
Phantasy: Low-Latency Virtualization-Based
Fault Tolerance via Asynchronous Prefetching

Shiru Ren , Yunqi Zhang,Member, IEEE, Lichen Pan , and Zhen Xiao, Senior Member, IEEE

Abstract—Fault tolerance has become increasingly critical for virtualized systems as growing amount of mission-critical applications

are now deployed on virtual machines rather than directly on physical machines. However, prior hardware-based fault-tolerant systems

require extensive modification to existing hardware, which makes them infeasible for industry practitioners. Although software-based

techniques realize fault tolerance without any hardware modification, they suffer from significant latency overhead that is often orders of

magnitude higher than acceptable. To realize practical low-latency fault tolerance in the virtualized environment, we first identify two

bottlenecks in prior approaches, namely the overhead for tracking dirty pages in software and the long sequential dependency in

checkpointing system states. To address these bottlenecks, we design a novel mechanism to asynchronously prefetch the dirty pages

without disrupting the primary VM execution to shorten the sequential dependency. We then develop Phantasy, a system that leverages

page-modification logging (PML) technology available on commodity processors to reduce the dirty page tracking overhead and

asynchronously prefetches dirty pages through direct remote memory access via RDMA. Evaluated on 25 real-world applications, we

demonstrate Phantasy can significantly reduce the performance overhead by 38 percent on average, and further reduce the latency by

85 percent compared to a state-of-the-art virtualization-based fault-tolerant system.

Index Terms—Fault tolerance, virtualization, checkpoint, recovery

Ç

1 INTRODUCTION

IN recent years, deploying on virtual machines (VMs)
rather than directly on physical machines has become

more and more common for the increasingly wide range of
application domains for the ease of use and high portability.
While some of these application domains may have low
availability requirements, others like financial services, data-
base management systems, and network functions virtuali-
zation services are mission-critical and therefore demand
extremely high availability and reliability. For instance,
financial services and network functions virtualization serv-
ices typically demand at least five nines availability (i.e.,
99.999 percent) [1], which is orders of magnitude higher than
what cloud providers like Amazon EC2 can promise in the
face of hardware failures [2].

To close down this gap, recent work has sought to pro-
vide fault tolerance (FT) by seamless failover in the event of
hardware failures for the virtualized environment using
both hardware and software techniques. Hardware-based
fault tolerance survives failures by duplicating hardware
components to provide the necessary redundancy in case
one should fail [3], [4]. However, such techniques require

extensive modifications to the existing hardware or addi-
tional hardware components that are not available in com-
modity systems, which make them infeasible for industry
practitioners.

In contrast, software-based techniques provide fault tol-
erance without any modification to existing hardware by
periodically backing up the entire system states of the pri-
mary VM to a secondary VM hosted on a different physical
machine, which will continue execution on behalf of the pri-
mary VM in the event of hardware failures on the primary
VM [5], [6], [7], [8], [9], [10], [11], [12], [13]. Specifically, these
systems often take incremental checkpoints of the system
states including CPU, memory and other devices, and trans-
mit these checkpoints to the secondary VM periodically (i.e.,
every epoch) to enable seamless failover. Because such sys-
tems can run on commodity hardware without any modifi-
cation, they are considered much more feasible than
hardware-based techniques.

However, these systems introduce significant latency
and overhead (i.e., two to three orders of magnitude higher
latency as we show later in the paper) because all the check-
points are managed in software as opposed to hardware.
This greatly restricts their application and prevents such
systems from being widely deployed in production, as
many mission-critical applications are real-time and inher-
ently sensitive to latency. For example, stock exchange sys-
tems have stringent latency requirements to be able to react
in time to the frequent trades in real-time, and high latency
in online services like web search and social networks
directly translates to poor user experience [14], [15]. There-
fore, realizing efficient and low-latency virtualization-based
fault-tolerant systems that can be deployed in production
still largely remains an open research question.

� S. Ren, L. Pan, and Z. Xiao are with the Department of Computer Science,
Peking University, Beijing 100871, China.
E-mail: {rsr, plc, xiaozhen}@net.pku.edu.cn.

� Y. Zhang is with the Department of Computer Science and Engineering,
University of Michigan, Ann Arbor,MI 48109. E-mail: yunqi@umich.edu.

Manuscript received 22 Nov. 2017; revised 8 July 2018; accepted 3 Aug. 2018.
Date of publication 16 Aug. 2018; date of current version 22 Jan. 2019.
(Corresponding author: Zhen Xiao).
Recommended for acceptance by M. Caccamo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2865943

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019 225

0018-9340� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0001-7451-0140
https://orcid.org/0000-0001-7451-0140
https://orcid.org/0000-0001-7451-0140
https://orcid.org/0000-0001-7451-0140
https://orcid.org/0000-0001-7451-0140
mailto:
mailto:

To answer this question, we first conduct an in-depth
investigation to understand the bottlenecks of prior
software-based techniques, in which we find the software-
based dirty page tracking and long sequential dependency
in checkpoint management being the largest contributors to
the significant latency overhead. Specifically, to replicate
the system states of the primary VM, all the dirty pages
need to be recorded and transmitted to the secondary VM
in the checkpoints. Given how fast modern processors oper-
ate and thereby the large amount memory accesses issued,
translating to large numbers of dirty pages, keeping track of
all the dirty pages in software is simply intractable because
each new dirty page needs invoke an expensive page fault
VM exit. In addition, all the output system states generated
within an epoch (e.g., a response network packet to respond
a query) cannot be sent out until the corresponding check-
point has been sent successfully to the secondary VM after
the end of the epoch, resulting in a long sequential depen-
dency which consists of executing each epoch, generating
and transmitting the checkpoint. This dependency is again
magnified by the large number of dirty pages generated in
each epoch as larger checkpoints need to be managed,
which leads to significant degradation in response latency.

To overcome these bottlenecks, we design and develop
Phantasy, a system that keeps track of dirty pages using
page-modification logging (PML) [16] available in commod-
ity Intel processors to reduce page tracking overhead, and
asynchronously prefetches the dirty pages to shorten the
sequential dependency of generating and transmitting check-
points. Specifically, PML provides hardware-assisted moni-
toring of dirty pages generated during the VM execution,
which significantly reduces the overhead compared to the
software-based techniques that invoke expensive page fault
VM exits. To shorten the sequential dependency, we design a
fundamentally novel technique that speculatively prefetches
the dirty pages identified by PML from the primaryVMwith-
out interrupting its execution instead ofwaiting for the end of
each epoch. Combined with the direct access to the remote
memory provided by RDMA, the prefetch is designed to
be driven entirely by the secondary VMM (Virtual Machine
Manager) and completely transparent to the execution of
the primary VM. Consequently, only the dirty pages that
have not been prefetched need to be checkpointed at the end
of the epoch, while the majority of the dirty pages have
already been prefetched to the secondaryVM.

We evaluate Phantasy on 25 real-world applications span-
ning both conventional memory-intensive and compute-
intensive batch processing applications and mission-critical
latency-sensitive applications that benefit significantly from
fault tolerance. By asynchronously prefetching the dirty
pages, our system reduces the number of dirty pages that
need to be checkpointed each epoch by more than 50 percent
and up to 84 percent compared to the state-of-the-art virtuali-
zation-based fault-tolerant system. Experimental results
show that Phantasy significantly reduces the overhead of
batch processing applications by 38 percent on average, and
further improves the latency of latency-sensitive applica-
tions bymore than 85 percent.

To the best our knowledge, this is the first paper that
realizes a virtualization-based fault-tolerant system with
low enough overhead that is practical to be deployed in

production. Specifically, this paper makes the following
contributions.

� We present an asynchronous prefetching mechanism
that speculatively prefetches the dirty pages from the
primary VM without disrupting its execution to
shorten the sequential dependency of generating
and transmitting VM checkpoints.

� We develop Phantasy leveraging PML technology
available on commodity Intel processors and direct
remote memory access offered by RDMA to reduce
the overhead of dirty page tracking and prefetch the
dirty pages to the secondary VM.

� We evaluate our system using 25 real-world applica-
tions spanning a wide range of application character-
istics, and demonstrate the effectiveness of Phantasy
in reducing performance overhead and query
latency.

