Catching Instant Messaging Worms with Change-Point
Detection Techniques

Guanhua Yah Zhen Xiaé Stephan Eidenbehz

 Information Sciences (CCS#3) * School of Electronics Engineering & Computer Science

Los Alamos National Laboratory Peking University
Los Alamos, NM 87545, USA Beijing, P. R. China
{ghyan, eidenber@Ianl.gov xiaozhen@net.pku.edu.cn
Abstract perimeter protections such as firewalls have been by-

Instant messaging (IM) systems have gained a lot of po passed. The two major propagation vectors of IM worms
i ging ystem 9 PO efile transfersand URL-embedded chat messagAs
ularity in recent years. The increasing number of IM

users has lured malware authors to develop more worm”vI worm using thg first approach eg., ngom.a [19])
and viruses that spread in IM networks. In response to?equests transferrmg a f|!e, which contains the worm
. . o code, to an online buddy; in the second approach, an IM
S.UCh growing security threat to IM.systems, Itis 'MPeTa- orm (e.g., Kelvir.k [7]) sends a hyperlink, which is em-
tive to develop a fast and responsive IM worm dEteCt'.onbedded in a text chat message, to an online buddy. If the
SVStef"- In this paper, we z_ipply change-point det.ecuonreceiver accepts the file transfer request or clicks the em-
techniques to catch two families of IM worms, one a'medbedded URL. a malicious file will be downloaded onto
atinfecting all vulnerable machines as quickly as pOSSi'her machine :amd its execution creates a new infection
ble and the other aimed at spreading slowly in a stealthy '
fashion to evade detection. Experimental results demon- Outbreaks of traditional Internet worms such as Code

strate that the proposed solutions are very effective in deRed tell us that any effective defense scheme against an
tecting both families of IM worms. epidemic spreading requires a fast and responsive alert
system [18]. Motivated by this, we propose to apply
change-point detection techniques to detect two fami-
lies of IM worms quickly. The first family of IM worms

. aim to infect all vulnerable machines as quickly as pos-
Instant messaging (IM) systems have grown tremen-

dously in the past few years. It is estimated that theS|ble by aggressively hunting for new victims. We detect

. o this type of IM worms by monitoring abrupt increase of
total number of active IM accounts will increase from file transfer requests or URL-embedded chat messages
867 million by the end of 2005 to 1.2 billion by 2009 [5] . & *& = Steqm The second fary of IM worme al?
and the number of enterprise IM users will increase from ystem. : iy o

o S low only a limited number of infection attempts within a
67 million in 2007 to 127 million in 2011 [6]. Accompa- . : : :
. . : . . . certain period of time. Although spreading more slowly,
nied with such increasing popularity of IM systems is the

. , this type of IM worms do not trigger a large number of
ty threat that IM I to both..
growing security threat tha maiware poses 10 bo file transfer requests or URL-embedded chat messages.

residential and enterprise IM users. For instance, fro ur detection scheme relies on the observation that dif-
January 1, 2005 through September 2005, more than 3%‘? . oo
erent degrees of social online intimacy among IM bud-

new IM worms have surfaced [8]. According to a report S
: dies lead to uneven communication messages exchanged
from Akonix Systems Inc., there have been 346 IM at-
among them. An IM worm that randomly chooses on-

tacks in 2007 [4]. In 2005, Reuters was even forced t(line buddies as infection victims can, very likely, gen-
shut down its instant messaging service temporarily du erate file transfer requests or URL-embedded chat mes-

to the Kelvir M worm [16] N sages between IM buddies that barely chat in the past.
IM worms have posed significant challenges to secu-

:) o To detect this type of IM worms, we measure the average
rity protection for enterprise-like networks. IM worms S .

