stream jobs caused by the migration of the temporary data.
The temporary data of a job will be finally deleted when all of
its downstream jobs complete. Moreover, when an output
task in the upstream job fails, the temporary output data of
this task will not be deleted at once. Instead, they will be kept
until the temporary directory of the job is removed. We will
not generate new map tasks for the downstream jobs until the
current write point of the new reduce task has caught up with
the current processed block point and assign new map tasks
using the new temporary output data.

To support hard links in HDFS, we add a series of hard
link interfaces which include create, update, delete, and du
operations. We give the hard link files the same permission
as the source file. In addition, we also modify the FSImage
save and restore operations to add the hard link information
into the file system metadata image so that the HDFS can
restore from failures successfully. The implementation
details are outside the scope of this paper.

After solving the five questions above, we successfully
parallelize the output phase of an upstream job and the map
phase of a downstream job to offer new execution overlap-
ping between dependent jobs. This job pipeline mechanism
can take full advantage of not only the computing resources
in the cluster but also the file cache of the operating system
by consuming the output data as soon as it is produced. The
reason why we still force the output data to be written to the
HDEFS is that redoing previous jobs is very expensive com-
pared to just redoing some map tasks in the inter-job data
pipeline mechanism. In order to provide fault tolerance and
high data availability at a low cost, we write each data block
to the HDFS before pipelining it to the downstream jobs.

3.3 Job Scheduling in PISCES

With our innovative job pipeline mechanism between
dependent jobs, the job scheduling in MapReduce can be fur-
ther improved by taking data flow information and the pipe-
line feature into consideration. Instead of scheduling jobs in
the higher level softwares, such as Pig, we implement our

278

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

JANUARY-MARCH 2019

M T2

———————————————————————————— M R T; M T; R
. dependency -|-|_T11 - _I_|_T1 _: T 2 TE= | TI- : 1 1—|_ " _:
' DAG G==<V.E L M1 j RI :IL‘ | M2 2 R2 > MJ"_ : Ii_]
' (: — :) ; i 2 2
___________________________ 1 l 2 1
J1 Jj2 Jn
@ Workable scheduling: j1,j2, ..., jn
MapReduce system § consists of multiple workers with s slots in total
4 A 4
Slots L2] s1 | 52 eee [Sw
1 1|2 2] 21 2 2]
1 2 |[=n ;1 2 [» e] 1 I 2 Il n_]
Time (sec) Time (sec) Time (sec)
Worker 1 Worker 2 Worker w

Fig. 5. Scheduling problem definition.

PISCES job scheduling directly into the MapReduce frame-
work. The reason is that we can get some detailed job execu-
tion information easily and take advantage of the innovative
job pipeline mechanism among dependent jobs. Such infor-
mation is difficult to obtain at the higher level softwares.
Moreover, this architecture allows our job scheduling
method to be widely used in a variety of softwares, such as
Pig, Cloud9 [19], Mahout [20] and even user defined job
groups. Users can define their applications across different
softwares without worrying about how to arrange them. Job
scheduling in PISCES consists of the following steps:

e A user submits a group of jobs with the same workflow
ID into PISCES. PISCES modifies the interface of job
submission to allow jobs to be submitted in parallel.

e PISCES dispatches these jobs to the same application
master. After receiving the submission of the jobs, the
application master updates the job dependency DAG
and estimates the job execution time for these jobs.

e Whenever there are enough free resources in the sys-
tem and the current job running queue is empty, the
job scheduler will choose a new job for running
using a critical chain model described later.

3.3.1 Scheduling Problem Definition

We first formalize our job scheduling problem as follows.
Suppose we have n jobs to be scheduled. Job ¢ contains M;
map tasks and R; reduce tasks. Its average execution time is
TM for a map task and T}® for a reduce task. We define a
DAG G =<V, E>, where each vertex in V represents a job
(V| = n). The directed edge <u,v> € F if and only if job v
is dependent on the output of job u. The MapReduce system
S consists of multiple workers with s slots (minimal
resource unit required by a task) in total. A workable sched-
uling scheme for job dependency graph G can be expressed
as a list of job vertexes: ji,ja,...,Jn, Which satisfies the
dependency property. The definition is shown in Fig. 5. The
goal of our job scheduling is to provide an execution order
of jobs to maximize the parallelism of the system and mini-
mize the total execution time for all jobs.

The optimization of job scheduling is a NP hard problem
no matter what policy is used to schedule tasks within a job.

In the simplest case where each job contains only one map
task and there is no dependency among the jobs, the job
scheduling problem is equivalent to the job shop scheduling
problem in the literature which has been shown to be NP-
complete [21]. Moreover, new jobs with the same workflow
ID can be submitted dynamically, which will cause the job
dependency DAG changing all the time. Meanwhile, unex-
pected events can happen in real systems, for example, the
straggler tasks[1] caused by system failures or resource
competition among the tasks. If we allow the speculative
execution to backup those straggler tasks, it will affect the
optimal solution. Therefore, we simplify the job scheduling
problem in the following two ways:

e We separate job scheduling from task scheduling
within a job and only make decision on the job exe-
cution order.

e Instead of calculating the optimal solution at the begin-
ning and then schedule jobs accordingly, we use an
iterative method to get the job scheduling list so that
our model can meet the requirements of dynamic job
submissions and tolerate the uncertainty during real
execution. We invoke our scheduling algorithm when-
ever there are free slots in the system and the current
job running queue is empty. During each iteration, we
sort all the schedulable pending jobs and choose the
most appropriate one to join the running job list.

3.3.2 Estimate Job Execution Time
After the submission of a group of jobs, we first need to esti-

mate the runtime for each job in order to decide how to sched-
ule them. Although there has already been some work
focusing on how to dynamically estimate the completion time
of a job during its execution[22], [23], [24], they cannot meet
our scheduling requirement: the execution time of all jobs
should be estimated before running. Estimating the execution
time for a new job is very difficult since it is impacted by mul-
tiple factors. The following is a list of such factors:

e the problem the job is solving and the implementation
complexity: Different MapReduce algorithms and dif-
ferent implementations play the decisive role for job
execution time.