The rest of this paper is organized as follows. Section 2
gives a brief summary of prior techniques and illustrates
their limitations. Section 3 presents design principles and
the system architecture of Phantasy. Section 4 describes
how Phantasy implements the asynchronous prefetching
mechanism via RDMA and PML to overcome the limita-
tions of prior work. Section 5 discusses several performance
optimizations. We evaluate Phantasy in Section 6. Section 7
discusses related work and Section 8 concludes the paper.

2 BACKGROUND

In this section, we first present a brief summary of prior
work in virtualization-based fault-tolerant systems leverag-
ing periodic checkpoints. We then discuss the limitations of
prior works preventing these techniques from being widely
adopted in the production environment.

2.1 Virtualization-Based Fault Tolerance

Prior work introduces the technique of periodically check-
pointing the entire VM states to a secondary VM running
on a different physical machine to provide fault tolerance in
case of machine failures. Specifically, the primary VMM
takes incremental checkpoints of the CPU, memory, and
device states periodically at a fixed frequency, which is very
similar to the pre-copy phase of live VM migration [17]. To
ensure the secondary VM can transparently continue the
execution in the event of machine failure, all the I/O events
(i.e., network communication and disk operations) need to
be held in a buffer before they can be committed after the
corresponding VM checkpoint has been successfully trans-
mitted to the secondary VM.

In such systems, the primary VM is typically paused
every tens of milliseconds, which is often referred as an
epoch, to checkpoint system states as illustrated in Fig. 1.
During each epoch, all dirty pages are tracked while han-
dling the page fault VM exits in the VMM. Meanwhile, all
the output system states are buffered temporarily. At the
end of each epoch, the primary VM execution will be
paused, so that the primary VMM can generate an incre-
mental checkpoint by invoking the pre-copy phase of live
migration [17] to copy all the dirty pages and system states
to a local staging area in the VMM. A new buffer is then

226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

inserted to keep track of all the output states of the next
upcoming epoch. Once the new buffer has been inserted,
the primary VM can resume execution while the VMM
starting to transmit the checkpoint to the secondary
VMM. The primary VM can resume execution immediately
because the speculative states in the next epoch are not visi-
ble to the outside world. Upon receiving the acknowledge-
ment of successfully transmitting the last checkpoint, the
primary VMM can free up the state buffer used for the pre-
vious epoch.

In the event of hardware failure on the primary host, the
primary VMM will stop heartbeating, which triggers a fail-
over to the secondary VM instantly. The secondary VM
starts execution on behalf of the primary VM from the most
recent successfully transmitted checkpoint, so the transi-
tioning can be transparent to the users. The uncommitted
states on the primary VM that haven’t been transmitted to
the secondary VM and the buffered outgoing network pack-
ets will be lost, but it will only appear to be a temporary
packet loss to the outside world as the secondary VM takes
over the execution.

2.2 Limitations of Prior Work

While the simplicity of such design is appealing, it introdu-
ces significant latency and performance overhead, which
greatly restricts its application.

2.2.1 Batch Processing Applications

In particular, there are primarily two sources of perfor-
mance overhead as illustrated in Fig. 1 for batch applica-
tions (e.g., SPEC, PARSEC, and kernel-build) that are not
latency-sensitive.

� The overhead of tracking all the dirty pages in the
VMM.

� The overhead of generating checkpoints, where the
primary VM execution needs to be paused.

Given how fast modern multi-core processors operate,
applications often issue a huge amount of memory accesses
even in an extremely short period of time, translating to a
large number of dirty pages. Therefore, tracking all these
dirty pages in the VMM incurs significant performance over-
head in the software stack. In addition, the more dirty pages
there are, the longer it takes to generate the checkpoints. In

aggregate, prior work often incurs over 40 percent perfor-
mance overhead running these batch applications [6].

2.2.2 Latency-Sensitive Applications

As opposed to these batch applications, many mission-
critical applications are latency-sensitive (e.g., databaseman-
agement systems, network functions virtualization services,
and data caching services) that heavily interact with I/O
devices. Due to their criticality, these applications can benefit
a great deal from fault tolerance. However, they experience
even more degradation, typically in the form of latency
increase, running on systems presented in prior work. This is
because they suffer twomore sources of degradation in addi-
tion to the twowe discussed above as demonstrated in Fig. 1.

� The latency to finish executing an epoch, as all out-
going I/O events will be buffered within each epoch.

� The latency to transmit the generated checkpoint and
receive the acknowledgement, because the buffer can
only be released after receiving the acknowledgement.

These four sources of latency present an interesting
tradeoff between the length of an epoch and the overhead
of generating and transmitting the checkpoint. The longer
each epoch is, the less overhead generating and transmitting
the checkpoint contribute overall because they are invoked
less often. However, longer epoch also translates to longer
latency to finish executing each epoch, which also contrib-
utes to the overall latency increase. To amortize the over-
head of generating and transmitting the checkpoint, prior
work often sets the length of each epoch to at least tens of
milliseconds. As a result, any mission-critical or latency-
sensitive application with millisecond or sub-millisecond
level latency suffers significant performance degradation.

Moreover, when the application yields a large amount of
dirty pages such that the checkpoint cannot be generated
and transmitted within the duration of the next epoch, the
VMM will not receive the acknowledgement for the current
checkpoint in time to start to generate the next checkpoint.
This results in a prolonged next epoch, which further aggra-
vates the overhead in both the latency to finish executing an
epoch (i.e., the next epoch will be lengthened due to the
delayed acknowledgement) and the latency to generate and
transmit the next checkpoint (i.e., longer epoch often yields
more dirty pages thereby larger checkpoint). Consequently,
the application will experience increasing amount of latency
degradation due to the queueing effect (i.e., overutilized
queueing system) as the length of each epoch and the size
of each checkpoint keep growing.

2.2.3 Summary

Based on the above analysis, we summarize the limitations
of prior work as following.

� Software-Based Page Tracking: Keeping tracking of
dirty pages in the software stack introduces signifi-
cant overhead.

� Long Sequential Dependency: Large portion of the
overhead and latency degradation can be attributed
to the long series of events that can only be executed
sequentially, namely executing each epoch, generat-
ing the checkpoint and transmitting the checkpoint.

Fig. 1. The execution flow of the virtualization-based checkpoint-recov-
ery fault tolerance.

REN ETAL.: PHANTASY: LOW-LATENCY VIRTUALIZATION-BASED FAULT TOLERANCE VIA ASYNCHRONOUS PREFETCHING 227

Both of these limitations are further magnified by the
large number of dirty pages, which increases the overhead
of tracking dirty pages and prolongs the duration of the
sequential events. In practice, systems like Remus [6] incur
two to three orders of magnitude latency degradation,
which greatly limits the practicality of such systems. There-
fore, designing fault-tolerant virtualization-based systems
without incurring significant latency and overhead still
remains an open research question, and a novel approach is
needed before such systems can be widely adopted in the
production environment.

3 SYSTEM OVERVIEW

Given the limitations of prior work, we first illustrate the
design principles of a system that can overcome these limi-
tations in providing virtualization-based fault tolerance. We
then present the system architecture of Phantasy, a system
we design and develop to realize virtualization-based fault
tolerance without incurring significant overhead in latency.

3.1 Design Principles

As we discussed in Section 2, the overhead of tracking dirty
pages and the long sequential dependency are the two limit-
ing factors for prior work. To realize a virtualization-based
fault-tolerant system that can be widely deployed in the
production environment, we need to meet the following
design goals:

� Lower the dirty page tracking overhead.
� Shorten the sequential dependency in checkpointing

execution.
To lower the high overhead of tracking dirty pages in the

software stack, we explore other efficient options and find
the Page-Modification Logging technology available on the
latest commodity Intel processors to be the perfect candidate.
PML is an enhancement for the VMM to provide hardware-
assisted monitoring of memory pages modified during the
VM execution. Because the monitoring logic is implemented
in the hardware, the overhead for tracking dirty pages is
much lower than doing it in the software stack.

To shorten the sequential dependency in checkpoint
VM execution, we investigate a fundamentally different
approach by asynchronously prefetching dirty pages using
a pulling model. Instead of waiting for all the dirty pages to
checkpoint at the end of each epoch, we design a system to
speculatively prefetch the dirty pages right after they have
been modified by proactively pulling them to the secondary
VM without interrupting the execution of the primary VM.
Consequently, only the dirty pages that have not been prop-
erly prefetched by the secondary VMM need to be check-
pointed, while the majority of the dirty pages have already
been prefetched to the secondary VM as we will demon-
strate later in the paper. This significantly reduces the num-
ber of dirty pages that need to be checkpointed and
transmitted, which directly shortens the sequential portion
of the checkpoint process. Moreover, the shortened latency
of generating and transmitting checkpoints in turn allows
the duration of each epoch to be shortened (i.e., no longer
need to amortize the overhead of generating and transmit-
ting the checkpoint as much), which further reduces the

network latency for latency-sensitive applications as the
time the network packets need to be buffered is reduced.

