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Abstract—Blockchain sharding technology has been used to
enhance the scalability of blockchain systems. As the number
of shards increases, the high latency inherent in cross-shard
transactions gradually becomes a bottleneck, hindering improve-
ments in overall system efficiency. Therefore, reducing the latency
of cross-shard transactions is significantly important. However,
existing mechanisms for handling cross-shard transactions fail
to minimize the latency of cross-shard transactions and have
not fully used the bandwidth available within shards. In this
paper, we introduce Presto, a protocol designed for the account-
state-based blockchain, which reduces the latency of handling
cross-shard transactions. Presto leverages the concept of opti-
mistic pre-execution along with pending tree to optimize cross-
shard transaction processing. Presto also employs predistribution
of cross-shard transactions with Erasure Coding to efficiently
utilize bandwidth resources. We have developed an prototype
and conducted extensive experiments on a cloud platform. The
evaluation results indicate that Presto surpasses existing solutions
in terms of system throughput, transaction confirmation latency,
and mempool queue size, demonstrating Presto’s potential to
significantly improve blockchain scalability and user experience.

Index Terms—Blockchain, Sharding Consensus, Byzantine
Fault Tolerance

I. INTRODUCTION

As blockchain technology gains widespread adoption across
various industries, the quality of service (QoS) it provides
becomes increasingly critical, particularly for applications
that are highly sensitive to delays. Transactions that fail
to complete within expected time not only compromise the
user experience but also hinder critical business processes,
potentially disrupting normal operations. When the incoming
transaction volume exceeds the processing capacity of the
blockchain, the accumulation of transactions in a queue causes
longer processing times and increased latency. Consequently,
addressing scalability and enhancing transaction processing
speed have emerged as focal points in the evolution of
blockchain technology to improve service quality and meet
the high-performance demands of various sectors.

Sharding technology has emerged as a promising solu-
tion for scaling blockchain systems. It allows for parallel
transaction processing across shards to reduce storage and
computational burden. Transactions executed within a single
shard, referred to as intra-shard transactions, benefit from

efficient processing and low latency. However, cross-shard
transactions, which depend on states across multiple shards,
introduce significant challenges. These challenges manifest
as increased latency and degraded system throughput com-
pared to intra-shard transactions, hindering scalability and
overall performance. Statistics [1] indicate that over 96% of
transactions in sharding blockchain systems are cross-shard,
which can significantly impact overall system performance.
This high proportion of cross-shard transactions has prompted
research efforts to focus on two main aspects: reducing the
ratio of cross-shard transactions [2] and optimizing the cost
of processing cross-shard transactions. Our work focuses on
reducing the cost of cross-shard transaction processing and
optimizing latency.

Existing approaches to address cross-shard transactions can
be broadly categorized into relay and two-phase commit (2PC)
methods. Relay-based solutions, such as Monoxide [3], exe-
cute transactions sequentially: the relay transactions are first
processed in the source shard and then sent to the target shard
to complete the processing. This sequential process requires
both shards to wait for two rounds of consensus, resulting
in higher latency and lower throughput, potentially negating
the scalability benefits of sharding. BrokerChain [4] proposes
using third-party clients as relays for cross-shard transactions
to alleviate the load on leader nodes. However, this approach
lacks sufficient decentralization, introducing reliability issues
and susceptibility to censorship attacks, with varying service
quality affecting user experience. Alternatively, two-phase
commit-based mechanisms needs many rounds of communi-
cation between involved shards, leading to long processing
time and potential unavailability of certain states during the
consensus rounds. The two-phase commit (2PC) protocol such
as Pyramid [5] comprises a prepare phase and a commit phase,
each involving Byzantine Fault Tolerant (BFT) consensus [6]
among participating shards. The prepare phase guarantees
input availability, while the commit phase ensures transaction
validity. Upon commitment of input availability in the prepare
phase, access to the input is restricted until the commit
phase determines transaction validity. This process leads to
exceptionally high latency, which is intolerable for users.

In this paper, we present Presto, a novel mechanism aims
at improving the latency of cross-shard transactions. The



fundamental idea is to handle cross-shard transactions proac-
tively and optimistically, while distributing the bandwidth
load across nodes in shard to minimize the leader node’s
burden. It is worth noting that numerous challenges exist in
the design process. First, proactive execution poses security
risks. Overly optimistic processing may lead to the execution
of unauthenticated transactions on the target shard, enabling
malicious actors to blindly consume resources. Ensuring the
correctness of cross-shard transactions during execution is
a significant challenge. We discover that transactions that
pass at least the first round of PBFT [6] consensus can
be guaranteed to be correct. Therefore, the target shard can
pre-excute cross-shard transactions after receiving the first-
round consensus result of the source shard to shorten the
consensus process and improve the latency of cross-shard
transactions. Second, ensuring reliable message transmission
between shards during the transfer process while efficiently
utilizing idle bandwidth across nodes in each shard is crucial
for guaranteeing the atomicity of cross-shard transactions. This
poses a significant challenge that requires designing a new
cross-transaction relay mechanism to achieve both reliability
and bandwidth efficiency.

The main contribution of this paper are summarized as
follows:

• Low-Latency scheme for cross-shard transaction pro-
cessing: We provide a detailed process analysis for cross-
shard transactions and introduce a new insight to reduce
the cross-shard transaction processing latency. We decou-
ple the consensus process and design a pending tree data
structure to increase transaction concurrency.