. . .. log-likelihood of file transfer requests or URL-embedded
can be leveraged to implant rootkits or bots onto victim

) o : " Fhat messages in the IM system; its abrupt decrease is a
machines inside an enterprise network after traditiona Y .
good indication of stealthy IM worm propagation. We

*Los Alamos National Laboratory Publication No. LA-UR-0g- €valuate our detection schemes with an IM dataset col-
1010 lected from a large enterprise network and experimental

1 Introduction

results show that they are very effective in detecting bothchat messages delivered through them. Hence, if an IM
families of IM worms. worm uses the URL-embedded chat messages to spread
The remainder of this paper is organized as follows.itself, the IM servers or the enterprise gateway can parse
Section 2 presents some background knowledge abouwinencrypted chat messages and derive the URL informa-
IM architecture and IM worms. Section 3 discusses IMtion. However, the IM servers or the enterprise gateway
worms that aggressively scan for new victims and theircan not capture the file being transferred between two
detection. Section 4 discusses how an intelligent IMIM clients, unless the sender and receiver are both pro-
worm evades the detection scheme described in Secticected by a firewall or NAT router [23]. Hence, if an IM
3. In this section, we also provide an algorithm that de-worm propagates through file transfers, we may not be
tects this type of IM worms. In Section 5, we evalu- able to detect IM worm propagation through binary mal-
ate the effectiveness of the proposed solutions with anvare code analysis at the enterprise gateway or the IM
IM dataset collected from a large corporate network. Weservers. Nevertheless, any file transfer between two IM
present some related work in Section 6 and conclude thislients must involve some IM servers to set up their ini-

paper in Section 7. tial connection, so we can still infer that a file transfer is
going to take place between two IM clients by analyzing

2 IM Architectures and IM Worms IM command traffic at the enterprise gateway or the IM
servers.

IM architectures. Popular IM systems include MSN IM worms. An infection attempt through an IM net-
messenger, AIM, Yahoo Messenger, IRC, ICQ, andwork consists of two processesandshakinginddown-
Google Talk. Although these systems are built on dif-loading In the handshaking step, an infected machine
ferent protocols, they bear little difference in their ba- with IM accountw requests a file transfer or sends a
sic client-server structures. The general framework of anURL-embedded chat message «ts online buddyw.

IM system in an enterprise-like network is depicted in When IM userv receives the file transfer request or the
Fig. 1. IM servers form the backbone of an IM system URL-embedded chat message, she decides whether to
and their typical functionalities include account man-accept the request or click on the URL. Only if she does
agement, user authentication, presence notification, texko will the next step take place: the recipient machine
based chat message relaying, file transfer establishmerdpwnloads the worm code body from the machine that
and group chatting. Albeit major IM systems provide v is using if the file transfer scheme is used, or from
similar functionalities, their server architectures méy d the host specified by the URL if the worm spreads by
fer from each other. For instance, a text-based chat mesJRL-embedded chat messages. Once the second step
sage in the AIM system has to go through two BOS (Ba-finishes, the recipient machine gets infected if it is vul-
sic Oscar Services) servers before it is delivered to theéerable to the worm infection; otherwise, the infection
receiver, but a similar message in the MSN system traattempt fails.

verses only one SB (switchboard) server [23]. We us€T)}, andT}, to denote the durations of the hand-
shaking step and the downloading step, respectively. We
also useT, to denote the time needed to execute the
worm code on a victim machine, e.g., modifying the reg-
istry on a Windows machine. Le&®; be the probabil-

ity that a node accepts a file transfer request or clicks
on the embedded URIE; essentially reflects the proba-
bility that the worm spreading attempt succeeds in each
hop. We also us@, to denote the probability that a node
is vulnerable to the worm infection after the worm code
body is downloaded.

