
LIBRA: Lightweight Data Skew
Mitigation in MapReduce

Qi Chen, Jinyu Yao, and Zhen Xiao, Senior Member, IEEE

Abstract—MapReduce is an effective tool for parallel data processing. One significant issue in practical MapReduce applications is data

skew: the imbalance in the amount of data assigned to each task. This causes some tasks to takemuch longer to finish than others and

can significantly impact performance. This paper presents LIBRA, a lightweight strategy to address the data skew problem among the

reducers of MapReduce applications. Unlike previous work, LIBRA does not require any pre-run sampling of the input data or prevent the

overlap between themap and the reduce stages. It uses an innovative samplingmethodwhich can achieve a highly accurate approxima-

tion to the distribution of the intermediate data by sampling only a small fraction of the intermediate data during the normal map process-

ing. It allows the reduce tasks to start copying as soon as the chosen samplemap tasks (only a small fraction of map tasks which are

issued first) complete. It supports the split of large keyswhen application semantics permit and the total order of the output data. It consid-

ers the heterogeneity of the computing resources when balancing the load among the reduce tasks appropriately. LIBRA is applicable to

a wide range of applications and is transparent to the users. We implement LIBRA in Hadoop and our experiments show that LIBRA has

negligible overhead and can speed up the execution of some popular applications by up to a factor of 4.

Index Terms—MapReduce, data skew, sampling, partitioning

Ç

1 INTRODUCTION

THE past decade has witnessed the explosive growth of
data for processing. Large Internet companies routinely

generate hundreds of tera-bytes of logs and operation
records. MapReduce has proven itself to be an effective tool
to process such large datasets [1]. It divides a job into multi-
ple small tasks and assign them to a large number of nodes
for parallel processing. Due to its remarkable simplicity and
fault tolerance, MapReduce has been widely used in various
applications, including web indexing, log analysis, data
mining, scientific simulations, machine translation, etc..
There are several parallel computing frameworks that sup-
port MapReduce, such as Apache Hadoop [2], Google Map-
Reduce [1], and Microsoft Dryad [3], of which Hadoop is
open-source and widely used.

The job completion time in MapReduce depends on the
slowest running task in the job. If one task takes significantly
longer to finish than others (the so-called straggler), it can
delay the progress of the entire job. Stragglers can occur due
to various reasons, among which data skew is an important
one. Data skew refers to the imbalance in the amount of data
assigned to each task, or the imbalance in the amount of
work required to process such data. The fundamental rea-
son of data skew is that datasets in the real world are often
skewed and that we do not know the distribution of the
data beforehand. Note that this problem cannot be solved
by the speculative execution strategy in MapReduce [4].

Data skew is not a new problem specific to MapReduce.
It has been studied previously in the parallel database

literature, but only limited on join [5], [6], [7], [8], [9], group
[10], and aggregate [11] operations. Although some of these
techniques have already been applied to MapReduce, users
still need to develop their owndata skewmitigationmethods
for specific applications in most cases. The Hadoop imple-
mentation of MapReduce by default uses static hash func-
tions to partition the intermediate data. This works well
when the data is uniformly distributed, but can perform
badly when the input is skewed (some key values are signifi-
cantly more frequent than others). This can be illustrated in
the top figure of Fig. 1 when we run the sort benchmark [2]
on 10 GB input data following the Zipf distribution (s ¼ 1:0).
This situation also appears in other static partition methods.
For example, in the bottom figure, we use a static range parti-
tion method (RADIX partition with 26 reducers for words
starting with each letter of the alphabet and another reducer
for special characters) to generate a lexicographically
ordered inverted index on full English Wikipedia archive
with a total data size of 31 GB. Like the hash method, it
results in significant data skew as well. To tackle this prob-
lem, Hadoop provides a dynamic range partition method
which conducts a pre-run sample of the input before the real
job. The middle figure (same experiment environment as the
top figure) shows that this method mitigates the problem
somewhat, but the resulting distribution is still uneven.

The data skew problem in MapReduce has been studied
only recently [12], [13], [14], [15], [16]. Among the solutions
proposed, some are specific to a particular type of applica-
tions, some require a pre-sample of the input data, and
some cannot preserve the total ordered result as the applica-
tions require. To make matters more complicated, the com-
puting environment for MapReduce in the real world can
be heterogeneous as well—multiple generations of hard-
ware are likely to co-exist in the same data center [17].
When MapReduce runs in a virtualized cloud computing
environment such as Amazon EC2 [18], the computing and

� The authors are with the Department of Computer Science at Peking Univer-
sity, Beijing 100871, China. E-mail: {chenqi, yjy, xiaozhen}@net.pku.edu.cn.

Manuscript received 26 Jan. 2014; revised 29 June 2014; accepted 15 Aug.
2014. Date of publication 21 Aug. 2014; date of current version 7 Aug. 2015.
Recommended for acceptance by S. Aluru.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2350972

2520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

storage resources of the underlying virtual machines (VMs)
can be diverse for a variety of reasons. A good partition
method should take this into consideration instead of
always dividing the work evenly among all reducers.

In this paper, we present a new strategy called LIBRA
(Lightweight Implementation of Balanced Range Assign-
ment) to solve the data skew problem for reduce-side appli-
cations in MapReduce. Compared to the previous work, our
contributions include the following:

� We propose a new sampling method for general
user-defined MapReduce programs. The method has
a high degree of parallelism and very little overhead,
which can achieve a much better approximation to
the distribution of the intermediate data.

� We use an innovative approach to balance the load
among the reduce tasks which supports the split of
large keys when application semantics permit. Fig. 1
shows that with our LIBRA method, each reducer
processes roughly the same amount of data.

� When the performance of the underlying computing
platform is heterogeneous, LIBRA can adjust its work-
load allocation accordingly and can deliver improved
performance even in the absence of data skew.

� We implement LIBRA in Hadoop and evaluate its
performance for some popular applications. Experi-
ment results show that LIBRA can improve the job
execution time by up to a factor of 4.

The rest of the paper is organized as follows. Section 2
provides a background on MapReduce and the causes of
data skew. Section 3 describes the implementation of our
LIBRA system and Section 4 presents its algorithm details.
Performance evaluation is in Section 5. Section 6 discusses
related work. Section 7 concludes.

2 BACKGROUND

2.1 MapReduce Framework

In a MapReduce system, a typical job execution consists of
the following steps: 1) After the job is submitted to the Map-
Reduce system, the input files are divided into multiple
parts and assigned to a group of map tasks for parallel proc-
essing. 2) Each map task transforms its input (K1, V1) tuples
into intermediate (K2, V2) tuples according to some user

defined map and combine functions, and outputs them to the
local disk. 3) Each reduce task copies its input pieces from
all map tasks, sorts them into a single stream by a multi-
way merge, and generates the final (K3, V3) results accord-
ing to some user defined reduce function.

In the above steps, the intermediate data generated by a
map task are divided according to some user defined parti-
tioner. For example, Hadoop uses the hash partitioner by
default. Each partition is written as a continuous part of the
output file. Since all map tasks use the same partitioner, all
tuples that share the same key will be dispatched to the
same partition. We call these tuples a cluster. As a result, the
number of clusters is equal to the number of distinct keys in
the input data. Each reduce task copies its partition (con-
taining multiple clusters) from every map task and pro-
cesses it locally.

Some applications require a total order of the output
data. For example, a word count application may require
the output to be in alphabetic order. Some partitioners,
such as range partitioner in Hadoop, can preserve total
ordering. However, the default hash partitioner does not
support total ordering.