CHEN ET AL.: PISCES: OPTIMIZING MULTI-JOB APPLICATION EXECUTION IN MAPREDUCE 279

e the input and output data scale: In general, the job exe-
cution time is also related to the input and the output
data sizes. For fixed cluster resources, the more data
to be processed, the longer time it will take to exe-
cute the job.

o the distribution of the input data: In large scale data
processing applications, data distribution deter-
mines the complexity of computation and the output
data scale [25]. For example, the join of two tables
with uniform distribution is much faster than the
join of two tables with Zipf distribution even when
the data scale of the latter is smaller. The reason is
the join of tables with Zipf distribution are more
likely to generate uneven reduce load and increase
the scale of the output data exponentially.

How can we determine the complexity of a program?
The simplest solution is to let the users provide it for us.
However, this will cause a loss of transparency and diffi-
culty for the user. Another solution is to use the existing
code library to check for the code reuse [26] for those com-
monly used MapReduce applications. This solution seems
more reasonable. However, it can only be applied for a lim-
ited number of applications. For those user defined applica-
tions, it cannot provide proper estimations.

How can we get the input and output data scale? The input
and output data scale is determined by the data set. Different
data sets will result in different output data scales although
they may have the same input data size. For example, joining
two tables will result in no output when there are no identical
keys. It can also result in a large scale output when the records
in these tables share the same key. Therefore, it is hard for us
tojudge the input and output data scale.

How can we obtain the distribution of the input data?
There are several previous approaches launching some pre-
run sampling jobs to collect the data distribution statistics.
They can then make a balanced partition decision according
to the estimated data distribution [10], [27], [28]. However,
these pre-run sampling jobs will bring too much overhead
and can only be used in some special applications whose
intermediate keys are the same as the input keys, such as
join, sort, etc..

Since all of the three factors above are difficult to estimate,
we cannot make an accurate estimation of job runtime. More-
over, the only information we can get before the job execution
is the job configuration, its binary execution code and its input
data size. Then how should we estimate the job execution
time? We notice that some real world applications with large
data scale often run periodically when the input data changes
or when new data arrives. Such kind of applications include
log analysis, database operations, machine learning, data min-
ing, etc.. RoPE [15] has observed that these recurring jobs have
accounted for 40.32 percent of all jobs and 39.71 percent of all
cluster hours. Since the program complexity is the same for
the same job and the data distribution will not change too
much for the same application, we believe that the execution
speed and the ratio between the input and output size will not
change too much for the same recurring application, either.

PISCES makes use of this property by building a job history
database to record the execution information of each job. This
information is then used to estimate the execution time of the
recurring jobs. We use job name to separate the different kinds

of jobs since once the application code is written, the name of
the application will not be changed generally.

In order to estimate the runtime for a job and the input data
size of its downstream jobs, the metrics we need to predict for
each job are the processing speed of each phase in map and reduce
tasks (the ratio between the input data size and the duration of
a phase) and the output data size. Popescu et al. [29] have
observed that there are strong correlations between input
data size and output data size, and between input data size
and processing speed. They use uni-variate linear regression
model (UVLR) to estimate the runtime and the output data
size according to the input size, which can achieve less than
25 percent runtime prediction errors for 90 percent of predic-
tions. However, we notice that the execution time of reduce
tasks and the output data size can be super-linear correlated
with the input data size. For example, the reduce computa-
tional complexity of the self-join application is O(n?). There-
fore, we use a novel regression model called locally weighted
linear regression [17] to make the estimation. Instead of using
the whole observation set, LWLR estimates the target y at =
only using the ¢ observations whose z; values are closest to =
and weights these ¢ observations according to their distance
from x. That means we give those observations whose input
data size are closed to the current input data size higher
weight in the estimation. Moreover, in order to make accurate
estimation, we always prefer those latest observations since
they represent the current state of the system. Therefore, the
weight we use for the observation (y;, z;) is

1
w; (ZE) — { rank(d(z,x;))+time(x,a;) rcmk(d(x, xl)) <q 1)

0, otherwise

where rank(d(z,z;)) represents the rank of the distance
between observation z; and z (long distance has large rank
value), time(z, z;) represents the difference between current
observation id and observation id i. We only weight the ¢
observations whose x; values are closest to . According to
our weight function, we can easily find that observations
that are close to « in both time and distance will obtain high
weight in the estimation. As we will see later in the experi-
ments, our novel estimation model can achieve about
90 percent precision in both linear and super-linear applica-
tions after a few runs.

To estimate the runtime of a group of dependent jobs, the
first step is to estimate the input data size for each job. For
those jobs whose input data are ready, we can easily obtain
their input data size and estimate the runtime of each phase
and output data size using our novel LWLR model. For those
jobs whose input data have not been produced yet, we first
estimate their input data sizes according to the output data
sizes of their dependent jobs, and then use the input data size
to estimate the runtime of each phase and output data size.
When a job has no execution history, we use the average value
of all existing jobs to estimate its runtime of each phase and
output data size since we cannot get any other information.

Generally speaking, a typical MapReduce job includes a
large number of map tasks and several reduce tasks. Each map
task contains two phases: a map phase and a combine phase,
while each reduce task contains three phases: shuffle, sort, and
reduce. We can estimate the job execution time as follows:

280 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

T‘job = Rmap * (T(l\lap) + T(Comblne))

2
+ Rireduce * (T'(Shuffle) + T'(Sort) + T'(Reduce)), @

where T'(X) represents the execution time of the X phase.
Ryop and R, cquee Tepresent the number of rounds of the Map
and the Reduce tasks, respectively.