Figure 1: Architecture of a typical IM system 3 Fast Scanning IM Worms

In our work, we focus on schemes that detect IM worm

propagation in a centralized fashion. More specifically,Many existing IM worms adopt the fast scanning strat-
we consider approaches that can be directly deployed agy, that is, they, after infecting a new host, immediately
the IM servers, or at the enterprise gateway if the goal isterate the online buddy list and attempt to infect each
to protect an enterprise network. The feasibility of suchcontact on it either by requesting a file transfer or sending
a solution requires further explanation. Encryption isout a URL-embedded chat message. Such IM worms in-
rarely used in existing major IM systems, suggesting IMclude Bropia and Kelvir that have been observed spread-
servers or enterprise gateways can see most text-basedy on the MSN IM network. The common objective of

fast scanning IM worms is to infect all vulnerable ma- n by comparingy,,(X) against a predefined threshold
chines as quickly as possible. Experiences with tradif(X): if y,(X) < 6(X), there is no abrupt change of
tional Internet worms such as Code Red and Slammemean in random sequeng& otherwise, there is.

suggest that an effective defense scheme against a fastone might suggest that we apply the CUSUM algo-
scanning worm must detect it at its early propagationrithm directly on random sequen(@é}’,(f)} or {Cfl“)} to

stage [18]. o , . detect fast scanning IM worms spreading by file transfers
Algorithm description. ~ The aggressive spreading . yr|-embedded chat messages. A basic assumption of
strategy used by fast scanning IM worms, although accelg, o cysum algorithm, however, is that the process be-

erating their propagation, inevitably increases the numsz, . e change point should be stationary. It is easy to

ber of f!le transfer requests or URL.embeddeq c.hat MES: & that both random sequenc{éé,f)} are{Cf,,“)} vary
sages in the IM systems, depending on their infection : ; ; .

) with the number of online users, which typically changes
vectors. Moreover, these file transfer requests or URL-

. ing 19Ver the time in a day. For instance, measurements of IM
embedded text messages introduced by fast scanning | L
: T : traffic in a large corporate network reveal that the peak
worms bear different source-destination pairs. Such

distinguishing feature of fast scanning IM worms moti- Imes of user login and user logout are around 9AM and

i) 5PM, respectively, which are strongly correlated with
vates us to apply sequential change detection theory foémployees’ working hours [23]. If we attempt to detect a
their detection. The key idea of sequential change detec%— '

. . . e ast scanning IM worm quickly by selecting a measure-
tion theory is to locate the point of change, if it occurs, ment windows. much smaller than a dav. apolving the
within an observed time series by checking whether it ! Y. applying

i i (f)
is statistically homogeneous in an online fashion. Fur-CUSUM algorithm directly on random sequeni@@;’ " }

ther explanation requires more notations. We discretiz®" {C{'} may lead to high false alarm rates.
time into measurement windows of equal lengthde- To circumvent this problem, we measure another ran-

noted bY{Agzl)hneN- We use random sequen€é/) = dom processf = {M,}, in which M,, is the number
{C(f)}‘ ey and 0 = {C(u)}l < to denote the to- of online IM users within the:-th measurement window
n n - n n

tal number of file transfer requests and URL-embedde@gll)' Instead of detecting abrupt changes{aif;’’} or

chat messages with different source-destination paits thd C+"'} directly, we normalize them by, first before

have been observed within theth measurement win- applying the CUSUM algorithm. Algorithm 1 provides a

dow, respectively. brief overview of our solution to detecting fast scanning
To detect fast scanning IM worms, we use the!M worms:

CUSUM algorithm [14], which is a standard tool in

statistical process control. Particularly, we apply its Algorithm 1 Detect fast scanning IM worms within the

non-parametric version [1] as it does not demand any,-th measurement windowk '

a priori information on distributions of the random se- Collect M, CT(Lf), andCr(L“)

guence before and/or after the change point. Xet Lt .
. 2: if M, is Othen
{Xn}nen be a random sequence with meafX') un- : .
. . 3: Ignore this measurement window
der normal operation. Our goal is to detect whether there 4 endif
is an abrupt change of mean {nX,,}. As the non . Updateyn(cji;)) andyn(c&)) according to Eq. (2)

parametric CUSUM algorithm only works on random _ o o
sequences with negative means before the change poinf: if ¥n(57-) > 0(57) the_n) _
and positive means after the change point, we transform7: Alert that a fast scanning IM worm is propagating

{Xn}nen into a new random sequenge (X,,) }nen, by. file transfers
where Z(X,) = X, — f(X), 8(X) is a constant de- & gnd Ifc<u> o
pending on random proces§, anda(X) < G(X). 9: if yn(557) > 0(557) then _ .