2.2 Data Skew in MapReduce

To maximize performance, ideally we want all tasks to fin-
ish around the same time. When some task takes an unusu-
ally long time to complete, it is called a straggler and can
delay the progress of the job significantly. For stragglers
caused by external factors such as faulty hardware, slow
machines, etc., speculative execution is an effective solution
where the slow task also runs on an alternative machine
with the hope that it can finish there faster. Google has
observed that speculative execution can decrease the job
execution time by 44 percent [1]. Unfortunately, when a
straggler is caused by data skew (i.e., it has to process more
data than the other tasks), it cannot be solved by simply
duplicating the task on another machine.

Data skew often comes from the physical properties of
objects (e.g., the height of people obeys a normal distribu-
tion) and hot spots on subsets of the entire domain (e.g., the
word frequency appearing on the documents obeys a Zip-
fian distribution). A common measurement for data skew is
the coefficient of variation: stddevð~xÞ

meanð~xÞ , where ~x is a vector that
contains the data size processed by each task. Larger coeffi-
cient indicates heavier skew.

Data skew can occur in both the map phase and the
reduce phase. Map skew occurs when some input data are
more difficult to process than others, but it is rare and can be
easily addressed by simply splitting map tasks. Lin [19] has
provided an application-specific solution that split large,
expensive records into some smaller ones. In contrast, data
skew in the reduce phase (also called reduce skew or parti-
tioning skew) is much more challenging. The MapReduce
framework requires that all tuples sharing the same key be
dispatched to the same reducer. However, for an arbitrary
MapReduce application, the distribution of the intermediate
data cannot be determined ahead of time. We need to face
that many real world applications exhibit large amount of
data skew, including scientific applications [20], [21], distrib-
uted database operations like join, grouping and aggrega-
tion [5], [6], [8], [9], [10], [11], search engine applications

Fig. 1. Data processed by each reducer.

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2521

(Page Rank, Inverted Index, etc.) and some simple applica-
tions (sort, grep, etc.). Mantri [22] has witnessed the data
skew phenomenon in the Microsoft production cluster.
They have found that the coefficients of variation in data
size across tasks are 0.34 and 3.1 at the 50th and 90th percen-
tiles, respectively. In the following, we show how LIBRA
can address arbitrary reduce skew effectively.

3 THE LIBRA SYSTEM

In this section, we present a system which implements the
LIBRA approach to solve data skew for general applica-
tions. The MapReduce framework we choose to implement
LIBRA is Hadoop-1.0.0. The design goals of LIBRA include
the following:

� Transparency. Data skew mitigation should be trans-
parent to the users who do not need to know any
sampling and partitioner details.

� Parallelism. It should preserve the parallelism of the
original MapReduce framework as much as possible.
This precludes any pre-run sampling of the input
data and overlaps the map and the reduce stages as
much as possible.

� Accuracy. its sampling method should be able to
derive a reasonably accurate estimate of the input
data distribution by sampling only a small fraction
of the data.

� Total order. It should support total order of the output
data. This saves applications which require such
ordering an extra round of sorting at the end.

� Large cluster splitting. When application semantics
permit, it should be able to split data associated with
a single large cluster to multiple reducers while pre-
serving the consistency of the output.

� Heterogeneity consideration. When the performance of
the worker nodes is heterogeneous, it should be able
to adjust the data partition accordingly so that all
reducers finish around the same time.

� Performance improvement. Overall, it should result in
significant improvement in application level perfor-
mance such as the job execution time.

In the rest of this section, we will explain how LIBRA
achieves the above goals.

3.1 System Overview

The architecture of our system is shown in Fig. 2. Data skew
mitigation in LIBRA consists of the following steps:

� A small percentage of the original map tasks are
selected as the sample tasks. They are issued first
whenever the system has free slots. Other ordinary
map tasks are issued only when there is no pending
sample task to issue.

� Sample tasks collect statistics on the intermediate
data during normal map processing and transmit a
digest of that information to the master after they
complete.

� The master collects all the sample information to
derive an estimate of the data distribution, makes
the partition decision and notifies the worker nodes.

� Upon receipt of the partition decision, the worker
nodes need to partition the intermediate data gener-
ated by the sample tasks and already issued ordinary
map tasks accordingly. Subsequently issued map
tasks can partition the intermediate data directly
without any extra overhead.

� Reduce tasks can be issued as soon as the partition
decision is ready. They do not need to wait for all
map tasks to finish.

3.2 Sampling and Partitioning

Since data skew is difficult to solve if the input distribution
is unknown, a natural thought is to examine the data before
deciding the partition. There are two common ways to do
this. One approach is to launch some pre-run jobs which
examine the data, collect the distribution statistics, and then
decide an appropriate partition [2], [12], [23]. The drawback
of this approach is that the real job cannot start until those
pre-run jobs finish. The Hadoop range partitioner belongs
to this category and as we will see in the experiments later,
it can increase the job execution time significantly. The other
approach is to integrate the sampling into the normal map
process and generate the distribution statistics after all map
tasks finish [13], [14], [15]. Since reduce tasks cannot start
until the partition decision is made, this approach cannot
take advantage of parallel processing between the map and
the reduce phases.

We take a different approach by integrating sampling into
a small percentage of the map tasks. We prioritize the execu-
tion of those sampling tasks over that of the normal map
tasks: whenever the system has free slots, we launch the sam-
pling tasks first. Since there are only a small percentage of
them, they are likely to finish quite early in the map phase.
There is an obvious trade-off between the sampling over-
head and the accuracy of the result. In our experiments, we
find that sampling 20 percent of the map tasks can generate a
sufficiently accurate approximation for our purposes.
Sampling beyond this threshold does not bring substantial
additional benefit. Hence, we set the default sampling rate to
20 percent which can be changed by the user if necessary.
To facilitate debugging, we want our execution to be repro-
ducible across multiple runs of the same input data. Thus we

Fig. 2. System architecture.

2522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

choose the fixed map tasks with the same step interval as
sample tasks according to the sampling rate.

Within each sampling task, we also need to decide how
much of the data it examines. Previous work can be divided
into two categories on this: 1) examine the whole dataset
processed by the task [13], [14], [15], [23], or 2) just sampling
a small part of the input [2], [12]. The cost of the former cate-
gory can be very high, but the result is more accurate. In
contrast, the latter category can be much faster but provides
a less accurate approximation. Our system belongs to the
latter category. The next question is: what kind of sampling
method to use? Commonly used sampling methods include
the random, the interval and the split samplers provided by
Hadoop [2] and TopCluster [15]. The random sampler is the
most widely used, but it cannot achieve a good approxima-
tion to the distribution of real data in some cases, nor can
TopCluster (shown in Fig. 8). Therefore, we develop a new
sampling method which will be introduced in Section 4.

In case some sample map task happens to be stragglers
or experience failure, we issue extra 10 percent more sample
map tasks and consider the sample stage as finished when
90 percent of all sample tasks (i.e., sampling rate of all map
tasks) complete. The master can then make a partition deci-
sion for this job and notify the decision ready event to the
worker nodes. There are three major types of partitioners in
previous work: hash, range and bin-packing [13], [14], [15].
The hash partitioner is the simplest but does not preserve
total ordering and works well only with the uniform data
distribution. The other two partitioners can both work well
with most distributions, but only the range partitioner can
provides a total ordered result. Hence, we use the range
partitioner in our system.

In order not to delay the processing of the heartbeats
from the worker nodes, we create a new thread to calculate
the partition decision and save it to the distributed cache in
Hadoop. The notification of the decision ready event con-
tains only the ID of the job which is sent with the heartbeat
responses of the worker nodes. By doing so, we can greatly
reduce the overhead brought to the master node.