3.2 System Architecture

To realize these design principles with strict correctness
requirements, we design Phantasy as illustrated in Fig. 2.
Phantasy currently focuses on providing FT in a LAN envi-
ronment by seamless failover in the event of hardware fail-
stop failures [7] (e.g., power supply, memory, processor, or
PCIe link failure). The system is composed of five compo-
nents as highlighted in orange boxes in Fig. 2: the Control-
ler, the Checkpoint Saver/Loader, the Prefetcher, the Dirty
Pages Logger and the Network Buffer. The Controller peri-
odically sends keep-alive messages to the secondary VMM
to detect system failures, and engages the recovery proce-
dure by redirecting execution to the secondary VM when
failures are detected. During each epoch of VM execution:

� The Dirty Pages Logger tracks the dirty pages leverag-
ing the hardware-assisted PML technology at real-
time.

� The Prefetcher running on the secondary VMM spec-
ulatively prefetches the dirty pages the Dirty Pages
Logger has already recorded by asynchronously
pulling them without interrupting the primary VM
execution. The reason why these prefetches are
“speculative” is because these pages might be modi-
fied again after the prefetch, in which case they will
be prefetched again or transmitted in the checkpoint.

� The Network Buffer buffers all the network packets
within the duration of each epoch.

At the end of each epoch:

� The Checkpoint Saver generates a checkpoint based on
which pages remain “dirty” (i.e., has not been prop-
erly prefetched by the Prefetcher), which will then be
transmitted to the secondary VM.

� The Controller resumes primary VM execution
after the Checkpoint Saver finishes generating the
checkpoint.

� Once the checkpoint has been successfully transmit-
ted to the secondary VMM, the Checkpoint Loaderwill
apply the received checkpoint to the secondary VM.

Fig. 2. Architecture overview.

228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

� The network packets stored in the Network Bufferwill
be released when the Controller receives the acknowl-
edgement for successfully transmitting the previous
checkpoint.

4 ASYNCHRONOUS DIRTY PAGE PREFETCHING

As described in Section 3, the key to overcome the limita-
tions of prior work is the capability of asynchronously pre-
fetching dirty pages in parallel with the primary VM
execution to shorten the sequential dependency of con-
structing and transmitting the checkpoints. To realize this,
we need a mechanism to asynchronously pull memory
pages, as well as an algorithm to determine the “right”
pages to prefetch (i.e., the dirty pages that no longer need to
be checkpointed if prefetched). Therefore, we break this sec-
tion down into the following two topics.

� The mechanism to allow the secondary VMM to pull
memory pages asynchronously without interrupting
the primary VM execution (Section 4.1).

� The mechanism to determine which memory pages
to pull to maximize the prefetch precision (i.e., the
ratio between pages no longer need to be check-
pointed once prefetched and total number of pre-
fetched pages), efficiently shortening the sequential
dependency (Section 4.2).

We then put these mechanisms together and present the
detailed workflow of Phantasy during normal execution
(Section 4.3) and how it provides fault tolerance in the event
of hardware failures (Section 4.4).

4.1 Asynchronous Memory Page Pulling

To shorten the sequential dependency of constructing and
transmitting the checkpoints, we first need a mechanism to
pull memory pages from the primary VM in an asynchro-
nous fashion without interrupting its execution. In this sec-
tion, we present the mechanism we use in Phantasy, and
describe the specific prefetching protocol, which is designed
to be generic and VM-agnostic.

To facilitate asynchronous memory page pulling, we
leverage the direct remote memory access provided by
RDMA, which completely bypasses the CPU and OS kernel
of the host system and thereby can be done entirely in paral-
lel with the primary VM execution. In addition, RDMA also
offers zero-copy, low latency, and high throughput commu-
nication [18], [19], which makes it a great candidate as the
underlying foundation of the asynchronous memory page
pulling mechanism.

Specifically in Phantasy, the secondary VMM pulls mem-
ory pages from the primary VM by issuing one-sided READ
verb offered by RDMA. As opposed to SEND and RECV
verbs, which are two-sided, READ and WRITE verbs are
one-sided, which allows the secondary VMM to drive the
remote memory access entirely without any involvement of
the primary VM. What this means is the primary VM can
continue its execution uninterrupted while the secondary
VMM pulls memory pages in parallel. Moreover, one-sided
verbs typically provide lower communication latency and
higher throughput compared to two-sided ones, as demon-
strated by prior works in leveraging RDMA for VM migra-
tions and replication [12], [20], [21].

4.2 Dirty Page Prediction

With the asynchronous memory page pulling mechanism,
the secondary VMM can prefetch memory pages without
interrupting the primary VM. However, it still needs to
determine which memory pages to prefetch without con-
sulting with the primary VM, because prefetching pages
that are not “dirty” is not going to shorten the sequential
dependency as the number of dirty pages that need to be
checkpointed stays the same. In addition, when to prefetch
is also critical for constructing an efficient prefetching mech-
anism, because prefetching dirty pages that will be written
again within the same epoch cannot reduce the size of the
checkpoints. This section discusses the mechanism we
leverage in Phantasy to maximize the prefetching efficiency
by precisely predicting the dirty pages.

Initially, we try to tackle this challenge the same way as
cache prefetcher, which actively predicts memory pages are
likely to be dirty based on past patterns.We experiment with
several state-of-the-art memory access prediction models
including multi-level dirty page caches and a Markov
model-based machine learning algorithm [22]. However, we
find the prediction accuracy is too low even with the best
model (i.e., about 12 percent) to provide a non-negligible per-
formance improvement.

We then look into the techniques proposed by prior work
in obtaining page modification information, where the
majority of the systems [6], [9] tracks dirty pages by write-
protecting all memory pages. During each epoch, a VM exit
is triggered to trap into the VMM to mark the page dirty
whenever a memory write operation occurs, which is
extremely time-consuming and introduces significant per-
formance overhead. Recent work has also sought to lever-
age extended page table (EPT), an emerging technology
available on Intel processors that contains dirty flags of the
page table [23], [24], [25]. However, it is still required to tra-
verse the entire EPT to gather all the leaf entries where the
dirty flag is set, which is still too expensive for predicting
dirty pages to prefetch.

To address this challenge, we then construct our dirty
page prediction mechanism using the PML technology [16]
on commodity Intel processors, which is a hardware-assisted
enhancement to allow the VMM directly monitoring the
modified memory pages during VM execution. When PML
is enabled, each memory write will automatically generate
an entry in a pre-allocated in-memory buffer, which contains
the guest-physical address (GPA) of the write. The pre-
allocated buffer is composed of 512 64-bit entries, where
each entry references the GPA of amodified page.

Based on PML, Phantasy implements the Dirty Page Log-
ger in KVM to obtain the page modification information by
periodically checking the GPAs stored in the PML buffer. It
then stores the information in a dirty page bitmap mapped
between user and kernel space by mmap(). To avoid lock-
ing, a new bitmap is generated each time and indexed by a
timestamp so both primary VMM and secondary VMM are
able to identify which bitmap it is and reference all the bit-
maps in the same order. All these bitmaps are stored in a
specified area of primary host’s memory which has already
been mapped into user space and registered to enable
remote read access. As a result, the secondary VMM can
now directly read all the dirty page bitmaps entirely

REN ETAL.: PHANTASY: LOW-LATENCY VIRTUALIZATION-BASED FAULT TOLERANCE VIA ASYNCHRONOUS PREFETCHING 229

asynchronously from the user space of the primary host via
RDMA READ operations. With these bitmaps, Phantasy
can simply try to prefetch all the memory pages that are
already dirty instead of predicting which ones are likely to
be dirty, which significantly improves the precision and effi-
ciency of the prefetches. Note that the secondary VMM may
not have enough time before the end of the epoch to pre-
fetch all the dirty pages and some already prefetched pages
may be written and become dirty again even with multi-
round prefetching, so the remaining dirty pages still need to
be transmitted in the checkpoints.