The non-parametric CUSUM algorithm works as fol- 10: Alert that a fast scanning IM worm is propagating
lows. First we define sequen¢g,, } jnen-+: E)jy_fURL-embedded chat messages

- T 11: end i
Yn(X) = Sn(X) — min S (X), 1)
whereS,(X) = Y5 Z(X;) andSy(X) = 0. We can _ _ _ _
calculate{y,, } more efficiently in a recursive manner: When implementing Algorithm 1, if there are no on-
_ line IM users (i.e.,M,, = 0), we ignore this measure-
(X)) = 0, Y1 (X) + Z(X,)), \ :
{ ZogX)) _ (r)nax{ Yn-1(X) + Z(Xn)} (2) ment window, which means that the next measurement

In this way,y,, (X) can be immediately computed based window is still the”.'th m?asurement window.
ony,_1(X) once measuremer¥,, is available. There- Parameter configuration. = We set the rrggdel pa-
after, we decide whether there is an abrupt change at timeameters in a similar way as in [21]. First(CT‘f) and

af C]f;)) can be estimated from training data. Define: number of worm generations before the worm is detected

_ by the CUSUM algorithm. The number of infected ma-
Y(X) = inf{n:y,(X)>0(X)} (3) chines in the-th worm generation, where < i < &, is
(X) max{0,7(X) —m @) mP,;P,)"~1. Suppose that the IM worm starts to sprea
B 1's hat the IM d
P N at the beginning of measurement windaw" and the

0(X)
h is the i hen th arts t ; II\/{I\gvorm is detected at the end of measurement window
wher i ime when worm star r .
erem is the time when the worm starts opopagae,Ab _We then have:

X is either% or % ~v(X) denotes the time of the

change point, and(X) is the normalized detection time (x—1)(Tp+Ty+Te) < (b—a+1)61 < K(Th+Ta+Te).

after the change point. L& X') be the increase of mean (8)
after the IM worm starts to propagate. We then have: ~ Thereforex can be represented as:
1 (b —a—+ 1)(51
X . 5 =|=—=+1]. 9
O s —em s @ Sl e ©)

By choosingh/(X), which is a lower bound of(X),to Moreover,y,(X), whereX is % or % can be ap-
replaceh(X), we can sef(X) as follows: proximated as follows:

0(X) = max{0,y(X) —m}- (M'(X)— |a(X)=B(X)]). w(X) = (b—a+1)(a(X)-B(X))+

. (6) m(1+ (mPyP)! + ... + (mPyP,) ")
Similar to [21], we leth/(X) be2|a(X) — 5(X)|. Recall]
that 5(X) is an upper bound of(X); hence, we can = (b—a+1)(aX) - B(X)) +

choosel(X) to be (1 + €)a(X), wheree is a positive
number. We also specifyiax{0, v(X)—m} as the target
detection delayl. We thus have:

m((mPyPy) — 1)
(mP.Py — 1)

As we havey,(X) > 0(X) andy,_1(X) < 0(X), we

can estimaté — a + 1, which is the number of mea-
Algorithm analysis. We now analyze how effective surement Windows required to detect the fast scanning

the CUSUM algorithm is in detecting fast scanning IM M worm. F('SrSt' suppose thag,—1(X) ~ 6(X) and

worms. We assume that a machine attempts to spread ~ (T;}it?f + 0.5. Letx beb — a, g be mP;P,,

the worm onto its online IM buddies immediately after andr beﬁ. We then have:

it gets infected. For simplicity, we also assume that at

the initial propagation stage, the number of buddies that

have already been infected can be ignored. [Lie the

average number of online users amdbe the average

number of online buddies of each online user in the |

network when the IM worm is spreading. When an in-

fected machine attempts to spread the worm enton-

0(X) = dea(X). (7)

m(grm+0.5 _ 1)

l(g—1)