Once the partition decision has been computed by the
master, the reduce tasks can be launched when free slots
permit to take advantage of parallel processing between the
map and the reduce phases.

3.3 Chunk Index for Partitioning

After the master notifies the worker nodes of the partition
decision ready event, the worker nodes take responsibility
for partitioning the intermediate data previously generated
by the sampling tasks and already launched normal map
tasks accordingly. This in general involves reading all the
records from the intermediate output, finding the position
of each partition key, and generating a small partition list
which records the start and the end positions of each parti-
tion (shown in Fig. 3). When a reducer is launched later, the
worker nodes can use the partition lists to help the reducer
to locate and copy the data associated with its allocated key
range from the map outputs quickly. The challenge here is
how to find the partition breakpoints in a large amount of
intermediate data. Since the intermediate data can be too
large to fit into the memory, a brute force method using lin-
ear or binary search can be very time consuming: our

experiments indicate that it can take up almost half of the
map task execution time when the intermediate data is
about the same size as the original input. Note that this is
not a problem for map tasks issued after the partition deci-
sion is made: those tasks can generate the partition list as
usual during their normal data processing (the same as the
no skew mitigation case).

To tackle this problem, we create a sparse index to speed
up the search of the partition key positions when map tasks
generate their intermediate data. We divide the intermediate
data into multiple chunks (16 KB each in our current imple-
mentation) and generate a sparse index record for each chunk.
The record includes the start key, the start position in the
intermediate file, the raw length and the checksum of this
chunk. The sparse index is small enough to fit into main
memory and hence searching it can be performed efficiently.
Whenwe need to find the partition key positions in the inter-
mediate data, we compare the partition key with the records
in the sparse index first to find the data chunk containing it.
Then we read the whole chunk into memory, examine the
checksum, and find the accurate position of the key. By
using this sparse index improvement, we can decrease the
partition time by an order of magnitude. For example, we
reduce the partition time from 3 to 5 seconds to 200 millisec-
onds when partitioning 64MB intermediate data.

3.4 Splitting Large Cluster

The original MapReduce framework requires that a cluster
(i.e., all tuples sharing the same key) be processed by a par-
ticular reducer. For applications that treat each intermediate
key-value pair of a cluster independently in reduce phase,
this can be overly restrictive. Some widely used examples
are the sort and grep benchmark in the Hadoop distribu-
tion: the result would be the same even if a large cluster is
split into multiple reducers for parallel processing. Another
example is the join operation (broadcast join) commonly
seen in database applications.

Enabling cluster splitting can have a profound impact
on data skew mitigation. If cluster splitting is not
allowed, an entire cluster have to be allocated as a whole
to a single reducer. If some keys in the distribution are
far more popular than others, it can be difficult for even
the best skew mitigation algorithm to perform well. For
example, suppose the intermediate data contain three
keys: A, B and C. The count of them is 100, 10 and 10.
Now we want to partition them into two reducers for

Fig. 3. Generate partition list.

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2523

processing. When cluster split is not allowed, the best
solution is shown in left bottom corner of Fig. 4 which
assigns the large key A to reducer1 and the rest keys to
reducer2. As we can see, it still exhibits data skew.

Although [6] and [24] provide special methods to split
large clusters in the join and CloudBurst applications (e.g.,
weighted range partitioning in [6]), they can only be used in
specific applications and bring non-negligible extra sam-
pling cost. To the best of our knowledge, none of the exist-
ing work provides a generic method for large cluster split
when application semantics permit.

Based on this observation, we provide an effective cluster
split strategy which allows large clusters to be split into mul-
tiple reduce tasks when appropriate. We modify the parti-
tion decision to include both the partition keys and the
partition percentage. For example, a partition decision
record ðk; pÞmeans that one of the partition point is p percent
of key k. For map tasks issued before the partition decision is
made, we can easily find these percentage partition points
from the total-ordered intermediate outputs by adding some
fields to the sparse index record. The new fields we add are
the current record number in the key clusterKbi and the total
record count ofKbi. By calculating the ratio of current record
number in Kbi to the total count of Kbi, we can get the key
and the percentage in its cluster for the start record in each
index block. In this way, we can quickly locate the index
blocks which contain the partition points. For map tasks
issued after the partition decision is made, we calculate a
random secondary key in the range [0, 100] for each record
and compare (key, secondary key) to partition decision
records to decide which partition it belongs to (the order
within the key may not be the same as input order). Using
this cluster split strategy, the solution of the example shown
in Fig. 4 can be optimized with 60 percent of the large key A
to reducer1 and the rest keys to reducer2 (shown in right bot-
tom corner). By doing so, the data skew is mitigated.

When application semantics permit, cluster splitting pro-
vides substantially more flexibility in mitigating the data

skew. An application can indicate that it is amenable to
cluster splitting by setting a parameterized flag when it
begins execution.

3.5 Heterogeneous Environment

The discussion so far has assumed that we should parti-
tion the data as evenly as possible. As observed in the
introduction, not all reducers are created equal. Even if
we assign them the same amount of data, their processing
times can be different, depending on the performance of
the worker nodes they run on. For example, a node could
be “weaker” than others because it has a slower CPU or
less computing resource at its disposal [25], or because it
has a more complex dataset to work on. Microsoft has
witnessed the variation of slow nodes over weeks due to
the change of data popularity[22]. To fully exploit
parallelism, we should equalize the amount of processing
time for each reducer instead of equalizing the amount of
data each processes. To the best of our knowledge, none
of the existing data skew mitigation strategies has taken
this into consideration.

LIBRA considers the performance of each worker node
when partitioning the data. It assigns large tasks to fast
nodes and small tasks to slow nodes so that all of them can
be expected to finish around the same time. Fig. 5 gives an
example on how LIBRA partitions its intermediate data in
heterogeneous environments. This strategy can be useful
even in the absence of data skew. Recall that speculative
execution is a widely used approach to tackle the straggler
problem in MapReduce: after it identifies a task as slow, it
duplicates the task on another node where it hopefully can
finish earlier. Speculative execution is reactive by its nature:
it takes action after a task has already fallen behind other
tasks. In contrast, we take a proactive approach to prevent
stragglers from happening in the first place.

Like LIBRA, speculative execution requires a proper met-
ric to measure the performance of a node since it needs to
avoid duplicating tasks on slow nodes. Previously, LATE
[26] uses the sum of progress of all the completed and run-
ning tasks on the worker node to represent the node perfor-
mance, while Hadoop-0.21 uses the average progress rate of
all the completed tasks on the node. However, these two
metrics may cause some mistakes for some worker nodes

Fig. 4. Example of large cluster allocation.

Fig. 5. Example of LIBRA partitioning in heterogeneous environment.

2524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

may do more time-consuming tasks and receive lower per-
formance scores unfairly (the detailed analysis can be found
in our previous work [27]). Therefore, the performance met-
ric we choose for LIBRA is the moving average of the pro-
cess bandwidth (the amount of data processed per second)
of data-local map tasks (i.e., input data is located in a local
worker) in the same job completed on the worker node. We
have found it to be more stable and accurate in the MapRe-
duce environment (a validation can be found in [27]). With
the performance metric collected in each worker node, we
adjust the range partition to assign nodes work based on
their relative performance.

4 THE LIBRA ALGORITHM

In this section, we present the sampling and partitioning
algorithm in LIBRA. Our goal is to balance the load across
reduce tasks. The algorithm consists of three steps:

1) Sample partial map tasks
2) Estimate intermediate data distribution
3) Apply range partition on the data
In the following, we will describe the details of these

steps.