• Efficient cross-shard transactions transmission mech-
anism: Based on our analysis of bandwidth for shard
transaction transmission, we pre-distribute transaction
transmission using erasure coding (EC) [7] and design
a succinct and reliable transmission protocol.

• Theoretical analysis: We conduct a theoretical analy-
sis of the proposed cross-shard transaction processing
mechanism, focusing on security and transaction atomic-
ity. Several potential malicious behaviors are discussed,
and corresponding defense mechanisms are explained to
demonstrate the robustness of our approach.

• System implementation: Finally, we have implemented
an emulator version of Presto based on BlockEmulator
[8], a popular sharding blockchain prototype. Results
indicate that Presto can improve latency by 66%, 54%
and the TPS by 63%, 48% compared to BrokerChain and
Monoxide in a given environment.

II. RELATED WORK

A. Sharding

Sharding has emerged as a promising solution to ad-
dress the scalability and performance limitations of tradi-
tional blockchain systems [9] [10]. By partitioning transactions
across multiple shards, which operate independently and pro-
cess transactions in parallel, sharding significantly enhances

throughput of transactions [11]. Traditional blockchain shard-
ing mechanisms can be categorized based on their account
models, such as the account balance model and the Unspent
Transaction Output (UTXO) model [12]. Elastico [13], Om-
niLedger [14], and RapidChain [1] are notable implemen-
tations of sharding using the UTXO model, demonstrating
the feasibility of distributing the ledger’s state across mul-
tiple shards while maintaining network integrity and security.
OptChain [15] further evolves sharding by implementing a
new method for account state partitioning, potentially reducing
the overhead associated with cross-shard transactions and
simplifying state management. Brokerchain [4] protocol em-
ploys Metis algorithm into fine-grained state partitioning and
account segmentation to balance workloads across different
shards, mitigating the ‘hot shard’ problem.

B. Cross-Shard Transaction Processing

Several approaches have been proposed to handle cross-
shard transactions. Monoxide [3] introduces an account
balance-based sharding system, addressing the complexities
of cross-shard transactions through a relay mechanism that
ensures efficient processing and maintains consistency and
atomicity. Another relay-based method [16] [17], Brokerchain
[4] uses a third-party broker as an intermediary for token
transfers. The 2PC-based methodology, exemplified by the
Pyramid [5] system, allows shards to overlap, enabling some
nodes to belong to more than one shard and facilitating the
direct processing of cross-shard transactions. Pyramid consol-
idates cross-shard transactions into a single block, processed
by nodes situated in the intersection of the involved shards,
enhancing overall system performance. CHERUBIM [18],
which is also based on the two-phase commit (2PC) protocol,
employs pipeline technology to further enhance the throughput
of cross-shard transactions. However, it does not effectively
address the issue of prolonged latency. The Benzene [19]
architecture presents a cooperation-based mechanism that sep-
arates transaction recording and consensus execution. In this
dual-chain structure, consensus on proposer blocks is achieved
through the concerted efforts of multiple shards, involving
transaction recording, verification in a Trusted Execution Envi-
ronment (TEE) [20], vote generation, and block confirmation.
However, the requirement for nodes to operate within a
TEE (Trusted Execution Environment) imposes limitations on
Benzene.

While each approach has unique attributes, they collectively
contribute to addressing the burden of cross-shard transactions
and represent the diverse strategies being explored to en-
hance scalability, efficiency, and security in sharding systems.
However, these approaches fail to fundamentally reduce the
processing requirements of cross-shard transactions, leaving
the issue of increased transaction latency largely unaddressed.
In contrast, Presto can expedite cross-shard transaction pro-
cessing, leading to a significant reduction in latency.



III. SYSTEM MODEL

Presto adopts an account/balance model. Each shard main-
tains a set of account state, ensuring efficient parallel process-
ing and scalability. Each set of state is completely separate
across the shards and all of them form a unified global ledger
state.

Presto employs a partially synchronous peer-to-peer net-
work model [21] for inter-node communication. In this model,
nodes are connected through a network that allows messages
to be relayed from one node to another within the network’s
boundaries. There exists an upper bound ∆ on the message
transmission delay. This bound is not known a priori but is
guaranteed to exist and hold after some unknown time GST
(Global Stabilization Time) [21]. The partially synchronous
model captures the realistic behavior of networks, where mes-
sage delays may vary and be unpredictable, but are eventually
bounded.

We hypothesize that the system comprises N full nodes,
with a maximum of f nodes being malicious. The number of
nodes required for consensus is denoted as N >= 3f + 1 as
other byzanting resistance blockchain systems [22]. The Presto
protocol utilizes PBFT for intra-shard consensus, ensuring
agreement within each shard. Presto facilitates compatibility
with alternative consensus algorithms like HotStuff [23] [24],
allowing for adaptability to different blockchain ecosystems.
In Presto, malicious full nodes are unable to forge signatures
but they retain the ability to execute a range of attacks. These
potential attacks include delaying or omitting messages and
sending fake messages. To resist an Eclipse attack [25], a node
must connect to more than f other nodes, where f represents
the maximum number of malicious nodes in the network.
Malicious can also deploy adaptive attacks [26] targeting
individual shards, potentially compromising the single shard’s
security requirements. To resist such attacks, it is imperative to
implement a strategy that includes random shard assignment
and a robust reconfiguration scheme. Several established meth-
ods, such as those based on Proof-of-Work (PoW) puzzles,
referenced in works like [1] and [14], alongside the cuckoo
rule [27], have been proven effective in protecting sharding
systems against adaptive attacks. So we can assume that every
shard is honest. It is important to note that the research on this
assignment mechanism is orthogonal to the main contribution
of this paper.