4.3 Putting It Together

With both the mechanisms for pulling memory pages asyn-
chronously and predicting dirty pages, we are able to
design and develop Phantasy, a system that asynchronously
prefetches dirty pages without interrupting the primary VM
to shorten the sequential dependency of constructing and
transmitting the checkpoints. In this section, we present the
detailed workflow of our system.

Fig. 3 illustrates the workflow of Phantasy, in which the
novel steps we introduce in this paper are highlighted in
red. Specifically, the primary and secondary VMMs go
through the following steps.

1) The secondary VMM periodically checks if there are
any new dirty pages generated on the primary VM
by checking the dirty page bitmaps through RDMA
READ operations.

2) If there are any new dirty pages, the secondary VMM
will pull the dirty pages, whose GPAs can be
obtained by taking the union of all the dirty page bit-
maps, again through RDMA READ accesses.

3) Once all the dirty pages identified by the previous
check on the dirty page bitmaps have already been

prefetched, Phantasy repeats the same process from
Step 1 to prefetch the newly written dirty pages. Note
the secondary VMM might be able to finish multiple
rounds of prefetcheswithin the duration of each epoch.

4) At the end of each epoch, the primary VMMwill first
send a stop signal to the secondary VMM to stop pre-
fetching and also pause its own execution.

5) Once the secondary VMM receives the stop signal, it
stops prefetching and sends the primary VMM the
information about which pages have already been
prefetched. This is needed because the last prefetch
might not have been completed by the time the sec-
ondary VMM receives the signal, so the remaining
pages still need to be transmitted in the checkpoint.

6) The primary VMM generates a new checkpoint
based on the received prefetching information and
transmits it to the secondary VMM.

7) Once the new checkpoint has been sent out to the
secondary VMM, the primary VM can continue exe-
cution, and repeats from Step 1.

8) Once the secondary VMM has successfully received
the latest checkpoint, it will send back an acknowl-
edgement to the primary VMM.

9) After the primary VMM receives the acknowledge-
ment for successfully transmitting the checkpoint, it
will release the buffered outgoing packets.

4.4 Failure Recovery

Phantasy periodically sends keep-alive messages from the
primary VMM to the secondary VMM, and detects failures
when the secondary VMM does not receive five successive
keep-alive messages. Once the failure has been detected, the
secondary VM immediately takes over the execution using
the contexts of the most recent checkpointed state.

To resume execution from exactly the most recent check-
point, the secondary VMM does not prefetch the dirty pages
directly to the VM memory at real-time, otherwise, the sec-
ondary VMmight end up being states that are slightly ahead
of the last checkpoint since some dirty pages have already
been prefetched. Instead, a pre-allocated buffer is used to
store these dirty pages temporarily before they can be applied
when the next checkpoint has been successfully received.

5 OPTIMIZATIONS

On top of the asynchronous prefetching dirty page prefetch-
ing methodology, we also implement three optimizations to
further improve the system performance. In this section, we
first present the double buffering and undo logging we
leverage to reduce the overhead of applying dirty pages
on the secondary VM (Section 5.1). We then describe our
priority-based prefetching algorithm that prioritizes the
“write-cold pages” over “write-hot pages” to improve
the prefetching efficiency especially for memory-intensive
applications (Section 5.2). Last but not the least, we com-
press the work completion messages of RDMA READ verbs
to further reduce the prefetching latency (Section 5.3).

5.1 Double Buffering and Undo Logging

As discussed in Section 4.4, the prefetched dirty pages can-
not be directly applied to the secondary VM’s memory in

Fig. 3. The workflow of Phantasy for asynchronously prefetching dirty
pages to shorten the sequential dependency of constructing and trans-
mitting checkpoints.

230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

real-time, otherwise we will not be able to start execution
exactly at the last checkpoint in the event of hardware fail-
ure. However, naively managing the buffer can make apply-
ing checkpoints quite costly in terms of performance,
because all the dirty pages need to be copied at least twice
(i.e., once to the buffer and once to the secondary VM mem-
ory). To address this issue, we leverage double buffering to
swap two buffers (i.e., shown as the blue and red boxes on
the right-hand side in the figure) between undo log and
checkpoint as illustrated in Fig. 4.

Phantasy manages two buffers on the secondary host:
one is used to help store the latest checkpoint, and the other
buffers the most recent undo state that can be restored in
the event of failure. During each epoch, the dirty pages pre-
fetched by the secondary VMM will be stored directly into
the VM memory. If the corresponding page is already buff-
ered in the checkpoint buffer, nothing else needs to be done
since we can restore its previous state using the checkpoint
buffer. Otherwise, the current state of the page needs to be
written to the checkpoint buffer. After each epoch, the two
buffer will be swapped (i.e., the previous checkpoint buffer
will become the new undo log buffer and vice versa). The
new dirty pages transmitted in the checkpoint will be stored
in the new checkpoint buffer, and the undo log will contain
the states of all the necessary pages to resume execution at
the state right after applying the previous checkpoint. For
instance, Fig. 4 demonstrates an example of this procedure.

� During the pause(i) after the end of epoch(i),
the checkpoint containing dirty pages (denoted in
orange boxes) A0 and B0 is stored in the blue buffer,
which is serving as the checkpoint buffer at this
point.

� During the next epoch(iþ 1), the secondary VMM
asynchronously prefetches the new dirty pages A00

and C0. A00 can be directly written to memory
because its previous state A0 is already in checkpoint

(i) stored in the blue buffer. However, the current
state of page C will need to be written to checkpoint
(i) before we can apply C0 to the memory since it has
not been buffered previously.

� At the next pause(iþ 1) after epoch(iþ 1), the red
buffer and blue buffer will be swapped, where the
blue buffer becomes the new undo log(i) and the red
buffer becomes the new checkpoint(iþ 1). Now the
undo log(i) in the blue buffer contains the states of
the relevant pages after applying checkpoint(i),
which can be restored if a failure occurs in pause
(iþ 1). Meanwhile, the new dirty page D0 transmit-
ted in the checkpoint will be stored in the new
checkpoint buffer checkpoint(iþ 1) first, and the
checkpoint(iþ 1) will be applied to the secondary
VM’s memory in pause(iþ 2).

5.2 Priority-Based Prefetching

During each epoch, Phantasy tries to prefetch as many dirty
pages as possible whenever the primary VM marks them in
the dirty page bitmaps. However, it is not always the case
that Phantasy will have enough time to prefetch all the dirty
pages, especially for write-heavy memory-intensive appli-
cations that generate large quantities of dirty pages. When
not all the dirty pages can be prefetched in time, some of the
dirty pages might never get pulled by the secondary while
other frequently over-written pages might have already
been prefetched multiple times within the same epoch even
though only the last prefetch is actually useful. This can
result in inefficient prefetches as we waste a large amount
of resource fetching the same pages over and over again
and leave the rest of the pages untouched.

To quantify this observation, wemeasure themodification
frequency of each memory page within each epoch, which is
the number of rounds the same page is marked as dirty
per epoch. We find that at least 21.51 percent pages
are marked as dirty throughout the entire epoch, while
44.47 percent pages are onlymarked once per epoch.We refer
these frequently marked dirty pages as “write-hot pages”
and the others “write-cold pages”. Prefetching the “write-hot
pages” multiple times within the same epoch wastes a large
amount of resource, whichwe could and should have used to
prefetch those “write-cold pages”. Based on this insight, we
develop a priority-based prefetching algorithm that priori-
tizes “write-cold pages” over “write-hot pages” to further
improve the prefetching efficiency.

Specifically, Phantasy prioritizes the pages which are the
least recently modified. This optimization requires keeping
track of when pages were modified. Therefore, Phantasy
maintains statistics about the memory page’s last-modified
timestamp on the secondary VMM. In this revised design,
the secondary VMM performs each round of prefetching at
a fixed frequency. At the beginning of each round of pre-
fetching, the secondary VMM sorts the dirty pages in
ascending order according to the last-modified timestamp if
there is not enough time to prefetch all the dirty pages based
on estimation, and prefetches dirty pages in the same order
to prioritize the pages that are the least recently modified
(i.e., “write-cold pages”). If the secondary VMM estimates
all the dirty pages can be prefetched in time, it skips the
sorting to save resources. The time interval of each round of

Fig. 4. Double buffering and undo logging in Phantasy.