4.1 Problem Statement

We first give a formulation of our problem. The interme-
diate data between the map and the reduce phases can
be represented as a set of tuples: ðK1; C1Þ; ðK2; C2Þ; . . . ;
ðKn;CnÞ, where Ki represents a distinct key in the map
output, and Ci represents the number of tuples in the
cluster of Ki. Without loss of generality, we assume that
Ki < Kiþ1 in the above list. Then our goal is to come up
with a range partition on keys which minimizes the load
of the largest reduce task. Let r be the number of reduce
tasks. The range partition can be expressed as: 0 ¼ pt0 <
pt1 < � � � < ptr ¼ n with reduce task i taking responsibil-
ity of keys in the range of ðKpti�1

; Kpti �. Following the

cost model proposed by previous work [12], [13], [14],
we define the function CostðCiÞ as the computational
complexity of processing the cluster Ki in reduce tasks
which must be specified by the users. For example, the
cost function of the sort application can be estimated as
CostðCiÞ ¼ Ci (for each cluster Ki, reducers only need to
output Ci tuples directly). For reduce-side self-join appli-

cation, the cost function should be C2
i since reducers

need to output Ci tuples for each tuple in cluster Ki.
By specifying the exact cost function, we can balance the
execution time of each reducer one step further. Then the
objective function can be expressed as follows:

Minimize max
i¼1;2;...;r

Xpti
j¼pti�1þ1

CostðCjÞ
()

: (1)

Since the number of unique keys can be large, calculating
the optimal solution to the above problem is unrealistic.

Therefore, we present a distributed approximation algo-
rithm by sampling and estimation.

4.2 Sampling Strategy

After a specific map task j is chosen for sampling, its normal
execution will be plugged in with a lightweight sampling
procedure. Along with the map execution, this procedure

collects a statistic of ðKj
i ; C

j
i Þ for each key Kj

i in the output

of this task, where Cj
i is the frequency (i.e., the number of

records) of key Kj
i . Since the number of such ðKj

i ; C
j
i Þ tuples

can be on the same order of magnitude as the input data
size, we keep only a sample set Ssample containing the fol-
lowing two parts:

� Slargest: p tuples with the largest Cj
i .

� Snormal: q tuples randomly selected from the rest
according to uniform distribution (excluding tuples
in Slargest).

This sampling task then transmits the following statistics
to the master: the sample set Ssample ¼ Slargest [Snormal, the

total number of records (TRj) and the total number of distinct

clusters (TCj) generated by this task. The size of the sample
set pþ q is constrained by the amount of memory and
the network bandwidth at the master. The larger pþ q is, the
more accurate approximation to the real data distribution
we will achieve. In practice, we find that a small pþ q value
(e.g., 1,000) has already reached a good approximation and
brings negligible overhead (shown in the Section 5).

The ratio of p=q is positively related to the degree of the
data skew: the heavier the skew, the larger the ratio should
be. To select a good ratio, we generate 10 GB synthetic data-
sets following Zipf distributions with varying s parameters
(from 0.2 to 1.4) to control the degree of the skew. Larger s
value means heavier skew. We run the sort benchmark and
set the number of reduce tasks to 30. Fig. 7 shows the coeffi-
cient of variation in data size across reduce tasks with
different p=q ratio and skew degree s. From the result, we
can find that when s is low (e.g., 0.2), the optimal p=q ratio
is low, meaning that sampling more random keys would be
better. However, when s is high (e.g., 1.4), the optimal p=q
ratio is also high, meaning that sampling more large keys
can divide the intermediate data more evenly. In order to
find a good p=q ratio which works reasonably well with a
wide variety of the datasets, we calculate the average coeffi-
cient of variation (avg COV) of all s (s 2 S) for each p=q
ratio as follows:

avg COVp=q ¼
P

s2S COV p=q
s

jSj : (2)

The result is shown in Table 1. From the result, we can find
that the optimal p=q ratio which can work well in both skew
and non-skew cases is 0.10. Therefore, we set the default p=q
ratio to 0.10.

TABLE 1
The Average Coefficient of Variation

p=qratio 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
avg COV 0.433 0.405 0.552 0.589 0.659 0.762 0.839 0.86 0.961 1.005

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2525

4.3 Estimate Intermediate Data Distribution

After the completion of all sample map tasks, the master
aggregates the sampling information in the above step to
estimate the distribution of the data. The main steps of
the estimation can be shown in Fig. 6. It first combines all
the sample tuples with the same key into one tuple ðKi; CiÞ
by adding up their frequency (shown in Fig. 6a). It then
sorts these combined tuples to generate an aggregated list

L. Suppose there are m maps for sampling and Sj
sample ¼

fðKj
l ; C

j
l Þg; l ¼ 1; 2; . . . ; pþ q is the sample set of map j.

Then the aggregated list L is:

L ¼ Ki; Ci ¼
Xm
j¼1

�
Cj

l jKj
l ¼ Kig

 !()
; Ki < Kiþ1: (3)

To calculate the total number of records TR, we simply
sum up the record counts in all sample map tasks. How-
ever, calculating the total number of distinct clusters TC is
hard because clusters processed by different map tasks may
share the same key and hence should not be counted twice.

For example, assume that there are two sample map tasks
and their sample sets are: fðA; 10Þ, ðB; 5Þ, ðC; 3Þ, ðD; 2Þ,
ðE; 2Þg, fðA; 20Þ, ðB; 3Þ, ðD; 1Þ, ðF; 1Þ, ðH; 1Þg, in which p ¼ 2
and q ¼ 3. By summing up the frequencies of the same key,
the merged sample set Ssample is fðA; 30Þ, ðB; 8Þ, ðC; 3Þ,
ðD; 3Þ, ðE; 2Þ, ðF; 1Þ, ðH; 1Þg. Suppose that there are 50 keys
and 10;000 records in total in the first sample map task,
while there are 60 keys and 15;000 records in the second
sample map task. Apparently, aggregated TR of these two
sample tasks equals to 25;000. However, aggregated TC of
them is difficult to calculate because some keys may exist in
both map tasks (such as key A, B sandD).

To address this, we estimate the overlap degree of each
sample set Sj

sample (the sample set of map j) with the overall
distribution L (only the normal part) and weight the contri-
bution to TC by this amount. The calculation of TR and TC
can be expressed as follows:

TR ¼ TR$ þ TRj; (4)

TC ¼ ðTC$ þ TCj � 2pÞ � 1�Degree

2

� �
þ p; (5)

Degree ¼ 2 � ðjL$j þ jSj
samplej � jLj � pÞ

jL$j þ jSj
samplej � 2p

; (6)

where TR$, TC$, and L$ represent the aggregated result
before incorporating the sample information of map j, while
TR, TC, and L represent the result after aggregating map j.

TRj and TCj represent the number of total records and the
number of total exclusive clusters of map j. Degree repre-
sents the overlap degree of map j and the aggregated result.
The larger Degree is, the more consistent they are. In the
example above, we calculate the aggregated TC of two sam-
ple tasks as follows: Since each sample set has three normal
keys, among which only one key is shared (key D), Degree

can be calculated as 2�1
3þ3 ¼ 1

3. As a result, the estimated

Fig. 6. LIBRA sampling and distribution estimation.

Fig. 7. Coefficient of variation with different p/q ratio and skew degree s.

2526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

distinct keys in these two map tasks can be calculated as

TC ¼ ð50þ 60� 2 � 2Þ � ð1� 1
3�2Þ þ 2 ¼ 90.