IV. SYSTEM OVERVIEW

Presto solves the long latency problem of handling cross-
shard transaction by optimizing consensus process and expe-
diting cross-shard transaction dissemination through a series
of innovative mechanism. Presto’s workflow consists of four
main phases: Source Execution Phase, Reliable Relay Phase,
Target Execution Phase and Final Redemption Phase. In each
shard of Presto, a randomly elected leader initiates consensus
epochs by proposing blocks containing both cross-shard and
intra-shard transactions. Leader in Presto leverages erasure
coding to split block into small pieces. Then leader distributes
the pieces to nodes in shard to optimize network bandwidth
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Figure 1. Optimization of consensus layer in processing cross-shard transac-
tions.

utilization during proposing phase. During proposing phase of
consensus in the source shard, the nodes in the source shard
also transmit the received pieces of cross-shard transactions to
target shard. After cross-shard transactions are validated on the
source shard, the nodes in source shard send confirm proof to
the target shard. Upon collecting enough pieces of cross-shard
transactions with confirm proof, target shard nodes reconstruct
the complete transactions and add them to their mempool.

Deviating from traditional approaches that necessitate all
responding shards’ finalization before token is available to be
spent on target shard, Presto introduces the innovative Pending
Tree mechanism to pre-utilize the unfinalized token in target
shard. The pending tree is a buffering sketch that temporar-
ily holds unfinalized transactions, enabling immediate token
transfers with temporary account state. The nodes of each
shard maintain block headers from other shards to validate
and finalize cross-shard transactions.

V. DESIGN OF PRESTO

The Presto protocol deconstructs the process of cross-shard
transactions into four phases, including Source Execution
Phase, Reliable Relay Phase, Target Execution Phase and Final
Redemption Phase. The four phases of the Presto protocol,
while started sequentially, exhibit a degree of parallelism in
their execution. However, the intra-shard transactions only
need to be executed in Source Execution Phase. In the fol-
lowing sections, we will describe the details of each phase,
providing a comprehensive understanding of the Presto proto-
col’s cross-shard transaction mechanism.
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Figure 2. Overview of Presto.

A. Source Execution Phase

During the Source Execution Phase, the leader node of the
source shard packages transactions and starts PBFT consensus,
ultimately leading to their on-chain commitment. For intra-
shard transactions, this commitment within the Source Exe-
cution Phase marks their completion. However, cross-shard
transactions necessitate an additional submission and finaliza-
tion step within the target shard before they are considered
finalized.

At the beginning of the Source Execution Phase, the leader
node of each shard starts the propose operation of PBFT
consensus. The cross-shard transactions and intra-shard trans-
actions belonged to one shard are packed into a block by the
leader node of the shard. Then the leader node distributes the
block to the normal nodes of the shard, as depicted in Line 6,
Algorithm 1.

In Presto, we introduce an efficient distribution scheme for
block propagation with EC technique in the leader node’s
proposal operation. The block is splited into N pieces, where
N is the number of the nodes in the shard. And the structure
of each piece is outlined as follows:

Pi = {view, hash, Bintra(i), σid, seq,Proofs, shardID

{ B1
cross(i), B

2
cross(i), . . . , B

K
cross(i) }}

Here, i denotes the node id within the shard. The node
id can be generated by arranging the nodes within the shard
in descending order based on their public addresses. The
σid denotes the signature signed by the leader node. The K
denotes the total number of the target shard. The seq refers
to the block number, which identifies the height of a block in
the blockchain. hash refers to the hash of the proposed block.
view refers to the current view of this round consensus. Proofs
represents the list of proof genrated by other shards, which
will be utilized to prove correctness of some transactions in
this shard, as discussed in Section V-C. shardID represents
ID of the source shard. The leader node employs Erasure
Coding (EC) to partition batched intra-shard transactions into
m segments, with Bintra(i) representing the segment intended
for the i-th node. To tolerate the potential loss of segments, the
erasure code should be (j,m), which means that at least j out
of m segments are required to recover the original message.
Here, j should satisfy the condition j ≤ m−⌈ f ·m

N ⌉, where f

represents the maximum number of faulty nodes tolerated by
the system [28].

Regarding cross-shard transactions, the leader node arranges
them into distinct batches based on the target shards. Subse-
quently, EC coding is applied to segment each batch into m
parts, denoted as Bk

cross(i), where k represents the target shard
id and i is the segment index.

Each node in source shard is responsible for pre-
dissemination the cross-shard transactions data to target
shards. Upon receiving pre-prepare message Pi, normal node i
extracts Bk

cross(i) and constructs Cross-Shard Packages CPk,i

to send them to nodes in the corresponding shard. CPk,i =
{hash, Bk

cross(i),Height}, where hash is from Pi, indicating
the original block. Height is extracted from Pi to ensure
consistency. Then normal node i sends each CPk,i to the target
shard k. Enough CPk,i can be sent to nodes of target shard k
and be recovered to complete batch of cross-shard transactions
Bcross. Besides, normal node i still needs to broadcast Pi to
the nodes in its shard. If nodes within the source shard have
collected the enough Pi, then they reconstruct the original
block, validate the transactions’ legitimacy and broadcast the
prepare vote to all nodes in the source shard, as depicted in
Line 9-16, Algorithm 1. Then upon receiving at least 2f + 1
prepare votes, each node in source shard broadcasts commit
vote. If the nodes receive at least 2f + 1 commit votes, the
nodes commit the transactions into the ledger, as depicted in
Line 17-20, Algorithm 1 .