REN ETAL.: PHANTASY: LOW-LATENCY VIRTUALIZATION-BASED FAULT TOLERANCE VIA ASYNCHRONOUS PREFETCHING 231

prefetching is set to 1 ms by default and can be configured
to any value through the control interface. Phantasy per-
forms each round of prefetching at a fixed frequency since
the impact of prefetching frequency on performance is neg-
ligible. Particularly, if there is time left after prefetching all
dirty pages of a round, the secondary VMM will continue
the unfinished prefetching of previous rounds.

5.3 Using RDMA READ with Unsignaled Completion

By default, each work request (WR) generates a work com-
pletion (WC) signal to notify completion when using RDMA
verbs. However, handling large numbers of WCs can be
resource consuming and introduce additional latency. Spe-
cifically, polling and checking the WCs from the completion
queue consumes additional CPU cycles, and generating
WCs also consumes precious resource on RDMAdevices.

To reduce this overhead, Phantasy issues RDMA READ
verbswith unsignaled completionwhen performing prefetch-
ing. With the unsignaled completion mechanism, the READ
operations will no longer generate WCs for completion [26].
Meanwhile, transmission failures can still be detected as any
errorwill yield aWC to provide the errormessage [27].

The unsignaled completionmechanismdoes not affect the
correctness of our prefetching protocol because the prefetch-
ing operations within a round update different memory
addresses without overlapping, and the memory regions
that contain the prefetched pages will not be reused or
destroyed. Particularly, to control the speed of prefetching
and to avoid depleting completion queue resources, we gen-
erate a WC and wait for its acknowledgement after every
fifty RDMAREADs.

6 EVALUATION

In this section, we first describe our evaluation methodol-
ogy (Section 6.1) and profile Phantasy running in action
(Section 6.2). We then evaluate the effectiveness of Phantasy
in providing virtualization-based fault tolerance by compar-
ing against prior work in the following aspects.

� Reducing performance overhead for batch process-
ing applications (Section 6.3).

� Reducing latency for latency-sensitive applications
(Section 6.4).

6.1 Experimental Setup

All the experiments in this section are conducted on the
experimental platform described in Table. 1. The VMs are
configured with 2 virtual CPUs and 2 GB memory running

Ubuntu 14.04 with a kernel version at 3.13.0. We run one
VM on the primary host to minimize the impact of running
multiple VMs on the same host. However, Phantasy can
protect the specified VM running concurrently with other
VMs, as it can distinguish the dirty pages generated by the
protected VM from the dirty pages generated by other VMs.

To cover a wide range of applications in our evaluation,
we use 25 benchmarks from PARSEC [28], SPLASH-
2 [29], and OLTP-Bench [30] representing three categories of
applications, namely compute-intensive batch applications,
memory-intensive batch applications, and latency-sensitive
applications, as listed in Table 2. Specifically, we use sim-
large or native input for all benchmarks from PARSEC [28]
and SPLASH-2 [29]. To represent memory-intensive batch
applications, we use kernel-build that compiles Linux ker-
nel 3.13.1 with the default configuration, pbzip2 that com-
presses 111 MB of Linux source code, and pfscan that
searches the word “error” in Linux source code. For
latency-sensitive applications, we use six benchmarks from
OLTP-Bench [30], because they are sensitive to latency deg-
radation and can also benefit significantly from fault toler-
ance due to the criticality of online transaction processing.

For all experiments in this section, we compare our sys-
tem against Micro-Checkpointing (MC) [31], [32], which is
the state-of-the-art virtualization-based fault-tolerant sys-
tem implemented on QEMU based on Remus [6]. We chose
MC for comparison because, first, MC is designed and opti-
mized for RDMA-based systems [31], therefore, it has
shown relatively good performance in an RDMA environ-
ment; second, MC is implemented based on the same
platform as Phantasy, which facilitates an accurate and
unbiased direct comparison in terms of performance. In
addition, we also present the overhead compared to the
native VM execution without any fault tolerance capability.

6.2 Phantasy in Action

To understand the implication of the asynchronous pre-
fetching mechanism we develop, we first characterize the
RDMA bandwidth usage of Phantasy and MC over time. As
shown in Fig. 5, we profile the bandwidth usage of Phantasy
and MC for a 900 ms segment of execution of x264 from
PARSEC [28], where the epoch size is configured at 100 ms.

MC incurs a bandwidth spike every 100 ms because all
the dirty pages generated in the previous epoch can only be
checkpointed and transmitted to the secondary VM sequen-
tially at the end of the epoch. On the other hand, the band-
width usage of Phantasy stays relatively constant. During

TABLE 1
Specification of the Experimental Platform

Specification

Server Dell OptiPlex 7470 Workstation
Processor Intel Core i5-6500 @ 3.2 GHz (4-core, 6 MB LLC)
DRAM 8 GB @ 2133 MHz
InfiniBand NIC Mellanox ConnectX 40 Gbps InfiniBand (via PCIe 3.0 x8)
InfiniBand Switch Mellanox SX6005 56 Gbps InfiniBand Switch
Ethernet NIC Intel I219-LM 1 Gbps NIC
Ethernet Switch TP-Link 8-Port Gigabit Ethernet Switch
Kernel Version 4.4.62
QEMU Version 2.3.50

TABLE 2
Benchmarks Used in the Evaluation

Category Benchmarks

Compute-intensive
batch

blackscholes, bodytrack, canneal, ferret,
fluidanimate, freqmine, streamcluster,
swaptions, vips, x264 from PARSEC [28]
barnes, cholesky, fft, fmm, radix, volrend
from SPLASH-2 [29]

Memory-intensive
batch

kernel-build, pbzip, pfscan

Latency-sensitive TPC-C, Twitter, Voter, SmallBank, TATP,
YCSB from OLTP-Bench [30]

232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

each epoch, the dirty pages are asynchronously prefetched
by the secondary VM, resulting in a bandwidth usage at
about 500 MB/s. At the end of each epoch, because the
majority of the dirty pages have already been prefetched,
the number of dirty pages that need to be checkpointed and
transmitted is much lower, drastically reducing the proba-
bility of incurring large spikes in the bandwidth usage like
MC. More importantly, it significantly reduces the length of
the sequential dependency for generating, transmitting,
receiving acknowledgement for the checkpoints and releas-
ing the buffered network packets, which can directly reduce
the performance overhead as well as the query latency for
latency-sensitive applications.

6.3 Overhead for Batch Processing Applications

In this section, we first evaluate the end-to-end overhead of
Phantasy compared to MC (Section 6.3.1). To further under-
stand the source of the overhead reduction, we analyze the
reduction in VM exits (Section 6.3.2) and in dirty pages
(Section 6.3.3).

6.3.1 Reduction in End-to-End Overhead

To evaluate the end-to-end overhead introduced by MC and
Phantasy compared to the baseline native VM execution, we
measure the execution time of the compute-intensive and
memory-intensive batch applications in Table 2 for 50 times
for all three configurations. We also vary the size of each
epoch for MC and Phantasy to measure its impact.

The results are shown in Fig. 6, in which the y-axis
denotes the overhead of MC and Phantasy at different
epoch sizes compared to the native VM execution (i.e.,
higher bars represent more overhead). As shown in the
figure, Phantasy significantly reduces the end-to-end over-
head compared to MC, which is the state-of-the-art prior
work. Across all benchmarks and three different epoch

sizes, Phantasy can reduce the overhead drastically by 38.88
percent on average.

We also observe that Phantasy achieves larger improve-
ment on I/O intensive applications (i.e., kernel-build, pbzip,
pfscan) than CPU intensive applications. On average, Phan-
tasy incurs 35.24 percent less overhead than MC for CPU
intensive applications, and 58.33 percent less overhead for
I/O intensive applications. This is because I/O intensive
applications tend to have much more frequent memory
writes, translating to more dirty pages, thereby more VM
exits. By asynchronously prefetching these dirty pages, our
system can significantly reduce the number of dirty pages
need to be transferred (i.e., checkpoint size) during the
sequential execution. Instead of tracking the dirty pages in
the software-stack, which causes frequent VM exits, Phan-
tasy leverages PML to record the dirty pages in hardware,
further reducing the overhead caused by VM exits.

In addition to the amount of memory writes, the locality
of memory writes also has an impact on the overhead
reduction Phantasy achieves. If the application often writes
to different memory pages (i.e., cold pages, high reuse dis-
tance), our prefetching mechanism will be more effective
because the already prefetched pages are less likely to be
written again. For example, although cholesky does not
have a lot of memory writes, it does not write to the same
pages very often, resulting in a relatively large overhead
reduction (i.e., 50.37 percent at 5 ms epoch size).