Next we estimate the distribution of the intermediate
data. Let Pi be the approximate number of keys in the range
of ðKi�1; Ki� and Qi be the approximate frequency of each
key in this range. We estimate the distribution ðPi;QiÞ
according to L as follows:

i) Pick up p keys from L with the largest Ci as the
“marked keys”, denoted as ðK$

1 ; C
$

1 Þ; . . . ; ðK$

p ; C
$

p Þ.
In the example above, the “marked keys” are ðA; 30Þ
and ðB; 8Þ. This procedure can be demonstrated in
Fig. 6b. Since all the locally largest p clusters have
been picked up in the sample map tasks, for each
marked key K$

i , P
$

i is set to 1, and Q$

i is approxi-
mated by C$

i in the aggregated list.
ii) Suppose TCL ¼ jLj, TRL ¼PðKi;CiÞ2L Ci. For the

other TCnormal ¼ TC � p keys and TRnormal ¼ TR�Pp
i¼1 C

$

i records, we estimate their frequencies as
follows:
� Since normal clusters are randomly selected, we

proportionally spread all the rest TCL
normal ¼

TCL � p keys and TRL
normal ¼ TRL �Pp

i¼1 C
$

i

records in L over the ranges partitioned by
marked keys.

� Then for each normal keyKi in L, we have:

Pi ¼ TCnormal

TCL
normal

, Qi ¼ Ci�TRnormal

Pi�TRL
normal

.

This step can be shown in Fig. 6 c.

4.4 Range Partition

We adopt the above approximation to the data distribution
to get an approximate solution to the range partition. We
need to generate a list of partition points in the aggregated
list Lwhere 0 ¼ pt0 < pt1 < � � � < ptr ¼ jLj and minimize:

max
i¼1...r

� Xpti
j¼pti�1þ1

fPj � CostðQjÞg
�
: (7)

We use dynamic programming to solve this optimization
problem: let F ði; jÞ represent the minimum value of the
largest partition sum of cutting the first i items into j parti-

tions, and Wða; bÞ ¼Pb
l¼afPl � CostðQlÞg. Then the recur-

sive formulation of F ði; jÞ is:
F ði; jÞ ¼ min

k¼j�1...i�1
fmaxfF ðk; j� 1Þ;Wðkþ 1; iÞgg: (8)

The partition decision can be derived from optimized
decision of F ði; jÞ. The time complexity of calculating the

above equation is Oðn2rÞ, where n is the length of the aggre-
gated list and r is the number of reducers. We optimize the
brute force calculation by the following two theorems:

Theorem 1. For specific i and j, define fiðkÞ ¼ maxfF ðk; j� 1Þ;
Wðkþ 1; iÞg; k ¼ j� 1; . . . ; i� 1. Then fiðkÞ is an unimodal
function with the minimal point.

Proof. With parameter k, F ðk; j� 1Þ is a monotonically
increasing function and W(k+1, i) is a monotonically
decreasing function by definition. So it is obvious that
the compound function by maximizing the value of these

two functions is an unimodal function. The minimal
point will appear either at the intersection of these two
functions or at the endpoints of the defining range of
parameter k. tu

Theorem 2. For specific j, define dðiÞ ¼ kmin s.t. fiðkminÞ is the
minimal point (if there are multiple k to get minimal points,
kmin is the smallest one). Then we have dðiÞ � dði� 1Þ for
each i ¼ jþ 1; . . . ; n.

Proof. Suppose we have dðiÞ < dði� 1Þ. According to the
definition of dði� 1Þ, we have:

fi�1ðdði� 1ÞÞ < fi�1ðdðiÞÞ
¼> maxfF ðdði� 1Þ; j� 1Þ;Wðdði� 1Þ þ 1; i� 1Þg

< maxfF ðdðiÞ; j� 1Þ;WðdðiÞ þ 1; i� 1Þg
¼> maxfF ðdði� 1Þ; j� 1Þ;Wðdði� 1Þ þ 1; i� 1Þ þ Pi

� CostðQiÞg < maxfF ðdðiÞ; j� 1Þ;WðdðiÞ þ 1; i� 1Þ
þ Pi � CostðQiÞg

¼> maxfF ðdði� 1Þ; j� 1Þ;Wðdði� 1Þ þ 1; iÞg
< maxfF ðdðiÞ; j� 1Þ;WðdðiÞ þ 1; iÞg

¼> fiðdði� 1ÞÞ < fiðdðiÞÞ;

which is contradictory to the definition of dðiÞ. Hence we
have dðiÞ � dði� 1Þ: tu
According to the two theorems, when we calculate F ði; jÞ

by increasing parameter i, the optimized decision dðiÞ is also
increased. Using this property we can improve this algo-
rithm to OðnrÞ, which makes it highly efficient in practice.

Heterogeneous environments are more complicated. We
model it as follows: we define ei as the performance factor

of the ith worker node (ei ¼ Performancenodei
AvgPerformance). And we restrict

the ith partition to be handled on the ith worker node. Then
the object is modified to minimize:

max
i¼1...r

Ppti
j¼pti�1þ1fPj � CostðQjÞg

ei

()
: (9)

Then we can use the same algorithm to obtain the opti-
mized range partition in heterogeneous environments.

5 EVALUATION

In this section, we evaluate the performance of LIBRA on
some popular applications with both synthetic and real-
world datasets under both homogeneous and heteroge-
neous environments. We find that:

i) LIBRA sampling method achieves a good approxi-
mation to the distribution of the original whole data-
set (Section 5.2).

ii) LIBRA can partition the intermediate data more
evenly across reduce tasks and reduce the variability
of job execution time significantly (Section 5.4).

iii) LIBRA can be widely used in various applications
and deliver up to a factor of 4X performance
improvement (Section 5.5).

iv) LIBRA can fit well in both homogeneous and hetero-
geneous environments (Section 5.6).

v) The overhead of LIBRA is minimal.

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2527

5.1 Experiment Environment

We set up our Hadoop cluster with 15 servers. Each server
contains dual-Processors (2.4 GHz Xeon E5620), 24 GB of
RAM, and two 150 GB disks. They are connected by 1 Gbps
Ethernet and managed by the OpenStack Cloud Operating
System [28]. We use the KVM virtualization software [29] to
construct medium sized VMs with two virtual core, 4 GB
RAM and 30 GB of disk space. We conduct our experiments
in a homogeneous environment with two VMs running on
each server to avoid heavy resource competition. Later in
the section, we will change this environment into a hetero-
geneous one by running a set of CPU and I/O intensive pro-
cesses on a subset of the physical machines to emulate
resource competition. All experiments use the default con-
figuration in Hadoop for HDFS and MapReduce except oth-
erwise noted (e.g., the HDFS block size is 64 MB, max Java
heap size is 2 GB, and sort buffer size is 100 MB). Therefore,
there are 30 worker nodes in our Hadoop cluster which con-
tain an aggregate of 60 map slots and 60 reduce slots. We
evaluate the following applications.

Sort. We use the sort benchmark in Hadoop as our main
workload because it is widely used and represents many
kinds of data-intensive jobs. We generate 10 GB synthetic
datasets following Zipf distributions with varying s param-
eters to control the degree of the skew. We choose Zipf dis-
tribution workload because it is very common in the data
coming from the real world, e.g., the word occurrences in
natural language, city sizes, many features of the Internet
[30], the sizes of craters on the moon [19].

Grep. Grep is a popular application for large scale data
processing. It searches some regular expressions through
input text files and outputs the lines which contain the
matched expressions. We modify the grep benchmark in
Hadoop so that it outputs the matched lines in a descending
order based on how frequently the searched expression
occurs. The dataset we used is the full English Wikipedia
archive with the total data size of 31GB.