Note that in the existing MapReduce framework, when a
certain percentage of map tasks have completed (e.g., 5 to
10 percent in Hadoop), the shuffle phase of reduce tasks can
start copying its data from the map tasks. In other words,
the shuffle phase can be executed in parallel to the map
tasks. In practice, the shuffle phase of the first round reduce
tasks typically finishes around the same time as the map
tasks. For the remaining rounds of reduce tasks, since all
map tasks have completed, the shuffle phase can be exe-
cuted very quickly. Therefore, we can ignore the shuffle
time and simplify the equation as follows:

T‘joh = Rmap * (T(Nfap) + T(Combme))

+ Rireduce * (T'(Sort) + T'(Reduce)). ®
Moreover, if a job has several rounds to execute the map
or the reduce tasks, we can consider the system as running at
full capacity (i.e., no free slots) except the last round. There-
fore, we only need to consider the execution time of the map
or the reduce tasks in the last round when making schedul-
ing decisions. Our goal is to avoid the substantial decrease of
the system parallelism when the number of tasks in the last
round is small and their execution time is long. We schedule
the critical job chain with the longest total last round runtime
first so that we can have more choices to fill up the blanks in
these last rounds. For this reason, we use the execution time
of the map and the reduce tasks in the last round to represent
the execution time of the job

Tjo, = T(Map) + T'(Combine) + T'(Sort) + T'(Reduce). (4)

Furthermore, with our innovative job pipeline optimiza-
tion, the map tasks of a job can be executed in parallel with
the output tasks in the upstream jobs. Therefore, either the
execution time of reduce task in the upstream job or the execu-
tion time of map task in the downstream job needs to be calcu-
lated in our job scheduling. We modify the estimation of the
job execution time accordingly. We divide T}, into two parts.

Tiob_map = T(Map) + T(Combme))
T‘job_reduce = T(SOI‘t) + T(Reduce).

3.3.3 Job Scheduling Algorithm

After estimating the job execution time for each submitted
job, we can make a job scheduling decision to determine
which job runs first whenever there are free slots in the sys-
tem and the current job running queue is empty. PISCES
uses the modified Critical Path Method (CPM) [30] to sched-
ule a group of jobs with dependencies. The goal of the Criti-
cal Path Method is to differentiate the critical activities
which affect the progress of the project from those non-criti-
cal activities which can be delayed without making the proj-
ect longer. Then it mainly optimizes the critical activities
during its scheduling decision. We redefine the critical path
as the job chain that has the longest total last round task
runtime. We run the schedulable jobs in the critical chains

JANUARY-MARCH 2019

first when there are free slots in the system so that we can
have more choices to fill up the blanks in these last rounds.

The input of our scheduling algorithm are a group of jobs
and their dependency DAG G = <V, E>, and the estimated
task execution time for each job. Suppose that there are n
jobs in the graph G (i.e., [V'| = n) and that the estimated exe-
cution time of map and reduce task in job ¢ is Tje_ymap (i) and
Tiob_reduce(1). We add a new virtual source vertex s
(Tiob_map(s) = Tiob_reduce(s) = 0) and a directed edge from s
to each vertex whose incoming degree is zero. We also add
a new virtual sink vertex ¢ (Tjos_map(t) = Tjob_reduce(t) = 0)
and a directed edge from each vertex whose outgoing
degree is zero to .

We order the new graph G into a list by using a topologi-
cal sort. Then we calculate the earliest start time for each job
(we consider the start time of sort and reduce phases in job i
as the start time of job %) in the list as follows:

b(Z) = <§I712X61:{b(']) =+ maX{TjobJ'eduae (.7)7 Tjob_map(i)}}a (6)

where the boundary condition is b(s) = 0. The meaning of
this equation is that the earliest start time of a downstream
job is equal to the maximum value of the earliest finish time
of all its upstream jobs, because a downstream job cannot
enter the sort and the reduce phases until its last upstream
job complete. The earliest finish time of a job can be calcu-
lated by the sum of its earliest start time and its execution
time. Here we consider the execution time of an upstream
job as the duration between the start of its reduce stage and
the completion of the map stage in the current downstream
job since these two stages will be executed overlapped and
cannot be calculated twice.

Then we calculate the latest finish time for each job in
inverse topological sequence as follows:

e (Z) = min {6 (j) - Tjob_reduce (.7)

<ij>el (7)
- HlaX{O, 71joh;rnap (.]) - 71jobJ‘eriuce (2) } } 5

where the boundary condition is e(t) = b(t). This means that
the latest finish time of an upstream job is equal to the mini-
mum value of the latest start time of all its downstream
jobs, because it should not delay any of its downstream
jobs. The latest start time of a job is calculated according to
its latest finish time and its execution time. Here the execu-
tion time of a downstream job contains two parts: its reduce
execution time and the extra map execution time after the
completion of the current upstream job.

We define those jobs which satisfy the condition
b(2) + Tiob_reduce(t) = €(i) as the critical jobs. Since the jobs in
the critical chain may affect the system parallelism, we give
them higher priority during scheduling so that we can have
more choices to fill up the blanks. There may be multiple
critical chains in the DAG in which case the schedulable job
list may contain multiple critical jobs. For example, for the
job dependency DAG in Fig. 6, Table 2 shows the calcula-
tion of its critical chains. From the table we can see that job 1
and job 3 are both critical and schedulable jobs. In this case,
we schedule the job with the shortest execution time first
(i.e., job 1). The rationale is to minimize the influence due to
inaccurate execution time estimation and the uncertainty
during actual execution.

CHEN ET AL.: PISCES: OPTIMIZING MULTI-JOB APPLICATION EXECUTION IN MAPREDUCE 281

Tmi=1 Tma=1
Tri=1 Tra=3
1 4 /Tmé 2
" Tre=1
Tm2=1 \ 7 ——(t
Tr2=1
) Tms=1 Tm7=2
\Trs 6 Tr7=5
8
Critical Chains Tr3 2

Tmg=4
Tre=1

Fig. 6. Example of a job dependency DAG.