Moreover, the page size is another key factor that can
influence the performance of Phantasy since using smaller
page size can reduce the overhead of transmitting dirty
pages.A further experiment shows that using huge pages [33]
(2 MB page size) increases the performance overhead by
9.55 percent on average compared to using 4 KB page size.
However, we should also note that utilizing smaller pages
may introduce additional overhead since higher amount of
memory address translationswill be required [34]. Therefore,
we choose 4 KB as the default page size in Phantasy.

In summary, Phantasy significantly reduces the over-
head of virtualization-based fault tolerance by lowering the
dirty page tracking overhead and shortening the sequential
dependency in checkpointing execution. To further investi-
gate the overhead reduction achieved by Phantasy, we ana-
lyze the reduction in VM exits (Section 6.3.2) and in dirty
pages (Section 6.3.3).

6.3.2 Reduction in VM Exits

Fig. 7 presents the reduction in the amount of VM exits. As
we can see in the figure, Phantasy significantly reduces the

Fig. 5. The RDMA bandwidth usage of Phantasy and MC as a function of
time for a 900 ms segment of execution of x264 from PARSEC [28] at
100 ms epoch size (with a sampling interval of 12 ms).

Fig. 6. The overhead of MC and Phantasy at different epoch sizes compared to the native VM execution (i.e., higher bars represent more overhead).

REN ETAL.: PHANTASY: LOW-LATENCY VIRTUALIZATION-BASED FAULT TOLERANCE VIA ASYNCHRONOUS PREFETCHING 233

VM exits by 88.40 percent on average. The reduction in VM
exits decreases as the size of each epoch increases as illus-
trated in the figure. The reason is MC invokes only one VM
exit for multiple writes to the same dirty page within the
same epoch, which means the rate of VM exits generated
drops as the epoch size grows. At 5 ms epoch size, Phantasy
can reduce the VM exit by 93.94 percent. As we increase the
epoch size to 10 ms and 20 ms, the reduction decreases to
88.41 percent and 82.86 percent, respectively.

If we compare the absolute numbers of VM exits, we can
find that Phantasy reduces more VM exits for I/O intensive
applications than CPU intensive applications, which explains
why they tend to benefit a higher end-to-end overhead reduc-
tion. Because I/O intensive applications tend to generate
more memory writes and systems like MC have to invoke
one VM exit for each dirty page to track them, they naturally
experience higher VMexits reduction.

6.3.3 Reduction in Dirty Pages in Checkpoints

In addition to VM exits, we find Phantasy can significantly
reduce the number of dirty pages need to be transmitted to
the secondary VM in checkpoints as demonstrated in
Fig. 8. By asynchronously prefetching the dirty pages iden-
tified by PML, our system will have already transmitted a
large fraction of the dirty pages at the end of each epoch,
which means only the remaining dirty pages need to be
transmitted in the next checkpoint. At 5 ms epoch size,
Phantasy reduces the number of dirty pages in checkpoints
by 51.77 percent for CPU intensive applications, and 52.82
percent for I/O intensive applications. If we compare the

reductions among different epoch sizes, we can find the
reduction increases as the epoch size grows, because the
likelihood that our system can successfully prefetch each
dirty page increases as epochs become longer, resulting in
less dirty pages needed to be transmitted in the checkpoint.
At 10 ms epoch size, Phantasy can reduce the dirty
pages by 53.14 percent for CPU intensive applications,
and 62.31 percent for I/O intensive applications. As we
increase the epoch size to 20 ms, the reduction grows to
58.95 and 69.41 percent for CPU intensive applications and
I/O intensive applications respectively.

6.3.4 Benefits of Innovations and Optimizations

To show the performance improvement contributed by PML
and the asynchronous prefetching mechanism separately,
we evaluate the end-to-end overhead of Phantasy compared
to the PML-based MC which utilizes PML instead of soft-
ware-based approach for dirty pages tracking. Fig. 9 illus-
trates that compared with PML-basedMC, Phantasy can still
reduce the overhead drastically by 26.98 percent on average.
As a comparison, Phantasy incurs 38.88 percent less over-
head than the original MC, which means the performance
improvement contributed by our asynchronous prefetching
is much greater than PML.

Fig. 10 quantifies the performance improvement due to
each of Phantasy’s optimizations. The results show that pri-
ority-based prefetching reduces the overhead by 3.6 percent
on average, while unsignaled completion and double buff-
ering contribute 1.2 and 1.35 percent improvement, respec-
tively. The impact of unsignaled completion is highly

Fig. 7. The reduction in the number of VM exits achieved by Phantasy
compared to MC.

Fig. 8. The reduction in the number of dirty pages in checkpoints
achieved by Phantasy compared to MC.

Fig. 9. The end-to-end overhead of Phantasy compared to PML-based
MC.

Fig. 10. The end-to-end overhead of Phantasy with different optimiza-
tions (at 5 ms epoch size).

234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

dependent on the amount of the dirty pages that the second-
ary VMM can prefetch, which explains why applications
like bodytrack and streamcluster, which generate less dirty
pages, benefit less from this unsignaled completion.

6.4 Latency for Latency-Sensitive Applications

Fault tolerance is critical for many latency-sensitive applica-
tions, especially ones that are mission-critical (e.g., database
management systems, network functions virtualization serv-
ices, and data caching services). However, the latency degra-
dation introduced by the state-of-the-art virtualization-
based fault-tolerant systems is so high as we illustrated in
Section 2 that it is impractical to deploy such systems.

In this section, we evaluate the feasibility of deploying
Phantasy for latency-sensitive applications bymeasuring the
latency degradation and comparing to MC (Section 6.4.1).
We then analyze in-depth the reduction achieved by Phan-
tasy in the number of VM exits (Section 6.4.2) and in the num-
ber of dirty pages in checkpoints (Section 6.4.3).

6.4.1 Reduction in Query Latency

To measure the query latency, we measure six latency-
sensitive applications from OLTP-Bench [30] running on
MySQL database, which is configured to run on MC and
Phantasy for comparison. The measured query latency is
shown in Fig. 11, the x-axis represents the timeline (i.e.,
each experiment runs for 300 seconds) and the y-axis shows
the latency reported by OLTP-Bench [30].

On average, the Phantasy improves the query latency by
85.85 percent compared to MC. Specifically, MC is not able
to sustain the queries for four out of the six applications
(i.e., Voter in Fig. 11a, SmallBank in Fig. 11d, TATP in
Fig. 11e, YCSB in Fig. 11f), as demonstrated in the initially
increasing and quickly plateaued latency time series (i.e.,
queries start to time out as the system is overutilized).
Although MC is able to sustain the queries for the other two
applications (i.e., TPC-C in Fig. 11b and Twitter in Fig. 11c),
the latency is quite bursty. For instance, the query latency
for TPC-C increases from 250 ms all the way up to 900 ms
(i.e., 3.6× degradation) around 150s in Fig. 11b. This is
because of the aggravating queueing effect we discussed in
Section 2, where the length of each epoch keeps growing
when the checkpointing size increases and longer epoch in
turn results in larger checkpoints.

On the contrary, Phantasy is able to sustain the incoming
queries for all six applications at a much lower query latency
(i.e., 85.85 percent reduction). Even for the worst case sce-
nario (TPC-C in Fig. 11b), Phantasy can reduce the average
latency by 30.84 percent compared to MC. In addition to the
reduction in query latency, we can also observe that Phan-
tasy can significantly reduce the variance of query latency,
which is critical for latency-sensitive applications [14].

In summary, Phantasy realizes virtualization-based fault
tolerance at a much lower latency, particularly 85.85 percent
reduction compared to MC, which makes such systems
practical for latency-sensitive applications. We then further
analyze the reduction our system can achieve in the number
of VM exits (Section 6.4.2) and dirty pages per checkpoint
(Section 6.4.3).

6.4.2 Reduction in VM Exits

Fig. 12 presents the number of VM exits per second Phantasy
is able to reduce compared to MC. The reduction for TPC-C
is lower because it is much more compute intensive than the
other five applications, so the total number of VM exits it
generates is lower than the other applications. The results
show that tracking dirty pages using PML in hardware to
reduce the number of VM exits has a direct positive impact
on the query latency for latency-sensitive applications.