Inverted Index. Inverted indices are widely used in search
area. We implement a job in Hadoop that builds an inverted
index from given documents and generates a compressed
bit vector posting list for each word. We use the Potter
word stemming algorithm and a stopword list to pre-pro-
cess the text during the map phase, and then use the RADIX
partitioner to map alphabet to reduce tasks in order to pro-
duce a lexicographically ordered result. The dataset we
used is also the full English Wikipedia archive.

Join. Join is one of the most common applications that
experience the data skew problem. We implement a simple
broadcast join job in Hadoop which partitions a large table
in the map phase, while a small table is directly read in the
reduce phase to generate a hash table for speeding up join
operation. When the small table is too large to fit into the
memory, we use a buffer to keep only a part of the small
table in memory and use the cache replacement strategy to
update the buffer. We use synthetic datasets which follow
Zipf distribution to generate the large tables, while use data-
sets which follow either the uniform distribution or the Zipf
distribution to generate the small tables.

We run each test case at least three times and take the
average value in order to reduce the influence of the vari-
able environment. We compare LIBRA with Hadoop hash

partition, Hadoop range partition, some application specific
partition methods and SkewTune [16]. We compute the
coefficient of variation in data size across reduce tasks to
measure the effectiveness of skew mitigation. For Skew-
Tune, we compute the coefficient of variation in data size
processed by different worker nodes. The smaller the coeffi-
cient, the better.

5.2 Accuracy of the Sampling Method

To evaluate how our sampling method can achieve a good
approximation to the original data distribution, we run a
sort benchmark with 10 GB synthetic dataset which follows
Zipf distributions (s ¼ 1:0). We set the number of reduce
tasks to 30, and compare our sampling method with the
Hadoop random sampler and the TopCluster sampling
method [15]. All three methods sample 20 percent of input
splits and 1,000 keys from each split. The master keeps the
same number of large clusters for LIBRA and TopCluster.

To give a rough idea of the accuracy of the sampling
methods, we calculate the root mean square (rms) error

ffiPn

i¼1
ðxappro

i
�xreal

i
Þ2

n

r

of each sampling method for all 65,535 keys in the original
data. The rms errors for LIBRA, TopCluster, and Hadoop
random sampler are 183,278, 333,953, and 917,065, respec-
tively. This demonstrates that our sampling method is far
more accurate than the other two. This is visualized in Fig. 8
for the top 1,000 large keys in the data (y-axis in log scale).
Note that the TopCluster curve has a flat, long tail. In this
method, each map task samples the large clusters in its
processed data. The master aggregates information of large
keys from all map tasks and assumes that small keys are
uniformly distributed. The curve shows that it has a fairly
accurate estimate on the large keys (the beginning part of
the curve), but its assumption of the uniform distribution
can be misleading when there are a large number of small
keys in the data (the rest of the curve). Its lack of informa-
tion on the small cluster makes it difficult to generate accu-
rate range partition if the optimal partition breakpoints
happen to be on small clusters. The figure shows that LIBRA
can achieve a better approximation to the original data
distribution.

Fig. 8. Comparison of three sampling methods in sort.

2528 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

5.3 Job Execution Time

A major motivation for data skew mitigation is to improve
the job execution time. This is shown in Fig. 9 where we
compare the execution time of our system with that of the
two strategies in Hadoop. As we can see from the figure,
the improvement is dramatic: the execution speed in our
system is 80 percent faster than that in Hadoop hash. This
comparison is actually unfair to us because Hadoop hash
(unlike ours) cannot support total order of the output data.
When compared to Hadoop range (which supports the total
order), our improvement jumps to 167 percent. In fact, by
the time Hadoop finishes its pre-run sample of the input
data, our system has already completed its entire execution.

The figure also shows that the overhead of our sampling
method is negligible: our combined sample/map phase is
about the same length as the map phase in Hadoop hash
and Hadoop range (which perform no sample). This dem-
onstrates the efficiency of our carefully designed algorithm.
Our much improved execution time in the reduce phase is
because LIBRA can partition the intermediate data much
more evenly (as evidenced in Fig. 1 at the beginning of the
paper). The coefficient of variation among all reduce tasks
in LIBRA is only 0.07, while in Hadoop range and Hadoop
hash it reaches 0.47 and 0.51, respectively.

5.4 Degrees of the Data Skew

To see how our system performs when the input data exhib-
its different degrees of skew, we repeat the previous experi-
ment but with s varying from 0.2 to 1.2. Fig. 10 shows how
the job execution time and the coefficient of variation
change when the skew increases. For the two strategies in

Hadoop (marked ‘Hadoop_hash’ and ‘Hadoop_range’) and
SkewTune (We use Hadoop hash as the original parti-
tioner), both metrics increase substantially once the degree
of the skew reaches a certain threshold. We compare them
with two versions of LIBRA in this experiment.

Recall that one optimization in LIBRA is to split a large
cluster across multiple reducers. The figure shows the per-
formance of our system with and without this optimization
(marked ‘LIBRA_CSP’ and ‘LIBRA_NCSP’, respectively). As
we can see from the figure, this optimization has a profound
impact on partitioning the data evenly. With this optimiza-
tion, both the job execution time and the coefficient of varia-
tion remain very low as s increases. (We have continued the
experiments for s up to 2.0 and find that the curves remain
flat.) Without this optimization, the curves begin to climb up
after s reaches a certain threshold. Even so, our system per-
forms better than Hadoop hash and much better than
Hadoop range and SkewTune. The reason that SkewTune
performs worse than Hadoop hash is that SkewTune does
not detect or split large keys and hence cannot make a better
partition decision. Moreover, it brings extra overhead (e.g.,
resource competition). As explained earlier, Hadoop hash
does not support total order of the output data, while LIBRA
does. Hence, we consider the result quite remarkable even
without the cluster split optimization. From this experiment,
we can see that the overhead of LIBRA is negligible even in
the absence of skew (s ¼ 0:2).

We also run this experiment with a large scale synthetic
dataset of 100 GB on a large scale homogeneous cluster con-
sisting of 100 medium sized VMs running across 20 servers.
Fig. 11 shows how the job execution time and the coefficient
of variation change in Hadoop (marked ‘Hadoop_hash’ and
‘Hadoop_range’), SkewTune and LIBRA (marked ‘LIBRA_
CSP’ and ‘LIBRA_NCSP’). As we can see, both metrics
increase rapidly when the degree of the skew exceeds 0.6 for
Hadoop_hash, Hadoop_range, SkewTune, and LIBRA_
NCSP. In contrast, with LIBRA_CSP, both of the job execu-
tion time and the coefficient of variation stay at a very low
level. Even without the cluster split optimization, our
LIBRA_NCSP performs better than Hadoop_hash, Hadoo-
p_range, and SkewTune due to its more reasonable partition
strategy. This experiment also demonstrates the negligible
overhead of LIBRAwhen the scale of the dataset is large.

5.5 Grep, Inverted Index, and Join

Next we evaluate our system with the grep, the inverted
index, and the join applications described at the beginning

Fig. 9. Comparison of job execution time in sort.

Fig. 10. Job execution time (left) and coefficient of variation (right) as the degree of data skew increases in sort.

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2529

of this section. First, we run the grep benchmark with the
full English Wikipedia archive dataset. Since the behavior
of grep depends on how frequently the search expression
appears in the input file, we tune the search expression so
that its output percentage varies from 10 to 100 percent of
the input. Fig. 12 shows how the job execution time and the
coefficient of variation change when the output percentage
increases.

Note that Hadoop does not provide a suitable range par-
titioner for this application: its pre-run sampler samples the
input data and cannot handle applications where the inter-
mediate data is of a different format from the input. In con-
trast, LIBRA samples the intermediate data directly and
works well for all types of applications. The figure compares
the performance of LIBRA with and without the cluster
splitting optimization with Hadoop hash.