One problem of the job scheduling method is starvation:
since new jobs are submitted to the system continuously, early
jobs that are never in the critical chain will be delayed forever.
To tackle this problem, we take the job priority into consider-
ation when making scheduling decision. The priorities of the
submitted jobs are increased automatically as time goes by.
During job scheduling, we first pick the jobs with the highest
priority as the scheduling candidates and then use the CPM
method to choose one for running. A user can also increase
the priority of some jobs if they are urgent to be executed.

As we will see later in the experiments, PISCES can
make significant improvement in not only the applica-
tion execution time but also the resource utilization of
the system.

4 EVALUATION

In this section, we evaluate the performance of our PISCES
system. Here is a highlight of our findings:

1) PISCES can run data intensive iterative applications
much faster than the original MapReduce system. It
improves the system parallelism by 31 percent and
runs application 41 percent faster (Section 4.2).

2) PISCES can schedule a group of jobs more effectively.
It increases the degree of system parallelism by up to
68 percent and improves the execution speed of the
PigMix application by up to 52 percent (Section 4.3).

3) PISCES can make effective use of system resources
such as the file cache of the operating system (Section
4.3) and deal with “hard dependency” among jobs
well (Section 4.4).

10F —

o —

8t —

7t — -
o 6 — v
8 st — &
= a4t — 3

3F =]

2t —

1 j—

. . . .

0 1000 2000 3000 4000

10F —

o —

8t —

7t —
o 6r] z
S 5p — a
= a4t — i

3t —

2 s

1 j—

. . . .
0 1000 2000 3000 4000
Time (sec)

TABLE 2
Critical Chain Calculation

Tjuan,ap (Z))
T’jubJ'educe (Z)

coocow
NR ===
Q= = =N
N S
TN W
O W o= Ul
—_

Sa=No
o

= 010NN
—_

S0 = ®
28co~

4) PISCES can estimate the task execution time and out-
put data size according to the job history accurately.
The precision can reach above 80 percent in general
(Section 4.5).

4.1 Experiment Environment

We set up our experiments on a Hadoop cluster with 30
nodes on 15 servers. Each server has dual-Processors
(2.4 GHz Intel Xeon E5620 with 8 physical cores), 24 GB of
memory, and two 150 GB disks. They are connected by 1
Gbps Ethernet and controlled by the OpenStack Cloud
Operating System [31]. We use the KVM virtualization soft-
ware [32] to construct two virtual machines on each server.
Each virtual machine is of medium size with two virtual
cores, 4 GB memory and 30 GB disk space. We configure the
memory capacity for each worker node to 3 GB. The mem-
ory usages for each map and reduce task are 1 and 2 GB,
respectively. Other configurations we use for HDFS, Yarn
and MapReduce are the default configurations except as
otherwise noted. We evaluate PISCES in the following three
kinds of applications:

e Data-intensive iterative application: We use PageRank
[2] as the data-intensive iterative application. Pag-
eRank is the best-known link analysis algorithm
used in the web search area. It assigns a numerical
weight (rank) to each vertex in a hyperlinked docu-
ment graph by iteratively aggregating the weights
from its incoming neighbors. We apply it to the free
ClueWeb09 web graph full dataset [33]. The total
input data size is about 30 GB.

e Database operations: We use the PigMix2 benchmark
[34] which is a set of queries used to test pig perfor-
mance as the database applications. This benchmark
contains some most commonly used operations, such
as select, count, group, join, union, etc. We run it on a

120+ - - #Map Running Tasks
© 100+ — #Reduce Running Tasks
K ey L4 " -
e T O T T O R 4
c 1 " 1 1 [! [l aQ
£ 1 1 1 1 1 1 1 it o
601 1 1 it
€ 1 : 1 : [I il Y " ' ' s
5
goaort v b h Dy v sy
ot PV A S AWAL
0 1000 2000 3000 4000
120F ') - - #Map Running Tasks
© 100 — #Reduce Running Tasks
] .
© 80#' i ,-", N -", FORL O -
2 L 2
£ 60Fr g o1ty '| .I 1y L 9
§ [e . LI B ' 'y wn
@40 iy TV Ty h o T
20t
MLV RN VI Vo oA S
oLls VAN L} LV AW LY AW VA L
0 1000 2000 3000 4000
Time (sec)

Fig. 7. Job execution time (left) and parallelism of the system (right) in PageRank.

282

Fig. 8. Job dependency DAG.

data set of 80 GB. The queries we used are the combi-
nation of some simple queries.

e Machine Learning application with hard dependency: We
use Naive Bayes example in Mahout [20] as the
machine learning application. Naive Bayes algorithm
is a simple classifier based on Bayes theorem which
assumes the features have strong independence with
each other. In Mahout example, it is used to classify
20 news groups for the 45 MB news data set.

We execute each test case at least three times and take
their average value. We compare PISCES with Hadoop
and PIG. We take the total execution time of the job
group and the parallelism of the system as our primary
metrics to measure the effectiveness of our PISCES
system.

4.2 Data-Intensive lterative Application

To demonstrate the advantage of the pipeline optimization
in PISCES, we run the PageRank application ten iterations.
The execution time of each iteration and the parallelism of
the system is shown in Fig. 7. From the figure we can see
that the degree of parallelism in PISCES is 31 percent higher
than that in Hadoop. The execution speed in our system is
41 percent faster than that in Hadoop. Moreover, we can see
that PISCES decreases the interval between each iteration.
This is because the map phase of a downstream job can be
started much earlier when its upstream job has generated a

7t]

6F e
5 5f —|
S 4| — =
S3m

2l ——

1+ —

0 200 400 600 800

7t 1 =

6F [— a

5- — &
a 2
S 4 — 3
S3m =)

2t I B

1 m 15",

0 200 400 600 800

7t —

6F]

3 ——— .
a b
S 4} — @
S 3m o

2t ——

1+ m

0 200 400 600 800

Time (sec)

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

JANUARY-MARCH 2019

certain amount of output data. As a result, we can take full
advantage of the resources in the system during the execu-
tion. The average and the standard deviation (stdev) of
resource usage among all virtual machines are shown in
Fig. 10. As we can see from the figure, PISCES makes more
effective use of resources (e.g., CPU).