6.4.3 Reduction in Dirty Pages

We then further characterize the reduction of dirty pages for
these six latency-sensitive applications as shown in Fig. 13.
In each figure, the y-axis on the left and the orange line

Fig. 11. Comparison of Phantasy and MC in query latency for six latency-sensitive applications from OLTP-Bench [30] (at 5 ms epoch size).

Fig. 12. The reduction in the number of VM exits per second achieved by
Phantasy compared to MC.

REN ETAL.: PHANTASY: LOW-LATENCY VIRTUALIZATION-BASED FAULT TOLERANCE VIA ASYNCHRONOUS PREFETCHING 235

shows the query latency over time, and the y-axis on the
right and the dashed red line represents the percentage of
dirty page reduction of Phantasy comparting to MC. For
example, SmallBank shown in Fig. 13d experiences a latency
around 120 ms (i.e., orange line) with a few spikes and a
reduction of around 50 percent (i.e., dashed red line) in
dirty pages running on Phantasy. In aggregate, Phantasy is
able to reduce the dirty pages that need to be transmitted in
the checkpoints by 55.16 percent. Note that MC cannot sus-
tain the queries and is timing out these queries for four out
of the six applications, namely Voter in Fig. 13a, SmallBank
in Fig. 13d, TATP in Fig. 13e and YCSB in Fig. 13f.

In addition, we also notice that the query latency and the
dirty page reduction are inversely correlated, where drops in
dirty page reduction often result in latency spikes. For exam-
ple, the latency spike at 65s for TATP shown in Fig. 13e is
inversely correlated with the drop in dirty page reduction,
and the decreasing latency during the first 25s for Twitter
shown in Fig. 13c is inversely correlated with the increasing
trend of dirty page reduction. This inverse correlation fur-
ther confirms our observation that asynchronously prefetch-
ing dirty pages to reduce the number of dirty pages that
need to be transmitted in each checkpoint can directly reduce
the query latency, making such virtualization-based fault-
tolerant systems feasible for latency-sensitive applications.

7 RELATED WORKS

Researchers have proposed systems to provide extremely
high availability by periodically checkpointing execution of
the primary machine to a secondary replicated machine, so
that the secondarymachine can continue execution transpar-
ently in the event of machine failures on the primary
machine. Bressoud and Schneider [5] first present and for-
malize the principles and protocols to implement software-
only virtual machine-based fault tolerance systems.
Friedman, Kama [35] andNapper et al. [36] present an imple-
mentation of such fault-tolerant systems on top of Java vir-
tual machine. Remus [6] is one of the first systems that
makes this mechanism practical by allowing speculative exe-
cution and asynchronous checkpointing and replication. Lu

and Chiueh [10] also implement a speculative state transfer
mechanism. Compared to their approach, Phantasy lowers
the dirty page tracking overhead by leveraging the PML and
shortens the sequential dependency in checkpointing execu-
tion by investigating a fundamentally different approach by
asynchronously prefetching dirty pages using a pulling
model. Zhu et al. [9], [11] present the idea of read-fault reduc-
tion andwrite-fault prediction to reduce the overhead of log-
ging dirty pages, and introduce the concept of software-
superpage to optimize the memory transfer between virtual
machines. Tsao et al. [37] implement an efficient fault-toler-
ant system by using SSE instructions to achieve fine-grained
dirty region tracking. VMware vSphere FT [38] is a commer-
cial enterprise-grade system for providing continuous avail-
ability for applications by periodically taking incremental
checkpoints of the VM states. RemusDB [39] exercises the
idea of building high availability database management sys-
tems using virtual machine checkpointing, and presents
optimizations catered for characteristics of such applications
(i.e., memory intensive and sensitive to network latency).
Tardigrade [13] addresses the same challenge by encapsulat-
ing execution into lightweight virtual machines, thereby
avoiding having to synchronize unnecessary data between
the primary and secondary machines like OS background
tasks.Moreover, recentwork [7] have also looked at synchro-
nizing the primary VM and secondary VM using lazy check-
points, which are only generated and applied to the
secondary VM if its output diverges from the primary VM.
Ourwork differs from such technique fundamentally by pro-
viding a different asynchronously communication channel
for transmitting dirty pages, which can be applied to systems
like Remus [6], Kemari [8], and COLO [7] to further comple-
ment their performance.

Moreover, we believe that many other works can
potentially benefit from the idea of tracking dirty pages
by leveraging PML and proactively pulling dirty pages
through direct remote memory access via RDMA. For exam-
ple, live VM migration faces the exact same technical chal-
lenge that how to efficiently track and transmit all the dirty
pages. In order to achieve live VM migration, all the run-
time states must be transferred from the source to the

Fig. 13. The time series of the query latency and the reduction in dirty pages of six latency-sensitive applications from OLTP-Bench [30] running on
Phantasy.

236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

destination without disconnecting the client or applica-
tion [17]. Pre-copy, as a major approach to perform live VM
migration, uses a similar high-level strategy as Phantasy. It
first transfers all the dirty pages from source to destination
in an asynchronous fashion while the VM is still running on
the source. Then, if some pages change, they will be retrans-
ferred. Finally, it stops the source VM and transfers the
remaining dirty pages. This idea was first proposed by
Clark et al. [17]. VMotion [40] is one of the first systems that
can migrate unmodified applications on the unmodified
x86-based OS. To further improve the performance, some
recent works demonstrated the benefit of using InfiniBand
for VM migration [20], [41]. Moreover, to further expand
the utility of live VMmigration, some recent works focus on
supporting the transparent, live wide-area migration of vir-
tual machines [42], [43], [44].

8 CONCLUSION

In this paper, we have made the first attempt to leverage
emerging processor (PML) and network (RDMA) features
to achieve an efficient and low-latency fault tolerance. To
realize a virtualization-based fault tolerance system that can
be widely deployed in production environment, we first
lower the dirty page tracking overhead by leveraging the
PML. Then, we shorten the sequential dependency in check-
pointing execution by investigating a fundamentally differ-
ent approach by asynchronously prefetching dirty pages
using a pulling model. Instead of waiting for all the dirty
pages to checkpoint at the end of each epoch, with the help
of RDMA, we design an asynchronous pull-based prefetch-
ing strategy to speculatively prefetch the dirty pages that
recorded by PML by proactively pulling them to the second-
ary VM without interrupting the execution of the primary
VM. By doing so, we can overlap dirty pages transport with
VM execution, and therefore can potentially mask the vast
majority or even all of the memory state synchronization
overhead. We also discuss three more optimizations to fur-
ther improve the system performance. By evaluating our
system on 25 real-world applications, we demonstrate that
Phantasy can significantly reduce the performance over-
head by 38 percent on average, and further reduce the
latency by 85 percent compared to the state-of-the-art virtu-
alization-based fault-tolerant systems. Phantasy is now only
compatible with shared storage, such as iSCSI (Internet
Small Computer Systems Interface) and NAS (network-
attached storage). In the future, we intend to extend this
work to platforms using separate local disk. Furthermore,
extending Phantasy to support a more complex failure
recovery strategy which can deal with the case where the
secondary VM fails is an interesting research problem and
will be our future research topic.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grant No. 61572044 and Grant No.
61170056). The contact author is Zhen Xiao.

REFERENCES

[1] J. Gray and D. P. Siewiorek, “High-availability computer sys-
tems,” IEEE Comput., vol. 24, no. 9, pp. 39–48, Sep. 1991.

[2] Amazon ec2 service level agreement. [Online]. Available: https://
aws.amazon.com/cn/ec2/sla/

[3] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine,
J. Klecka, and J. Smullen, “Nonstop�advanced architecture,” in
Proc. Int. Conf. Dependable Syst. Netw., Jun. 2005, pp. 12–21.

[4] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith,
“Configurable isolation: Building high availability systems with
commodity multi-core processors,” in Proc. 34th Annu. Int. Symp.
Comput. Archit., 2007, pp. 470–481.

[5] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault toler-
ance,” in Proc. 15th ACM Symp. Operating Syst. Principles, 1995,
pp. 1–11.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual
machine replication,” in Proc. 5th USENIX Symp. Networked Syst.
Des. Implementation, 2008, pp. 161–174.

[7] Y. Dong,W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan, “COLO:
COarse-grained LOck-stepping virtual machines for non-stop
service,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, Art. no. 3.

[8] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual
machine synchronization for fault tolerance,” in Proc. USENIX
Annu. Tech. Conf. (Poster Session), 2008.