As we can see from the figure, LIBRA with cluster split
enabled performs significantly better than Hadoop hash
when the output percentage of grep is low. This is because
searching unpopular words in the archive tends to generate
results with heavy data skew where LIBRA has a clear
advantage over Hadoop. When the output percentage is
high, the resulting data become more evenly distributed
and hence the performance difference becomes smaller,
although LIBRA is still slightly better. When the cluster split
optimization is disabled, the performance of LIBRA
becomes similar to, but still slightly better than Hadoop
hash. Again, this is already impressive given that LIBRA
supports total order while Hadoop hash does not.

For the inverted index test, we also use the full English
Wikipedia archive with a total data size of 31 GB. As a target
for comparison, we use the RADIX partition method to gen-
erate a lexicographically ordered result which sets the

number of reducers to 27: one for special characters and the
other 26 for words starting with each letter of the alphabet.
We also compare with SkewTune which uses RADIX as the
original partitioner. Fig. 13 compares the reduce time (from
the time the last map task finishes to the time the last reduce
task finishes) of the RADIX partition, SkewTune and LIBRA
with or without cluster split enabled. The results show that
LIBRA can partition the intermediate data much more
evenly (almost a factor of 4 improvement over RADIX and a
factor of 2 improvement over SkewTune) and that the clus-
ter split optimization has little impact on this application.

To run the join application, we set up the datasets for
large tables using Zipf distribution (s ¼ 1:0), while using
the uniform or the Zipf distribution for small tables. We set
up three test cases: a) a large table joins a large table
(200M � 200M): one of them follows the Zipf distribution
and the other follows the uniform distribution, b) a large
table joins a small table (2G � 2M): the large one follows the
Zipf distribution and the small one follows the uniform dis-
tribution, c) a small table joins a small table (20M � 2M):
both tables follow the Zipf distribution.

We compare LIBRA (using broadcast join described in
Section 5.1) with Hash Join (PHJ), Skewed Join (PSJ) and
Replicated Join (PRJ) in Pig [31]. Fig. 14 shows the job execu-
tion time of these three test cases. In case (a), the best
scheme in Pig is PSJ, which samples a large table to generate
the key distribution and makes the partition decision
beforehand. The left figure shows that LIBRA can perform
almost three time faster than PSJ. In case (b), the best join
scheme in Pig is PRJ, which splits the large table into
multiple map tasks and performs the join in map tasks by
reading the small table directly into memory. The middle
figure shows that LIBRA outperforms PRJ due to better

Fig. 11. Job execution time (left) and coefficient of variation (right) as the degree of skew increases in large scale sort.

Fig. 12. Job execution time (left) and coefficient of variation (right) as the output percentage increases in grep.

2530 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

parallelism by setting more reducers while the parallelism
in replicated join is limited by the number of map tasks allo-
cated by the MapReduce system. In case (c), we compare
LIBRA with all three join schemes in Pig. The right figure
shows that LIBRA is 2.8 times faster than PHJ (the default
scheme in Pig) and PSJ, and is five times faster than PRJ.

5.6 Heterogeneous Environments

To show LIBRA can fit well with the variable cloud comput-
ing environments, we set up a heterogeneous test environ-
ment by running a set of CPU and I/O intensive processes
(e.g., heavy scientific computation and dd process which
creates large files in a loop to write random data) to generate
background load on two of the servers. We use sort bench-
mark with (s ¼ 0:2). We intentionally choose a small s value
so that all methods can partition the intermediate data quite
evenly. This allows us to focus on the impact of environ-
ment heterogeneity. Fig. 15 shows the results for four ver-
sions of LIBRA: with or without considering environment
heterogeneity, and with or without cluster split enabled. As
we can see from the figure, LIBRA with heterogeneity con-
sideration (LIBRA CSPH and NCSPH) can perform 30 and
34 percent faster than LIBRA without this consideration
(LIBRA CSP and NCSP). It also shows that (not surpris-
ingly) enabling cluster split (LIBRA CSP and CSPH) has lit-
tle impact for this workload. The default configuration of
LIBRA (CSPH) can perform 41 percent faster than Hadoop
hash and 110 percent faster than Hadoop range.

6 RELATED WORK

The data skew problem is a common and important prob-
lem that needs to be solved in distributed systems. It has

been studied in the parallel database area, but only limited
on join [5], [6], [7], [8], [9], group [10], and aggregate [11]
operations. Some of these technologies have already been
carried to MapReduce, like SkewedJoin in Pig [32]. How-
ever, users generally still need to implement their own
methods for their specific applications to tackle the data
skew, such as CloudBurst [24] and SkewReduce [12].

Data skew has also been studied in the MapReduce envi-
ronment during the past three years. Okcan et al. propose a
skew optimization for the theta join by adding two pre-run
sampling and counting jobs. Kwon et al. provide a system
called SkewReduce which optimize the data partition for
the spatial feature extraction application by operating pre-
processing extracting and sampling procedures [12].
Although these solutions can mitigate data skew to some
extent, they have significant overhead due to the pre-run
jobs and are applicable only to certain applications.

Researchers have also tried to collect data information
during the job execution. Ibrahim et al. have studied the
locality-aware and fairness-aware key partition optimiza-
tion for reduce by collecting key frequency information in
each node and aggregating them on the master after all
maps done [13]. They sort all keys by their Fairness

Locality value and
greedily choose the reduce node with the maximum fairness
score for each key. Gufler et al. partition the intermediate
data into more partitions than the number of reducers, and
then use a greedy bin-packing method to allocate them to
the set of reducers after all map tasks finish [14]. Later, they
propose a sampling method called TopCluster to approxi-
mate the distribution of the input data [15]. In TopCluster,
each map task samples the largest clusters represented by

Fig. 13. Reduce phase of inverted index application.

Fig. 14. Performance of join applications.

Fig. 15. Job execution time of sort in heterogeneous environments.

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2531

keys and their frequencies, and delivers them to the master
for aggregation. As a result, the master can calculate the
partition cost more accurately according to the global infor-
mation of large keys with the assumption that small keys
are uniform distributed. However, none of the above
approaches can start shuffling for reduce tasks until all
maps complete. Therefore, they cannot take advantage of
parallel processing between the map and the reduce phases.
Moreover, they use the bin-packing partitioner which pro-
vides poor support for the total ordered applications.

The SkewTune system tackles the data skew problem
from a different angle [16]. It does not aim to partition the
intermediate data evenly at the beginning. Instead, it
adjusts the data partition dynamically: after detecting a
straggler task, it repartitions the unprocessed data of the
task and assigns them to new tasks in other nodes. It
reconstructs the output by concatenating the results from
those tasks according to the input order. SkewTune and
LIBRA are complementary to each other. When load
change dynamically or when reduce failure occurs, it is
better to mitigate skew lazily using SkewTune. On the
other hand, when the load is relatively stable, LIBRA can
better balance the copy and the sort phases in reduce tasks
and its large cluster split optimization can improve the
performance further when application semantics permit.