4.3 Database Operations

To evaluate how PISCES can do better in job scheduling
than PIG, we run the PigMix2 benchmark with 80 GB data.
The dependency DAG of the job group is shown in Fig. 8.
The execution time of each job and the parallelism of the
system is shown in Fig. 9. From the figure, we find that the
improvement of PISCES is significant: the execution speed
in PISCES is 52 percent faster than that in PIG. Even without
pipeline optimization, PISCES can run 22 percent faster than
PIG. The degree of system parallelism (measured by the
number of concurrent running tasks) in PISCES is 68 per-
cent higher than in PIG.

Interestingly, the figure shows that some downstream
jobs run substantially faster in PISCES than in PIG. An
example is job 6 (colored blue) in the figure. To understand
the reason, we collect the resource usage statistics of the
system using vmstat tool every three seconds. The average
and the standard deviation (stdev) of resource usage among
all virtual machines are shown in Fig. 11. From the CPU
and I/O usage figures, we can see that at around 300 sec-
onds, the average CPU usage and I/O bandwidth are very
high while the stdev is low, which means PISCES can make
more effective use of CPU resource and I/O bandwidth.
From the swap usage figure, we can see that at around 300
and 600 seconds, there are two swap peaks in PIG. The rea-
son that PIG needs more swap operations is that the
upstream job and the downstream job in PIG are not sched-
uled next to each other. Therefore, it cannot take advantage
of the file cache of the operating system. In contrast, in
PISCES as soon as an output data block of an upstream job
is written to the file system, it can be executed by the map
task of a downstream job. This allows PISCES to take full
advantage of the file cache.

100 -
- . - - #Map Running Tasks
9 g lreegrs e)
u 80 Barat :If"" — #Reduce Running Tasks
= ' ' [FI]
= 60} ' e o
£ aof ol “
2 1 o
g 20§ 1 1 1 i
1 1 1 i
% 100 200 300 400 500 600 700 800
100 T T T -
” . ‘,\,_,Hr,_ - - #Map Running Tasks 2
3 8o} Y e — #Reduce Running Tasks | Q
© w
60 ! =
g I ' 3
£ 40} \ hel
2 ' B
200 ' ; 5
—— A 2
% 100 200 300 400 500 600 700 800
100 : . . i
o~y pme sy - - #Map Running Tasks
v "o .)
H 80 ft 'ﬁ'f"‘.‘ b — #Reduce Running Tasks
=) "
> 60 L' ' 2
£ - 8
c 40r 1 h
2 1
20} 1
1 - AY
00 100 200 300 400 500 600 700 800

Time (sec)

Fig. 9. Job execution time (left) and parallelism of the system (right) in PigMix.

CHEN ET AL.: PISCES: OPTIMIZING MULTI-JOB APPLICATION EXECUTION IN MAPREDUCE 283
_ 128 F ' ' ' - - Hadoop 100 X Ao T-- Pig
o F -_ 1
€ ool — PISCES | X 80 1.0 -+- PISCES (no pipeline)
2 - 1
& 100 2 o H — PISCES
o 80 ©
o ()
2 60 2 40 1
g 40 5 \
> -
< 20 e) -0]
0 Aot 1y
n n h n M BRALERY ro TN
00 100 200 300 400 500 600 700 800 900
40
b 40
[f A 1 35 - . |
530 ¢ " J'~ | PR Y 30} BN 1
225 | Ay A R [) > B
p= L e (A) Wi b 'K 25 1
D20 F 8 Ay | o R o bR <1
> i ! n 20 1
a 15 1 T i o} “ "y M o>
O 1 L I i v a 15 1
10 ' L 7] ' O -
5 IIII ! N 10 Laa
5 - 1
0 . . : '
0 1000 2000 3000 , , , , , P —
Time (seq) Og 100 200 300 400 500 600 700 800 500
Time (sec)
led . . .
% 25+ - - Hadoop 70 led - T T T T T
& — PISCES 5 70 -- Pig
> 20 r ‘OSJ, 6.0 | --- PISCES (no pipeline) 1
5 15 £5.0| — PISCES 1
© 0a40f 1
o
e $30r . e 1
g Sa0f N) 1
z g & [.
Z 10} 1 .‘..—' _____ Al 4
0.0 . ML Y SRRk o SIS X, Lot SRRy
Y0 100 200 300 400 500 600 700 800 900
led
1.8
16} 1
3 14 - 1
5038 zl2r !]
Vo6 Sl0 : \ (2 1
o) [= h Sl]
- o 0.8 N S AR
=0.6r A5 W A 1
' 0.4 F : T 1
00, 1000 2000 3000 4000 5000 2 ‘ S R A LT
Time (sec) Y0 100 200 300 400 500 600 700 800 900
Time (sec)
— 10.0 1&2 . . .
0 - - Hadoop 1.6 le2 . . § §
% 80 — PISCES g 1al " -- Pig
< 21510 o -+ PISCES (no pipeline)
< 2 1 _
E 210} n PISCES
9 08¢ . 1
e 0 0.6 f ' \]
E goar) o - ‘
20-2 [z~ | 2 "\ Ao I - - 1
L g = M. Do s T
Y0 100 200 300 400 500 600 700 800 900
le2
3.5
3.0 171]
325 |
B : -
F20¢t : bl 1
15+t -_l ! ' 1
drop LIAG A o]
005 1000 2000 3000 4000 5000 05 [k S a0 Tt 1
Ti il it T " Kl vl P LR AL LI TP
ime (sec) 000160 200 300 400 500 600 700 800 900
Time (sec)

Fig. 10. Resource usage of the system in PageRank.