The above design provides a dual advantage during the
initial consensus phase: nodes within the source shard not only
engage in intra-shard consensus but also leverage the collec-
tive bandwidth of the shard to relay cross-shard transactions
proactively. Compared with traditional approaches that delay
transaction relay until after the execution phase in the source
shard, our approach adopts a pre-dissemination strategy, al-
lowing transactions to be pre-distributed to the relevant shards
during prepare operation of PBFT consensus. As a result,
the source shard nodes only need to broadcast light-weight
confirm proofs that represent these cross-shard transactions
has been committed. This innovation significantly reduces
transaction latency. The integration of EC within the sharded
architecture optimizes the use of intra-shard bandwidth and
markedly improves the network’s throughput and latency.



Algorithm 1 Replica Algorithm in Source Shard
1: Consensus Round Begin:
2: if node is leader then
3: package transactions from the mempool into block.
4: Pieces := SpliteBlock(block)
5: for Pi in Pieces do
6: SendMSG ⟨pre-prepare, Pi⟩ to nodei.
7: end for
8: end if
9: Upon receiving pre-prepare message Pi:

10: Bintra, Bcorss := extractData(Pi)
11: broadcastMSG ⟨txs-piece, Bintra⟩ within its shard.
12: for Bk

cross in Bcorss do
13: broadcastMSG ⟨presend-piece, Bk

cross⟩ within shardk.
14: end for
15: wait for enough txs-piece messages to recover block.
16: broadcastMSG⟨prepare, v, hash, seq, σid⟩within its shard.
17: Upon receiving ≥ 2f + 1 prepare votes:
18: Broadcast ⟨commit, v, hash, seq, σid⟩.
19: Aggregate the σid and pack into confirm proof M .
20: Broadcast M to at least f + 1 nodes in the target shard.

B. Reliable Relay Phase

The Reliable Relay Phase starts concurrently with the
prepare operation of the PBFT consensus within the Source
Execution Phase, allowing for partial overlap of these two
phases. In this phase, if nodes in source shard collects at least
2f+1 prepare votes, the node aggregates the votes into confirm
proof and sends the proof to at least f +1 nodes in the target
shard [29]. Besides, the nodes in source shard also need to
broadcast its commit vote to other nodes within its shard. The
confirm proof M consists of the following:

M = {hash,AGG , seq , shardID} (1)

Here, hash means the hash of Proposed block. AGG means
the aggregated signature of prepare votes. To ensure the
atomicity of transactions, reliable broadcasting during relaying
is imperative. Therefore, it is necessary to ensure that at least
f +1 nodes can obtain a quorum vote from the source shard’s
nodes.

Next, we will discuss why we set the beginning of relay
proof after collecting enough prepare votes but not before
the nodes collect at least 2f + 1 prepare votes. This design
choice enables nodes in the target shard to acquire and
preemptively integrate relevant cross-shard transactions into
their ledger during the block proposal stage in the source
shard. However, it introduces a security risk. Specifically,
a malicious leader could exploit the target shard’s lack of
knowledge regarding the source shard’s account information,
producing many transactions that will not be committed on
the source shard to the target shard to commit.

The first round of consensus, which is indicated by a node
receiving at least 2f+1 prepare votes, represents that the cross-
shard transactions have been verified as correct by the majority

of nodes in the source shard. We observe that following the
first round, the transactions have a high likelihood of final
commitment. The only situation where they might not commit
is if the leader fails or if in the network less than 2f+1 nodes
have received the 2f + 1 prepare votes. The section VI will
provide an analysis of the probability of failure in the commit
phase of the PBFT. Therefore, a cross-shard transaction can
only be transmitted to the target shard for preemptive inclusion
if it has received correctness confirm proof from source shard.
Given that during the Source Execution Phase, we have already
relayed EC-encoded chunks to the nodes in the target shard,
the relay process now only requires confirm proof of the
corresponding hashes in set Pi. By maintaining a distinct
separation between the transactions forwarding and validation
stages, Presto mitigates the risk of such adversarial exploits,
ensuring that relay processes are both secure and reliable
against potential attacks.

Algorithm 2 Replica Algorithm in Target Shard
1: if node is leader then
2: keep monitoring headers of other shards
3: if New headers in other shards exist in Pending Tree

then
4: add TxFinal into block.
5: end if
6: end if
7: Upon receiving CP message:
8: store CPk,i.
9: broadcastMSG ⟨presend-piece, CPk,i⟩ within its shard.

10: if CPk,i can recover then
11: recover Transactions from CPs.
12: end if
13: Upon receiving confirm proof M :
14: if M.hash related Transactions recieved then
15: package transactions associated with M.hash into txes.
16: add txes into Mempool.
17: broadcastMSG ⟨send-M,M⟩ within its shard.
18: else
19: request txes from peer nodes.
20: end if
21: Upon receiving ≥ 2f + 1 commit votes:
22: for tx in receivedTxs do
23: if tx to be executed in Pending Tree then
24: execute tx in Pending Tree.
25: end if
26: if tx is finalized transaction then
27: merge Pending Tree node into state tree.
28: end if
29: end for

C. Target Execution Phase

The Target Execution Phase follows the Reliable Relay
Phase, with a degree of overlap with the source shard execution
phase. In this phase, upon receiving confirm proof M and
verifying the signatures of at least 2f + 1 nodes from the



source shard, the target shard leader node packs transactions
associated with the hash of CP from mempool into block
transaction list, as depicted in Algorithm 2. Besides, the target
shard nodes also attach the confirm proof M into Proofs of
Pi.