MmASs itis difficult to solve the above equation analytically,
we use Taylor approximation f@gf*. Although it is pos-
sible to use Taylor series of orders higher than one, the
line buddiesn - P; of them actually download the worm solution bgcomes _Iengthy. Hence, we use the fjrst-order
code. We assume that the worm downloading time is/@Y/or series at point 0, i.el+rIn(g) -z, to approximate
T,L. Hence, if an infected machine initiates a successit: Finally, we have:

fql [nfectlon .atte.mpt to an onll_ne buddy at tinte the I(g — 1)0(X) + m(1 — /g)

victim machine is infected at time+ T, + T; + T.. T~ I{g —1)(a(X) = B(X)) + mrin(g) Vg (12)
Among them online buddies, an infected machine can (9 @ mrin(g)vg

only infectmP, P, of them successfully. Let be the \we can thus establish the following theorem:

z(a(X) = B(X)) + ~0(X) (10)

IHere, we ignore the network-level interaction among multies- Theorem 1 Given the assumptions we have made AlgO

sions that download worm code from the same infected hosts ihi 1 d . 1 ind
because typical IM worms have small sizes, especially aftekipg neeas apprommate[)t} + 1 measurement windows to

themselves when spreading. For instance, the code size wif Kél detect the fast scanning IM worm, whereés given in Eq.
worm is about 24KB, if unpacked, or 9KB if packed [20]. Henas; (11).

ing TCP, typical IM worm code can be downloaded within onlyew

round trip times and thus less than one second. Moreoverivegse From Eq. (11), we observe thatf{X) is high, or

of file transfer requests think for different time before tiumcide to ; ;
download the worm code. Such stochasticity also reducesyhe ﬁ(X) is chosen much Iarger thaﬂX)’ ittakes a Ionger

chrony among worm code downloading processes that aretéuittzy ti_me to d_etECt the fa_‘s_t scanning IM worm, which is con-
the same worm instance. sistent with our intuition.

Implementation. If Algorithm 1 is implemented by The color of a token can bgreenor red. Initially,
the IM servers, it needs to know the online status of eactwe set the colors of all tokens to green. The protocol
IM user. Such information is already available becausewnorks as follows: (1) If the color of a token changes
the IM servers need to notify an IM user of each buddy’sto green, the holding worm instance randomly chooses
presence status when she just logs into the IM systema new victim that it has never tried to infect from the
If Algorithm 1 is implemented at the enterprise gateway,online IM buddy list and then attempts to infect it. If
there are two ways of keeping the online status of eactthe holding worm instance cannot find an online buddy
internal IM user. One is to intercept every IM command contact that has never been tried, it passes the green to-
that carries the presence information of an IM user. Theken to a random online buddy that it knows has already
second approach is to monitor the persistent TCP conbeen infected, or to the machine from which it gets in-
nections between the IM user and some IM servers, sucfected; otherwise, it changes the color of the token to
as the BOS server in the AIM system and the notificationred, inscribes the current time onto the token, and sched-
server in the MSN system [23]: if such TCP connectionsules anactivation timerwhich fires afters; time units

are still alive, the corresponding IM user is online. since the timestamp on the tok€@) When an activation
o timer fires, the associated token changes to green and the
4 Self-Restraining IM Worms holding worm instance proceeds as in (@) If a worm

_ o _ instance successfully infects a new machine, it cancels
Security by obscurity is never a good practice. If an ad-any of its red tokens, if it has such one, and passes it
versary knows that Algorithm 1 has been deployed to deto the new machine without altering its inscribed times-
tect IM worms, can he deSign an intelligent IM worm that tamp (4) When a worm instance receives a red token
spreads without being caught? We demonstrate its possyyith time stampo, it schedules an activation timer after
bility in the following discussion. Note that the CUSUM timed; — (t—to), wheret is the current t|me(5) When a
algorithm triggers an alarm only when the cumulativeworm instance receives a green token, it proceeds in the
sum reaches thresholt{.X); this allows an IM worm same way as in (1). We can easily establish the following

to ramp up its infection coverage using the fast scanningroperty of the token-based protocol (proof omitted due
strategy to a certain point without being detected. Afterto space limitation):

that, the difference between X') and3(X) allows the

IM worm to spread at a constant speed without increasTheorem 2 The token-based protocol guarantees that
ing y,,(X). Following the scenario analyzed in Section within any time interval of lengtl; since the last:'-