Previous work also exists on tackling the straggler prob-
lem in MapReduce. The straggler problem was first stud-
ied by Dean et al. in [1]. They use speculative execution to
back up the last few running tasks and have observed that
it can decrease the job execution time by 44 percent. The
original speculative execution strategy in Hadoop identi-
fies a task as a straggler when the task’s progress falls
behind the average progress of all tasks by a fixed gap.
Zaharia et al. have found that this does not fit well in het-
erogeneous environments and proposed a new strategy
called LATE [26], which calculates the progress rate of
tasks and selects the slow task with the longest remaining
time to back up. Later, Ganeshi et al. propose a new
method called Mantri [22] which uses the task’s process
bandwidth to calculate the task’s remaining time. It also con-
siders saving cluster computing resource in its strategy.
However, our earlier work finds that there still exist sev-
eral scenarios that will affect the performance of the above
strategies. Therefore, we develop a new strategy called
MCP [27] which divides a task into multiple phases and
uses both the predicted progress rate and process band-
width within a phase to identify slow tasks more accu-
rately and promptly. In addition, MCP takes the load of
the cluster into consideration and uses a cost-benefit
model to determine which task is worth backing up. When
choosing the backup destination, MCP also pays attention
to data locality and data skew. All approaches above can
only solve stragglers due to environment heterogeneity.
Unlike LIBRA, they cannot solve the data skew problem.

7 CONCLUSIONS

Data skew mitigation is important in improving MapRe-
duce performance. This paper has presented LIBRA, a sys-
tem that implements a set of innovative skew mitigation
strategies in an existing MapReduce system. One unique

feature of LIBRA is its support of large cluster split and its
adjustment for heterogeneous environments. In some sense,
we can handle not only the data skew, but also the reducer
skew (i.e., variation in the performance of reducer nodes).
Performance evaluation in both synthetic and real work-
loads demonstrates that the resulting performance improve-
ment is significant and that the overhead is minimal and
negligible even in the absence of skew.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous
reviewers for their invaluable feedback. This work was
supported by the National High Technology Research
and Development Program (“863” Program) of China
(Grant No.2013AA013203) and the National Natural Sci-
ence Foundation of China (Grant No. 61170056). The con-
tact author is Zhen Xiao.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan.
2008.

[2] Apache hadoop [Online]. Available: http://lucene.apache.org/
hadoop/, 2013.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,”
in Proc. ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp. 59–72.

[4] Y. Kwon, M. Balazinska, and B. Howe, “A study of skew in map-
reduce applications,” in Proc. Open Cirrus Summit, 2011.

[5] C. B. Walton, A. G. Dale, and R. M. Jenevein, “A taxonomy and
performance model of data skew effects in parallel joins,” in Proc.
Int. Conf. Very Large Data Bases, 1991, pp. 537–548.

[6] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri,
“Practical skew handling in parallel joins,” in Proc. Int. Conf. Very
Large DataBases, 1992, pp. 27–40.

[7] J. W. Stamos and H. C. Young, “A symmetric fragment and repli-
cate algorithm for distributed joins,” IEEE Trans. Parallel Distrib.
Syst., vol. 4, no. 12, pp. 1345–1354, 1993.

[8] V. Poosala and Y. E. Ioannidis, “Estimation of query-result distri-
bution and its application in parallel-join load balancing,” in Proc.
Int. Conf. Very Large Data Bases, 1996, pp. 448–459.

[9] Y. Xu and P. Kostamaa, “Efficient outer join data skew handling in
parallel dbms,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1390–
1396, 2009.

[10] S. Acharya, P. B. Gibbons, and V. Poosala, “Congressional sam-
ples for approximate answering of group-by queries,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2000, pp. 487–498.

[11] A. Shatdal and J. F. Naughton, “Adaptive parallel aggregation
algorithms,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1995,
pp. 104–114.

[12] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions,” in Proc. ACM Symp. Cloud Comput., 2010, pp. 75–86.

[13] S. Ibrahim, J. Hai, L. Lu, W. Song, H. Bingsheng, and Q. Li, “Leen:
Locality/fairness-aware key partitioning for mapreduce in the
cloud,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci., 2010,
pp. 17–24.

[14] G. Benjamin, A. Nikolaus, R. Angelika, and K. Alfons, “Handling
data skew in mapreduce,” in Proc. Int. Conf. Cloud Comput. Serv.
Sci., 2011, pp. 574–583.

[15] G. Benjamin, A. Nikolaus, R. Angelika, and K. Alfons, “Load bal-
ancing in mapreduce based on scalable cardinality estimates,” in
Proc. Int. Conf. Data Eng., 2012, pp. 522–533.

[16] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: Miti-
gating skew in mapreduce applications,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 25–36.

[17] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Trans. Parallel Distrib. Syst.), vol. 24, no. 6, pp. 1107–1117, Jun.
2013.

2532 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

[18] Amazon elastic compute cloud (EC2) [Online]. Available: http://
aws.amazon.com/ec2/, 2013.

[19] L. Jimmy, “The curse of zipf and limits to parallelization: A look at
the stragglers problem in mapreduce,” in Proc. 7th Workshop Large-
Scale Distrib. Syst. Inf. Retrieval, 2009, pp. 57–62.

[20] R. P. Mount, “The office of science data-management challenge,”
Dept. Energy, Tech. Rep. SLAC-R-782, 2004.

[21] A. Szalay and J. Gray, “2020 computing: Science in an exponential
world,”Nature, vol. 440, pp. 413–414, 2006.

[22] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce
clusters using mantri,” in Proc. USENIX Conf. Oper. Syst. Des.
Implementation, 2010, pp. 1–16.

[23] A. Okcan and M. Riedewald, “Processing theta-joins using
mapreduce,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011,
pp. 949–960.

[24] M. C. Schatz, “Cloudburst: Highly sensitive read mapping with
mapreduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[25] Z. Xiao, Q. Chen, and H. Luo, “Automatic scaling of internet
applications for cloud computing services,” IEEE Trans. Comput.,
vol. 63, no. 5, pp. 1111–1123, May 2014.

[26] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in Proc. USENIX Conf. Oper. Syst. Des. Implementation,
2008, pp. 29–42.

[27] Q. Chen, C. Liu, and Z. Xiao, “Improving mapreduce performance
using smart speculative execution strategy,” IEEE Trans. Comput.,
vol. 63, no. 4, pp. 954–967, Apr. 2014.

[28] Open stack cloud operating system [Online]. Available: http://
www.openstack.org/, 2013.

[29] K. Avi, K. Yaniv, L. Dor, L. Uri, and L. Anthony, “Kvm : The linux
virtual machine monitor,” in Proc. Linux Symp., 2007, vol. 1,
pp. 225–230.

[30] L. A. Adamic and B. A. Huberman, “Zipf’s Law and the Internet,”
Glottometrics, vol. 3, pp. 143–150, 2002.

[31] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: A not-so-foreign language for data processing,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2008, pp. 1099–1110.

[32] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava,
“Building a high-level dataflow system on top of map-reduce:
The pig experience,” Proc. VLDB Endowment, vol. 2, no. 2,
pp. 1414–1425, 2009.

Qi Chen received the bachelor’s degree from
Peking University, Beijing, China, in 2010. She is
currently working toward the PhD degree at
Peking University. Her current research interest
includes cloud computing and parallel computing.

Jinyu Yao received the bachelor’s degree from
Peking University, Beijing, China, in 2010. He is
currently working toward the Masters degree in
School of Electronics Engineering and Computer
Science at Peking University. His current
research interest includes cloud computing and
parallel computing.

Zhen Xiao received the PhD degree from Cornell
University, Ithaca, NY, in January 2001. He is
currently a professor in the Department of Com-
puter Science at Peking University, Beijing,
China. After that he joined as a senior technical
staff member at AT&T Labs, Middletown, NJ, and
then a research staff member at IBM T.J. Watson
Research Center. His current research interests
include cloud computing, virtualization, and vari-
ous distributed systems issues. He is a senior
member of the ACM and the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: LIBRA: LIGHTWEIGHT DATA SKEW MITIGATION IN MAPREDUCE 2533

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