As the target shard normal nodes receive Pi containing the
confirm proof M that represents CP transaction, they recover
the block and then continue to consensus process. After block
is committed, they store the execution results of the CP ’s
transactions within the pending tree. The pending tree acts
as a staging ground. The pending tree mechanism allows for
the utilization of tokens involved in unfinalized cross-shard
transactions by other transactions until these tokens finalized
in state tree.

The pending tree serves as a data structure alongside the
receipt tree, state tree, and transaction tree, introduced to en-
hance the availability of cross-shard transfers during execution.
It holds the provisional final states of transactions likely to
be committed to the chain. Structurally, the pending tree is
organized as a Merkle tree, where each key corresponds to the
hashes and their respective heights derived from checkpoint
states in specific shard. This represents that if a hash at a
given height within the source shard matches, then the node’s
state is supposed to be ultimately merged into the state tree in
target shard. The pending tree stores values that have multiple
attributes including hash, token and formal key, which
are illustrated in Figure 2. The hash and token denote the
amount that is to be transferred to a specific address. For
cross-shard transactions utilizing the token in pending tree
from the source shard, formal key is required to record the
formal key of the pending tree within the source shard. When
users initiate cross-shard transactions that utilize the token
in pending tree, these transactions are accompanied by the
keys of the pending tree in source shard. Consequently, nodes
responsible for verifying the validity of these transactions
also verify the corresponding hashes and heights. If the hash
at the corresponding height of the obtained header does not
match, the cross-shard transaction will be rejected. Once an
unfinalized cross-shard transaction enters the pending tree, it
creates a temporal balance in pending tree. For instance, after a
transaction from source shard transfers tokens to address A in
the target shard, A can engage in new transactions leveraging
the temporal balance of 10 in the pending tree before the cross-
shard transaction is finalized. As shown in the Figure 2, when
A utilizes temporal balance, A generates a new transaction
Tx. This action triggers the creation of a series of child nodes
under the node from Address A.

Through this design, system’s liveness is significantly im-
proved, enabling temporal balance of unfinalized transactions
to be previously utilized. These execution results generated by
cross-shard transactions in pending Tree are ultimately settled
during the fourth phase, known as the Final Redemption Phase
which will be described in subsection V-D. In summary, the
addition of the pending tree enhances the overall transactional
accessibilty by allowing for the interim use of cross-shard
transactions prior to final commitment of cross-shard trans-

actions on the blockchain.

D. Final Redemption Phase

Consensus nodes continuously monitor for hash values
corresponding to keys in the pending tree that appear within
their locally maintained list of block headers of different
shards. When a leader node detects such a seq in the key of the
pending tree and the seq of formal key exist in other shards,
it proposes a special transaction. This special transaction
Txfinal includes nonce which is the key of the pending
tree. This special transaction structure does not involve state
dependency relations since, by design, the targets in transfer
transactions inherently execute as receipt actions. Therefore,
it is only necessary to execute the add operation to the formal
state. During the process of integrating specific nodes from
the pending tree into the state tree, if a token originates from
the pending tree of a different shard, the system will verify
whether the corresponding hashes and formal key exist in
other shard. If this verification fail, the merge of this particular
token will be abandoned.

After receipt execution of the node in the pending tree, other
forked nodes of pending Tree that have the same height but
not be committed into source shard are purged. Once the seq
of the nonce in Txfinal surpasses the height value of an
unused pending transaction, consensus nodes also perform a
cleanup operation. As depicted in Figure 2, our design enables
us to purge failed transactions from the pending tree based on
their nonce values.

VI. ANALYSIS

In this section, we first analyze the performance of Presto’s
cross-shard transaction processing protocol and provide the
corresponding theoretical modeling. Subsequently, we exam-
ine the protocol’s consistency, liveness, and atomicity from a
security perspective. Finally, we investigate potential censor-
ship attacks.

A. Performance Analysis

According to the design proposed in Section V, a certain
degree of parallelization can intuitively reduce transaction
latency. In this section, we will mathematically analyze the
extent to which this design achieves optimization in the
consensus process. Here, B denotes the size of the propose
message. b represents the bandwidth available to the nodes
within the shard. Firstly, we analyze the latency improvement
when the proposed block is normally committed. The time for
the leader to distribute blocks in the traditional way is B

b ·N .
Let Tcollect denote the time taken for nodes to broadcast to

each other after receiving the proposed block and to collect
2f + 1 votes. Once a node receives at least 2f + 1 votes, it
starts a new round of broadcasting and collecting votes until
the block is finalized. The time for this process is represented
by Tcommit. In the source shard, we divide the transaction list
of size B into m parts. Therefore, the time for the leader in
Presto to distribute the transaction list to all nodes and recover



the transaction list is the sum of two forwarding time and the
decoding time.