Moreover, the figure shows that the pipeline optimization
not only improves the performance of PISCES but also opti-
mizes its job scheduling decisions. Without pipelining,
PISCES schedules job 2 (colored green) first after job 4 (col-
ored purple) while with pipelining it schedules job 5 (colored
yellow) first. This is more desirable since job 5 is on the criti-
cal chain. The reason for this difference is the following: Job 4
released some free slots at around 100 seconds as some (but
not all) of its reduce tasks complete. Without pipelining,
PISCES cannot issue job 5 at this moment because job 4
(which it depends on) has not yet entirely finished. In con-
trast, with pipelining PISCES can initiate job 5 since job 4 has
already produced a certain amount of output data.

Fig. 11. Resource usage of the system in PigMix.

4.4 Machine Learning Application

To demonstrate the effectiveness of PISCES in machine
learning applications with “hard dependency”, we run the
Naive Bayes application in Mahout. The execution time of
each job is shown in Fig. 12. From the figure, we can see that
in Naive Bayes application, even through there exist some
hard dependencies between the jobs, we can still achieve
30 percent improvement on the execution speed.

4.5 Accuracy of Prediction
As described in Section 3.3.2, we use the locally weighted
linear regression model to estimate the runtime of the

284 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

F ==
11r -
H -—
of]
F] T
Q 7t — o
gt = g
= 5f == 3
H [
3+ _—
I o
1
L L n L n n
0 100 200 300 400 500 600
F [e—
11r -
F -
9F —
H — -
o 7t —]
2 F] (e}
= st [*
F]
3t [
-
1w
0 100 200 300 400 500 600
Time (sec)

Fig. 12. Job execution time in Naive Bayes application.

submitted jobs. To evaluate how accurate our predictions
are, we first run the PigMix2 benchmark with 30 random
data sizes. For each data size, we run L1 to L17 pig scripts
(most of which are input size and runtime linear-correlated
applications) and then calculate the average precision of the
execution time and the output size estimations. The result is
shown in the left-hand side of Fig. 13. From the figure, we
can see that the precision of both uni-variate linear regres-
sion and locally weighted linear regression can reach above
80 percent after a few runs. To demonstrate the precision of
the predictions for the super-linear applications, we run the
self-join application with 30 random data sizes (each data
set is uniformly distributed). The result is shown in the right
of Fig. 13. From the result, we can see that the precision of
our LWLR model can reach above 90 percent after a few
runs. However, the precision of reduce time and the output
size in UVLR model are much worse than that in our
LWLR. It can result in poor prediction accuracy even after
many runs. The reason is that uni-variate linear regression
cannot deal with super-linear applications well.

5 RELATED WORK

Scheduling is a common and important problem in the dis-
tributed and parallel computing area. In MapReduce, it can
be divided into two categories: fine-grain task scheduling and
coarse-grain job scheduling. For fine-grain task scheduling,
there are several prior studies attempting to provide special

100 F
80 | =
60 | °
40 -- UVLR 5‘
=S 20¢f — LWLR|| @
S n
- 0 5 10 15 20 25 30
o F -~
(0] c
& 60 B
c 40 =
2 20! 3
© 0 " " " " " o
E "o 5 10 15 20 25 30
Z 100 F - - s a . °
80 <
60 | 2
40 @
20 N
%% 5 10 15 20 25 30

#Datasets

JANUARY-MARCH 2019

strategies for multiple purposes. Fair Scheduling [10] focuses
on the fairness among the users. Capacity Scheduling [10]
supports the fairness and resource-intensive jobs. Quincy [7]
and Delay Scheduling [8] consider the tradeoff between fair-
ness and data locality. The approach in [6] focuses on priori-
tizing the users, the stages and the bottleneck components by
dynamically configuring the priority of different phases. Mul-
tiple resource scheduling [35] studies heterogeneous resource
demands and the fairness among the users. LATE [24], Mantri
[36], and MCP [23] tackle stragglers. All of the above
approaches only consider how to schedule tasks within a job.
Since MapReduce itself does not support the dependency
analysis among the jobs, these approaches use only the sim-
plest queue based FIFO strategy to schedule jobs.

In order to make MapReduce support complex queries,
there are several approaches providing easy-to-use SQL like
languages to simplify the programming of MapReduce and
generating multi-job workloads. For example, Pig [9] for
Apache Hadoop, Scope [11] for Microsoft Dryad, and
Tenzing [13] for Google MapReduce use traditional query
optimization strategies from the database area to transform a
query into an internal parse tree and then translate the tree
directly to a physical job execution plan by traversing the tree
in a bottom-up fashion. These approaches provide a simple
coarse-grain job scheduling to satisfy the dependency rela-
tionship among multiple jobs at a higher level than MapRe-
duce. Therefore, they cannot schedule jobs according to the
detailed job execution information or take advantage of the
general job pipeline mechanism between dependent jobs.

There are also multiple work focusing on optimizing the
coarse-grain job scheduling for these multi-job workloads.
HiveQL [14], YSmart [37], MRShare [38], Starfish [39], RoPE
[15] and Stubby [40] all use a series of hand-crafted rules to
further optimize the job execution plans. HiveQL performs
multiple passes over the logical plan using some optimiza-
tion rules. For example, it combines multiple joins that share
the same join key into a single multi-way join, provides
repartition operators for some MapReduce operators, and
puts predicates closer to the table scan operators in order to
cut away columns early and minimize the amount of data
transferred between jobs. YSmart translates queries based
on four job primitive types: selection-projection, aggrega-
tion, join and sort. It then merges the MapReduce jobs
according to their primitives to minimize the total number

100 f " - N " — -

o]
o
’

» o
oo

N
o
awi] dep

o

100

©
o

N D
oo

o

Estimation Precision (%)
()]
o

100

N D O 0
[SE-R-E=]

© 5215 3nding © dwiL 9donpay ©

o
o
v

#Datasets

Fig. 13. The accuracy of job runtime estimation in linear (left) and super-linear applications (right).