[9] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving
the performance of hypervisor-based fault tolerance,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., 2010, pp. 1–10.

[10] L. Maohua and C. Tzi-cker, “Fast memory state synchronization
for virtualization-based fault tolerance,” in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2009, pp. 534–543.

[11] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the performance
of virtual machine synchronization for fault tolerance,” IEEE
Trans. Comput., vol. 60, no. 12, pp. 1718–1729, Dec. 2011.

[12] B. Gerofi and Y. Ishikawa, “RDMA based replication of multipro-
cessor virtual machines over high-performance interconnects,” in
Proc. IEEE Int. Conf. Cluster Comput., Sep. 2011, pp. 35–44.

[13] J. R. Lorch, A. Baumann, L. Glendenning, D. T. Meyer, and
A.Warfield, “Tardigrade: Leveraging lightweight virtualmachines
to easily and efficiently construct fault-tolerant services,” in Proc.
12th USENIX Conf. Networked Syst. Des. Implementation, 2015,
pp. 575–588.

[14] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 52, pp. 74–80, 2013.

[15] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attribut-
ing the source of tail latency through precise load testing and sta-
tistical inference,” in Proc. 43rd Int. Symp. Comput. Archit., 2016,
pp. 456–468.

[16] Intel Corporation, Intel�64 and IA-32 Architectures Software Devel-
oper’s Manual, Jul. 2017, no. 325462–063US.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proc. 2nd Conf. Symp. Networked Syst. Des. Implementation - Vol. 2,
2005, pp. 273–286.

[18] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM,” in Proc. 25th
Symp. Operating Syst. Principles, 2015, pp. 87–104.

[19] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA effi-
ciently for key-value services,” in Proc. ACM Conf. SIGCOMM,
2014, pp. 295–306.

[20] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance
virtual machine migration with RDMA over modern inter-
connects,” in Proc. IEEE Int. Conf. Cluster Comput., 2007, pp. 11–20.

[21] C. Isci, J. Liu, B. Abali, J. O. Kephart, and J. Kouloheris, “Improving
server utilization using fast virtual machine migration,” IBM J. Res.
Develop., vol. 55, no. 6, pp. 4:1–4:12, Nov. 2011.

[22] D. Joseph and D. Grunwald, “Prefetching using Markov pre-
dictors,” in Proc. 24th Annu. Int. Symp. Comput. Archit., 1997,
pp. 252–263.

[23] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song, “Samsara: Efficient
deterministic replay in multiprocessor environments with hard-
ware virtualization extensions,” in Proc. USENIX Annu. Tech.
Conf., Jun. 2016, pp. 551–564.

[24] S. Ren, C. Li, L. Tan, and Z. Xiao, “Samsara: Efficient deterministic
replay with hardware virtualization extensions,” in Proc. 6th Asia-
Pacific Workshop Syst., 2015, Art. no. 9.

[25] S. Ren, L. Tan, C. Li, Z. Xiao, andW. Song, “Leveraging hardware-
assisted virtualization for deterministic replay on commodity
multi-core processors,” IEEE Trans. Comput., vol. 67, no. 1, pp. 45–
58, Jan. 2017.

REN ETAL.: PHANTASY: LOW-LATENCY VIRTUALIZATION-BASED FAULT TOLERANCE VIA ASYNCHRONOUS PREFETCHING 237

https://aws.amazon.com/cn/ec2/sla/
https://aws.amazon.com/cn/ec2/sla/

[26] Mellanox Technologies, RDMA Aware Networks Programming User
Manual, Rev 1.7, May 2015.

[27] D. Barak, “Working with unsignaled completions.” 2014. [Online].
Available: http://www.rdmamojo.com/2014/06/30/working-
unsignaled-completions/

[28] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proc. 17th Int. Conf. Parallel Archit. Compilation Tech., 2008, pp. 72–
81.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. 22nd Annu. Int. Symp. Comput. Archit., 1995,
pp. 24–36.

[30] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “OLTP-
Bench: An extensible testbed for benchmarking relational data-
bases,” Proc. VLDBEndow., vol. 7, no. 4, pp. 277–288, Dec. 2013.

[31] M. R. Hines, “QEMU: Features – Micro-checkpointing.”
2015. [Online]. Available: https://wiki.qemu.org/Features/
MicroCheckpointing

[32] M. R. Hines, “RDMA migration and RDMA fault tolerance for
QEMU,” KVM Forum, 2013.

[33] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift,
“Efficient virtual memory for big memory servers,” in Proc. 40th
Annu. Int. Symp. Comput. Archit., 2013, pp. 237–248.

[34] P.W. Frey and G. Alonso, “Minimizing the hidden cost of RDMA,”
in Proc. 29th IEEE Int. Conf. Distrib. Comput. Syst., 2009, pp. 553–560.

[35] R. Friedman and A. Kama, “Transparent fault-tolerant Java vir-
tual machine,” in Proc. 22nd Int. Symp. Reliable Distrib. Syst., 2003,
pp. 319–328.

[36] J. Napper, L. Alvisi, and H. Vin, “A fault-tolerant Java virtual
machine,” in Proc. Int. Conf. Dependable Syst. Netw., 2003, pp. 425–
434.

[37] P. J. Tsao, Y. F. Sun, L. H. Chen, and C. Y. Cho, “Efficient virtuali-
zation-based fault tolerance,” in Proc. Int. Comput. Symp., 2016,
pp. 114–119.

[38] VMware, Inc., VMware vSphere 6 Fault Tolerance: Architecture
and Performance, Tech. White Paper Jan. 2016.

[39] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,
and A. Warfield, “RemusDB: Transparent high availability for
database systems,” VLDB J., vol. 22, no. 1, pp. 29–45, Feb. 2013.

[40] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migra-
tion for virtual machines,” in Proc. USENIX Annu. Tech. Conf.,
2008, pp. 25–25.

[41] J. Zhang, X. Lu, and D. K. Panda, “High-performance virtual
machine migration framework for mpi applications on sr-iov
enabled infiniband clusters,” in Proc. IEEE Int. Parallel Distrib. Pro-
cess. Symp., 2017, pp. 143–152.

[42] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schi€oberg, “Live
wide-area migration of virtual machines including local persistent
state,” in Proc. 3rd Int. Conf. Virtual Execution Environments, 2007,
pp. 169–179.

[43] A. Fischer, A. Fessi, G. Carle, and H. de Meer, “Wide-area virtual
machine migration as resilience mechanism,” in Proc. IEEE 30th
Symp. Reliable Distrib. Syst. Workshops, 2011, pp. 72–77.

[44] S. K. Bose, S. Brock, R. Skeoch, and S. Rao, “Cloudspider: Combin-
ing replication with scheduling for optimizing live migration of
virtual machines across wide area networks,” in Proc. 11th IEEE/
ACM Int. Symp. Cluster Cloud Grid Comput., 2011, pp. 13–22.

Shiru Ren is currently working toward the PhD
degree in the School of Electronics Engineering
and Computer Science, Peking University. His
research interests include virtualization technolo-
gies, operating system, fault tolerance, and dis-
tributed system. His recent research aims to
implement efficient and low-latency virtualization-
based fault tolerance using RDMA and PML.

Yunqi Zhang is working toward the PhD degree in
the Computer Science and Engineering Depart-
ment, University of Michigan. His research interest
includes architecting data centers for high effi-
ciencyand low latency. He is amember of theACM
andIEEE.

Lichen Pan received the bachelor’s degree from
Peking University, in 2017. He is currently working
toward the doctoral degree in the School of Elec-
tronics Engineering and Computer Science,
Peking University. His research interests include
virtualization technologies, fault tolerance, and
cloud computing.

Zhen Xiao received the PhD degree from Cornell
University, in January 2001. He is a professor with
the Department of Computer Science, Peking Uni-
versity. After receiving of PhD degree he worked as
a senior technical staff member with AT&T Labs -
New Jersey and then a Research Staff Member
with IBM T. J. Watson Research Center. His
research interests include cloud computing, virtual-
ization, and various distributed systems issues. He
is a senior member of the ACMand IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

http://www.rdmamojo.com/2014/06/30/working-unsignaled-completions/
http://www.rdmamojo.com/2014/06/30/working-unsignaled-completions/
https://wiki.qemu.org/Features/MicroCheckpointing
https://wiki.qemu.org/Features/MicroCheckpointing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