The time consumption in the Presto protocol can be ex-
pressed as

B ·N
m · b

+B ·

(
N − N

m

b ·m

)
+Tcollect +Tlite-relay +Ttarget-consensus-lite

(2)
In contrast, the time consumption in the relay-based method
is given by

B ·N
b

+Tcollect+Tcommit+
(f + 1) ·B

b
+Ttarget-consensus-full (3)

Here, Ttarget-consensus-lite is different from Ttarget-consensus-full in that
the full cross-shard transaction procedure is reduced to confirm
proofs denoted by M . Moreover, Tlite-relay represents the time
taken to relay content of constant size, which compared to the
term (f+1)·B

b , highlighting its efficiency.
Probability Calculation for Passing the First Round but

Not the Second Round: To calculate the likelihood of a
block progressing through the first round (Prepare) but failing
to reach commitment, we utilize the cumulative distribution
function to measure probabilities under specific circumstances.
Any individual node in PBFT systems can be divided into two
categories, including consensus reached and not reached node.
The Faulty Probability Determined (FPD) model is employed
when the probability of each node’s failure is constant. The
FPD model is particularly suited for assessing the performance
of larger systems where node failures are probabilistically
estimated. Let us denote the probability of node failure as
Pf and the probability of a block passing the first round but
not committed as Pp. To elucidate the correlation between the
success rate Pp and Pf , it is imperative to establish two pivotal
conditions requisite for achieving consensus:

• No more than
⌊
N
3

⌋
faulty nodes in the first round (Event

A).
• In the commit round, failures occur in more than

⌊
N
3

⌋
nodes (Event B).

Here, we have Pp = P (A)×P (B|A)×Pf . This is because
if more than one-thirds of the nodes fail to collect enough
commit votes, the new leader may not utilize the previous
block, and the probability is Pf , resulting in the block not
being committed. Assuming the presence of i faulty nodes
in the prepare round, where 0 ≤ i ≤

⌊
N
3

⌋
, the cumulative

distribution function allows us to deduce:

P (A) =

⌊N
3 ⌋∑

i=0

(
N

i

)
P i
f (1− Pf )

N−i (4)

The probability P (B|A) is contingent upon P (A). Equation
(4) postulates the existence of i faulty nodes in the pre-prepare
round. Assuming j nodes fail to achieve consensus, where
0 ≤ j ≤

⌊
N
3

⌋
, we obtain:

P (B|A) =

N∑
j=⌈N

3 ⌉

(
N

j

)
P j
f (1− Pf )

N−j (5)

For example, suppose N = 50 and Pf = 0.1. In that case,
is approximately:

Pp ≈ 1.75× 10−6 (6)

It is worth noting that the above derivation process is based
on certain assumptions and approximations, and the actual
situation may differ. However, this approach helps us estimate
the performance and security of the PBFT protocol in the
presence of malicious nodes.

B. Atomicity of Cross-shard Transactions

Cross-shard transactions need four phases, so the atomicity
analysis involves the reliability analysis of these four phases.
First, the cross-shard transaction is executed in the source
shard. If it fails to be committed, the only reason is that the
consensus process proposed by the leader node in source shard
is not finally completed. In this case, if the nodes in the target
shard do not collect 2f + 1 votes from the source shard, the
transaction will not exist in the block of the target shard. If
the target shard collects at least 2f + 1 votes, the transaction
will exist in the pending tree of the target shard. Due to
the uniqueness of the height of the source shard blockchain,
when another new block with the same height proposed by
the source shard is committed, the block with a different hash
that forks out in the pending tree will be deleted during the
finalization phase of the target shard. Therefore, the execution
of this transaction that is not committed in the source shard
will not be finalized in the target shard.

Next, we investigate whether the relay stage is reliable if
the transaction is successfully committed in the source shard.
Since it has been committed, it means that at least 2f + 1
nodes have broadcast their votes. In the relay stage, the nodes
in the source shard need to pass the voting message to no less
than f + 1 nodes in the target shard, so at least one normal
node receives the vote and broadcasts it, ensuring that the
cross-chain transaction is committed in target shard.

C. Security Analysis

Theorem 1 (Consistency of Transactions). In this protocol,
there is no round r in which there are two honest party
ledger states log1 and log2 with transactions tx1 and tx2,
respectively, such that tx1 ̸= tx2 and tx1.I ∩ tx2.I ̸= ∅.

Proof. The ledgers of the source shard and target shard
themselves are guaranteed by the PBFT algorithm. Between
the two ledgers, suppose tx1 is in block A and tx2 is in block
B, where block A is generated before block B but at the
same height. At this time, block B replaces block A. Initially,
the pending tree will record the cross-shard transaction record
of block A, which will not be finalized. At this time, block
B will exist in the pending tree at the same height until the
final finalized state determines the final tx input state. The
consistency at this moment is also guaranteed by the consensus
algorithm of the target shard.

Theorem 2 (Liveness of Transactions). If a cross-shard trans-
action request is submitted to the system, after R rounds of



node communication (intra-shard or cross-shard), it is either
accepted and committed by the system or comprehensively
rejected by the system, where R is the liveness parameter.

Proof. In Presto, honest nodes acting as proposers can affect
the liveness of transactions. Therefore, we discuss two cases
based on the honesty of the proposer [30]:

1) The proposer is malicious. In this case, if the proposer
proposes an empty block or a block containing false
transactions, even if malicious nodes vote, the consensus
in intra-shard requires at least 2f+1 votes to proceed to
the next round. The consensus in this round will be dis-
carded. The transaction will be packaged by other nodes.
Since the relay mechanism ensures that the confirm
proof M will appear in at least one non-Byzantine node,
the liveness is guaranteed by the consensus mechanism
of the target shard, and the situation and principle are
the same as in the source shard. Therefore, a round of
consensus involving cross-shard transactions will even-
tually be terminated.