CHEN ET AL.: PISCES: OPTIMIZING MULTI-JOB APPLICATION EXECUTION IN MAPREDUCE 285

of jobs. MRShare merges the similar jobs into a group and
evaluates each group as a single job based on a cost model.
Starfish provides only a cost-based configuration optimiza-
tion for a group of jobs. RoPE [15] adapts execution plans
based on estimates of code and data properties. It collects
properties at many locations in each single pass over data,
matches statistics across sub-graphs and adapts execution
plans by interfacing with a query optimizer. For instance, it
can coalesce operations with little data into a single physical
operation, reorder commutative operations so that the more
selective operation (one with a lower output to input ratio)
runs first, and re-optimize future invocations for recurring
jobs. Stubby is a cost-based optimizer that provides vertical
packing (converting some special jobs into Map-only jobs
and merging Map-only jobs with previous jobs), horizontal
packing (just like MRShare), partition function (just like
HiveQL and RoPE) and configuration transformations (just
like RoPE and Starfish) to optimize the execution plan for a
group of jobs. These rule-based approaches focus only on
how to simplify and optimize a job execution plan and care
less about the real execution of the plan. This is because they
work at a higher level in the software stack than MapReduce
and thus do not have access to detailed job execution infor-
mation. Therefore, they cannot accurately estimate job execu-
tion time and figure out the critical chain in a series of jobs.
Moreover, they cannot take advantage of the general job exe-
cution overlapping among dependent jobs for the underly-
ing MapReduce system knows little dependency
information among jobs. However, our PISCES is imple-
mented in the MapReduce framework. Therefore, we can
further improve the real execution of the optimized job exe-
cution plan by overlapping the output phase of the upstream
jobs and the map phase of the downstream jobs, estimating
the accurate execution time for all jobs, and running the criti-
cal jobs preferentially. FlowFlex [16] provides a theoretical
malleable scheduling for multi-job workloads. However, the
fixed amount of work unit for each job in its model is hard to
measure in the real computing environment. Additionally, it
is hard to add our new overlapping feature of dependent
jobs into its theoretical scheduling model.

MapReduce Online [3] and HPMR [4] provide intermedi-
ate data pipelining between the map and the reduce stages in
a job in order to adjust their load dynamically. They do not
support the kind of parallelism in execution among depen-
dent jobs the way we do. MapReduce Online supports online
aggregation by applying the reduce function to the partial
map intermediate data received so far, generating an interme-
diate output snapshot (different from the final output), and
pipelining the intermediate output snapshot to the down-
stream job for execution. It will generate many intermediate
output snapshots for each job on different percentage of the
map intermediate data. Each time a new intermediate output
snapshot is generated, it will re-execute all the downstream
jobs. This is quite different from our pipeline mechanism. In
fact, MapReduce Online cannot save the total execution time
of the group of jobs because when the final intermediate out-
put snapshot (i.e., the final output) of an upstream job is gen-
erated, all the downstream jobs still need to be re-executed.

For iterative applications, Haloop [41] provides an
extension for MapReduce to support multiple stages in a

job instead of the original map and reduce two stages
and does loop-aware task scheduling by adding a variety
of caching mechanisms. It is quite different from our
optimization. We can add our data pipeline mechanism
into Haloop to further improve the efficiency of the
system.

6 CONCLUSION

Job scheduling is essential to the multi-job applications in
MapReduce. This paper has presented PISCES, a system
that implements an innovative pipeline optimization among
dependent jobs and a critical chain job scheduling model in
an existing MapReduce system to minimize the application
execution time and maximize resource utilization and
global efficiency of the system. PISCES extends the MapRe-
duce framework to allow scheduling for multiple jobs with
dependencies by building a dependency DAG for the run-
ning job group dynamically. It innovatively overlaps the
output phase of the upstream jobs and the map phase of the
downstream jobs, accurately estimates the job execution
time based on detailed historical information, and effec-
tively schedules multiple jobs based on a critical job chain
model. Performance evaluation demonstrates that the
improvement of PISCES is significant and that PISCES can
make effective use of system resources such as the file cache
of the operating system.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their invaluable feedback. This work was supported by the
National High Technology Research and Development Pro-
gram (“863” Program) of China (Grant No.2013AA013203)
and the National Natural Science Foundation of China (Grant
No. 61572044). The contact author is Zhen Xiao.

REFERENCES

[1] J.Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, pp. 107-113, Jan. 2008.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
Web search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7,
pp- 107-117, 1998.

[3] T.Condie, N. Conway, P. Alvaro,]. M. Hellerstein, K. Elmeleegy,
and R. Sears, “MapReduce online,” in Proc. 7th USENIX Conf. Net-
worked Syst. Des. Implementation, 2010, pp. 21-21.

[4] S. Seo, L Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng, “HPMR:
Prefetching and pre-shuffling in shared MapReduce computation
environment,” in Proc. IEEE Int. Conf. Cluster Comput. Workshops,
2009, pp. 1-8.

[5] J. Wolf, et al., “On the optimization of schedules for MapReduce
workloads in the presence of shared scans,” VLDB J., vol. 21,
no. 5, pp. 589-609, Oct. 2012.

[6] T.Sandholm and K. Lai, “MapReduce optimization using regu-
lated dynamic prioritization,” in Proc. 11th Int. Joint Conf. Meas.
Modeling Comput. Syst., 2009, pp. 299-310.

[7] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM 22nd Symp. Operating Syst. Principles, 2009,
pp- 261-276.

[8] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265-278.

[9] C.Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: A not-so-foreign language for data processing,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2008, pp. 1099-1110.

[10] [Online]. Available: Apache hadoop, http:/ /hadoop.apache.org/

http://hadoop.apache.org/

286

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.7, NO.1,

R. Chaiken, et al., “SCOPE: Easy and efficient parallel processing
of massive data sets,” Proc. VLDB Endowment, vol. 1, pp. 1265—
1276, Aug. 2008.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,”
in Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp- 59-72.

B. Chattopadhyay, et al., “Tenzing a SQL implementation on the
MapReduce framework,” Proc. VLDB Endowment, vol. 4, pp. 1318-
1327, Sep. 2011.