2) The proposer is honest. If there are non-leader nodes
that act maliciously by not voting or participating in
forwarding relay transactions, their number will not
exceed N/3. The redundancy protection of the EC code
ensures that even if there are f malicious nodes, it will
not affect the liveness of transactions in the consensus
stage. During the Reliable Relay Phase, when the nodes
in the target shard receive the confirm proofs, even if
they are unable to collect the complete transaction due
to time reasons, they can query the honest nodes in the
source shard to recover the complete cross-shard transac-
tion. An additional round of communication ensures that
the transaction can be committed. Therefore, a round
of consensus involving cross-shard transactions will be
terminated.

In summary, the Presto protocol can ensure termination and
start the next round within a limited number of rounds.

D. Potential Attack Analysis

1) Double Spending Attacks: Double spending attacks oc-
cur when a malicious actor attempts to use the same set
of tokens or assets for more than one transaction. In the
context of cross-shard transactions, these attacks can occur
due to the asynchrony between shards and the lack of instan-
taneous global visibility. In each shard of Presto, the account
nonce and the PBFT consensus in both the source and target
shards can prevent double-spending attacks for intra-shard
transactions. When it comes to cross-shard transactions, the
nonce in pending tree combines height of the blockchain in
the source shard block, which must also be verified by the
target shard’s consensus. The above design can avoid double
spending attacks.

2) Censorship Attacks: In a censorship attack [31], a
malicious node or group of nodes intentionally ignores or
delays processing certain transactions, effectively censoring

them from the network. During the initial phase of processing
cross-shard transactions, the threat of attacks is not considered
pertinent, as this stage is safeguarded by the underlying con-
sensus algorithm. Consequently, concerns regarding censor-
ship attacks are primarily confined to the Reliable Relay Phase,
which involves the relay of cross-shard transaction data. The
implementation of Erasure Coding can ensure that the recovery
of data with 2f+1 segments is feasible, thereby permitting the
system to tolerate attacks from up to f nodes. However, this
requires a reliable broadcast protocol to ensure data integrity.
In the Reliable Relay Phase, the procedure to relay the
confirmation proof can ensure the phase reliablity.Therefore,
when nodes in the target shard receive the confirm proof but
haven’t recovered the transaction from the source shard, they
will directly ask other nodes in the source shard to obtain
the cross-shard transactions. This mechanism ensures that no
single node or small group of nodes can unilaterally block or
delay a transaction, thereby preventing censorship.

In conclusion, while cross-shard transactions are inherently
susceptible to various adversarial attacks, the Presto protocol
effectively mitigates these risks through a combination of
unique mechanisms and design choices.

VII. EVALUATION

A. Experimental Setup

1) Prototype Implementation: We have implemented the
Presto using a widely recognized emulator platform, namely
the BlockEmulator [8]. The BlockEmulator is a sharding chain
emulator that implements all blockchain processes, including
consensus, execution, and broadcasting. The BlockEmulator
utilizes PBFT consensus within a single shard.

The experimental environment was meticulously architected
using Alibaba Cloud’s virtual machines, each equipped with
4 CPU cores (Intel Xeon, 2.5/3.2GHz) and 8GB of RAM.
The network bandwidth was standardized at 50Mbps to reflect
common operational constraints. The interval for generating
blocks is set to 3 seconds, and the block size parameter
is configured to be 10,000 txes. Within our experimental
framework, each shard was composed of four nodes, with
each virtual machine dutifully hosting a single node to ensure
isolation and accurate performance measurement.

2) Dataset: To ensure the veracity of our experiments, we
employed a dataset of genuine transactions extracted from the
Ethereum blockchain. We collected transactions in the most
recent one million transactions up to March 2024 [32] for
evaluations. Clients were programmed to dispatch transactions
at a predetermined rate, emulating the temporal distribution of
transactions on the live Ethereum network.

3) Baselines: For comparative purposes, we also imple-
mented two schemes, BrokerChain and Monoxide, within the
block emulator. To ensure a fair comparison, we maintained
the same PBFT consensus for intra-shard transactions and
kept the execution layer unchanged. The primary difference
between the two prototypes lies in the processing of cross-
shard transactions. The fundamental concepts of these schemes



are discussed in Section II. Monoxide’s architecture, cen-
tered around a relay mechanism for cross-shard transaction
forwarding. BrokerChain’s unique client-as-relay design also
offered an alternative perspective on cross-shard transaction
handling. In BrokerChain, each shard was configured with a
single broker to handle cross-shard transactions. Pyramid was
deliberately excluded from our baseline comparison due to
its complexity, which entails a cumbersome three-round con-
sensus process, leading to higher bandwidth consumption and
latency in transaction processing compared to both Monoxide
and BrokerChain.

To evaluate the individual contributions of Presto’s design
components, we conducted an ablation study. We also im-
plemented two variants in addition to Presto: Foresee and
Presend.

Foresee: This implementation removes the Erasure Coding
(EC) based pre-distribution of transactions and relies solely
on early relaying during the Source Execution Phase. Upon
receiving at least 2f + 1 prepare votes, the relay message
containing all cross-shard transactions is disseminated.

Presend: This variant incorporates EC-based pre-
distribution into the relay-based scheme. Before the source
shard enters the commit phase, transactions are pre-distributed
to target shard using EC. Then, the confiirm proof is sent
only after the cross-shard transactions committed on source
shard.

4) Metrics: Our experiments delved into two pivotal per-
formance metrics: throughput and latency of cross-shard trans-
action processing. We measured the throughput to assess the
system’s capacity to handle a high volume of transactions.
This latency is particularly crucial for cross-shard transactions,
where delays can be exacerbated by the complexity of cross-
shard communication. Our analysis was further enriched by
examining the transaction pool within each shard, quantifying
the backlog of transactions awaiting packaging. This measure
served as an indirect indicator of the system’s efficiency under
duress, reflecting Presto’s superior ability to sustain minimal
queuing, even when subjected to the rigors of high transac-
tional loads, thus ensuring a reduction in overall latency.

B. Throughput Measurement

First, We fixed the number of shards at 8 and adjusted the
transaction rate to measure the TPS and latency of different
systems. Figure 3 shows that Presto notably excels beyond the
established baseline. Additional ablation experiments reveal
considerable enhancements over Monoxide and BrokerChain.
With increased injection speeds, Presto’s improvements are
distinctly more substantial when compared with Monoxide and
BrokerChain. As shown in the Figure 3, the Presto method
demonstrated the greatest improvement compared to Monox-
ide, with a 63% increase in TPS and up to a 66% reduction
in latency. Compared to BrokerChain, Presto achieved a 54%
reduction in latency and a 48% decrease in TPS. Presto
showcased notable performance enhancements, especially in
bandwidth-constrained scenarios, due to its innovative ap-
proach to reducing bandwidth costs during the relay process.
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Figure 3. Latency vs. Throughput.

We also analyzed and compared the Presend and Foresee
methods. The Presend method showed a 34% improvement
in TPS and a 44% improvement in latency. Presend’s pre-
distribution technique accelerated the relaying of cross-shard
transactions, and the use of EC coding reduced the bandwidth
pressure on the primary nodes. The Foresee method also
demonstrated improvements in latency, with a 34% reduction,
leading to a 16% increase in TPS. Foresee’s pending tree
mechanism achieved concurrency reduction, which decreased
latency. Additionally, the Foresee mechanisms, to some extent,
reused the idle bandwidth during the consensus process.

Next, we set the injection speed at a constant 3000 trans-
actions per second and increase the number of shards in the
systems. Figure 4 illustrates that the system’s TPS initially
increased proportionally with the number of shards, demon-
strating efficient scaling. However, the performance bottleneck
disappears when the number of shards increases beyond 12.

C. Latency Analysis

We then shifted our focus to the latency aspect, varying the
number of shards to measure the confirmation delay in an ex-
panding scenario. As the shard count rose, the transaction con-
firmation latency correspondingly decreased, which is depicted
in Figure 5. This trend was attributed to the increased number
of nodes available to process cross-shard transactions and a
reduction in the average number of cross-shard transactions
spanning two shards, thus alleviating congestion. Presto ex-
hibited the least latency, as it parallelized the execution across
two shards, reducing latency by a substantial 66% compared to
Monoxide. Presend and Foresee achieved approximately 46%
and 33% lower latency compared to Monoxide.

D. Transaction Lifecycle Analysis

Under constant transaction rate and shard quantity, we
repeatedly sampled multiple transaction data to obtain the time
consumed in each stage of cross-shard transaction processing.
The baseline stages were divided into three: T1, the time phase
in Source Execution Phase; T2, the time phase in Reliable
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Figure 5. Transaction latency with varying shard number S.

0 20 40 60 80 100 120

Time (sec)

0

20000

40000

60000

80000

100000

120000

Qu
eu

e 
Si

ze
 (t

xs
)

Queue Size in Mempool
Monoxide
Presend
Foresee
Presto

Figure 6. Queue size of the TX pool.

0 10 20 30 40
Time(sec)

Presto

Foresee

Presend

BrokerChain

Monoxide

M
et

ho
d

Transaction Lifecycle
T1
T2
T3

Figure 7. The lifecycle of cross-shard transaction.

Relay Phase; T3, the time phase in Target Execution Phase.
The results, as shown in the Figure 7, demonstrate that Presto
significantly reduces most in latency of all phases compared
to other methods. Presend ranks second in performance, with
substantial reductions in T1, T2, and T3 due to early dis-
tribution and the use of EC codes. The Foresee mechanism
advances the beginning phase of the T2 stage by preemptively
packaging transactions in the Target Shard and slightly reduces
the duration of T2 by capitalizing on idle bandwidth ahead of
time.

E. Queue Size Analysis

Our subsequent investigations delved into the queue length
during transaction injection as Figure 6. With four shards and
an injection rate of 4000 transactions per second sustained
over 45 seconds, we observed the dynamics of the transaction
pool. As shown, the number of pending transactions within
the Presto transaction pool was significantly lower compared
to the other two baselines. This reduction not only reflects
Presto’s high throughput capabilities but also contributes to
the reduction in latency, further enhancing the overall system
performance and user experience.

VIII. CONCLUSION

In this paper, we have presented Presto, an innovative
blockchain system that leverages sharding to effectively miti-

gate the latency encountered in cross-shard transaction pro-
cessing. At the heart of Presto’s design is a dual-faceted
strategy: on the one hand, it proactively executes cross-shard
transactions in an optimistic manner, thereby reducing the
overall processing time; on the other hand, it harnesses pre-
dissemination and Erasure Coding to maximize the use of
available bandwidth within each shard for the transmission
of cross-shard transactions. Notably, the versatility of Presto’s
approach is such that it can be applied to the majority of
sharding blockchain architectures. Comparative analysis with
recent protocols for cross-shard transaction processing reveals
that Presto enhances system throughput by 63% and decreases
transaction confirmation latency by up to 66%. These improve-
ments underscore the potential of Presto to serve as a robust
solution for the next generation of sharding blockchain sys-
tems, offering a scalable and efficient framework for managing
cross-shard transactions.
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