A. Thusoo, et al., “Hive: A warehousing solution over a map-
reduce framework,” Proc. VLDB Endowment, vol. 2, pp. 1626-1629,
Aug. 2009.

S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and
J. Zhou, “Re-optimizing data-parallel computing,” in Proc. 9th
USENIX Conf. Networked Syst. Des. Implementation, 2012,
pp- 281-294.

V. Nagarajan, J. Wolf, A. Balmin, and K. Hildrum, “FlowFlex:
Malleable scheduling for flows of MapReduce jobs,” in Proc.
ACM/IFIPJUSENIX 14th Int. Middleware Conf., 2013, pp. 103-122.
W.S. Cleveland and S.]. Devlin, “Locally weighted regression: An
approach to regression analysis by local fitting,” |. Amer. Statistical
Assoc., vol. 83, no. 403, pp. 596610, 1988.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Operating Syst. Principles, 2003, pp. 29-43.

J. Lin, “Cloud9: A MapReduce library for hadoop. [Online]. Avail-
able: http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/
index.html

Apache mahout: Scalable machine learning and data mining.
[Online]. Available: https:/ /mahout.apache.org/

M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flow-
shop and jobshop scheduling,” Mathematics Operations Res., vol. 1,
no. 2, pp. 117-129, 1976.

J. Polo, et al., “Performance-driven task co-scheduling for MapRe-
duce environments,” in Proc. IEEE Netw. Operations Manage.
Symp., 2010, pp. 373-380.

Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce perfor-
mance using smart speculative execution strategy,” IEEE Trans.
Comput., vol. 63, no. 4, pp. 954-967, Apr. 2014.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, pp. 29-42.

M. Lakshmi and P. Yu, “Limiting factors of join performance on
parallel processors,” in Proc. 5th Int. Conf. Data Eng. 1989,
pp. 488-496.

C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” School Comput. Queen’s Univ., Kingston, ON, Canada,
Tech. Rep. 2007-54, 2007.

A. Okcan and M. Riedewald, “Processing theta-joins using
MapReduce,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2011, pp. 949-960.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions,” in Proc. 1st ACM Symp. Cloud Comput., 2010,
pp- 75-86.

A.Popescu, V. Ercegovac, A. Balmin, M. Branco, and A. Ailamaki,
“Same queries, different data: Can we predict runtime perform-
ance?” in Proc. IEEE 28th Int. Conf. Data Eng. Workshops, 2012,
pp- 275-280.

J. E. Kelley, Jr and M. R. Walker, “Critical-path planning and
scheduling,” in Proc. Eastern Joint IRE-AIEE-ACM Comput. Conf.,
1959, pp. 160-173.

Open stack cloud operating system. [Online]. Available: http://
www.openstack.org/

K. Avi, K. Yaniv, L. Dor, L. Uri, and L. Anthony, “KVM: The
Linux virtual machine monitor,” in Proc. Linux Symp., 2007,
pp- 225-230.

Clueweb09 data set. [Online]. Available: http:/ /boston.lti.cs.cmu.
edu/clueweb09/wiki

Pigmix2. [Online]. Available: https://issues.apache.org/jira/
browse/pig-200

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Networked Syst.
Des. Implementation, 2011, pp. 323-336.

[36]

[37]

[38]

[39]

[40]

[41]

JANUARY-MARCH 2019

G. Ananthanarayanan, et al, “Reining in the outliers in Map-
Reduce clusters using Mantri,” in Proc. 9th USENIX Conf. Operat-
ing Syst. Des. Implementation, 2010, pp. 265-278.

R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “YSmart:
Yet another SQL-to-MapReduce translator,” in Proc. 31st Int. Conf.
Distrib. Comput. Syst., 2011, pp. 25-36.

T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas,
“MRShare: Sharing across multiple queries in MapReduce,” Proc.
VLDB Endowment, vol. 3, no. 1/2, pp. 494-505, Sep. 2010.

H. Herodotou, et al., “Starfish: A self-tuning system for big data
analytics,” in Proc. 5th Biennial Conf. Innovative Data Syst. Res.,
Jan. 2011, pp. 261-272.

H. Lim, H. Herodotou, and S. Babu, “Stubby: A transformation-
based optimizer for MapReduce workflows,” Proc. VLDB Endow-
ment, vol. 5, no. 11, pp. 1196-1207, Jul. 2012.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Effi-
cient iterative data processing on large clusters,” Proc. VLDB
Endowment, vol. 3, no. 1/2, pp. 285-296, Sep. 2010.

Qi Chen received the bachelor's degree from
Peking University, in 2010. She is currently work-
ing toward the doctoral degree at Peking Univer-
sity. Her current research focuses on the cloud
computing and parallel computing.

Jinyu Yao received the bachelor's degree from
Peking University, in 2010. He is currently work-
ing toward the master’s degree in the School of
Electronics Engineering and Computer Science,
Peking University. His current research focuses
on the cloud computing and parallel computing.

Benchao Li received the bachelor’s degree from
Beijing University of Posts and Telecommunica-
tions, in 2014. He is currently working toward the
master's degree in the School of Electronics
Engineering and Computer Science, Peking Uni-
versity. His current research focuses on the cloud
computing and parallel computing.

Zhen Xiao received the PhD degree from Cornell
University, in January 2001. He is a professor in
the Department of Computer Science, Peking Uni-
versity. After that he worked as a senior technical
staff member with AT&T Labs, New Jersey and
then a research staff member with IBM Thomas J.
Watson Research Center. His research interests
include cloud computing, virtualization, and vari-
ous distributed systems issues. He is a senior
member of the ACM and the |IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/index.html
http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/index.html
http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/index.html
https://mahout.apache.org/
http://www.openstack.org/
http://www.openstack.org/
http://boston.lti.cs.cmu.edu/clueweb09/wiki
http://boston.lti.cs.cmu.edu/clueweb09/wiki
https://issues.apache.org/jira/browse/pig-200
https://issues.apache.org/jira/browse/pig-200

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