3, an adversary estimatesaccording to Eq. (11) and th generation worm instance has been installed, the total
predicts that a fast scanning IM is detected afiér- 1 number of file transfer requests or URL-embedded chat
measurement windows. To avoid detection, the IM wormmessages generated by the worm is at rffost

is designed to stop propagating in a fast scanning mode

afterx’ generations, where: Algorithm description. We call intelligent IM worms
(@ +1)6 that use rate limiting methods such as the token-based
K =|————"— +1] (12) protocolself-restraining IM wormsTo detect such type
Ih+Ta+Te of IM worms, monitoring surges of file transfer requests
andz’ < z. or URL-embedded chat messages in the IM system is

Since (2’ + 1)-th measurement window, the worm not sufficient. Instead, we measure likelihoods of file
spreads in a self-restraining manner. If the number ofransfers or URL-embedded chat messages between IM
file transfer requests or URL-embedded chat messagegients and use them to decide whether a self-restraining
per measurement window generated by the worm doeBVl worm is spreading. This idea is based on the mea-
not exceed(3(X) — a(X)), it is highly likely that the ~ surements on IM messages in a large corporate network:
worm propagates without triggering an alarm. We nowon average, an AIM user chats with only 1.9 buddies,
show how an intelligent IM worm can achieve this using about 7% on her buddy list, and an MSN user chats
atoken-based approach. Note that the number of infectedith 5.5 buddies, 25% on her buddy list, in a month
machines in the:’-th generation ig* !, where we re- [23]. Such an observation suggests that an IM user tends
callg = mP;P,. LetY bel(8(X) — «(X)). Aftera to chat more often with a small set of her online bud-
x/-th worm instance is created.~— tokens are gener- dies, which reflects her online social intimacy. However,

gk’—l
ated for it.
T

SWe suppose that once a new machine is infected, it reportsto th
2In one implementation, —— | tokens are created deterministi- machine that infects it. If the worm spreads by file transfitrs sender
) 9) » - and the receiver know each other’s IP address. But if the vepmeads
cally and another one is created with probability— — LFJ- If by URL-embedded chat messages, the sender and the receiveotmay n
the protocol is implemented as such, the following Theorem 2medy ~ know each other’s IP address. But such information can bgedlay
strictly follow due to randomness. the remote server where the worm code resides.

self-restraining IM worms as described do not have thatlgorithm 2 Detect self-restraining IM worms within
knowledge about social relationships between IM usersthen-th measurement windowk ‘>

Hence, when an IM worm instance chooses a victim from
the online buddy list, it randomly picks one from those
that have not been attempted before. As such random-
ness may not reflect real-world online social intimacy, it

offers a weakness for their detection.
Similar to Algorithm 1, we discretize time into mea-
surement windows of equal length,, denoted by

{Af)}‘neN. 02 is not necessarily equal 3. Let W,(Lf)
andiw,\"’ denote the set of IM user paifs, b), where IM

usera sends at least one file transfer request and at leastg

one URL-embedded chat message to IM us&rithin
measurement windowA'?, respectively. We also use

1: Collect.J”) andJ"

2: Updatey”(Jéf)) andy,, (()

3 if y, (JS) > 0(J) then

: Alert that a self-restraining IM worm using file

transfer method is propagating

5. end if

6: if o (JS) > 0(J5") then

7. Alert that a self-restraining IM worm using URL-
embedding method is propagating

cendif

) according to Eq. (2)

7(a,b) to denote the metric that reflects how close IM A j4rithm analysis. We consider the self-restraining

userb is to IM usera in the IM world. Essentiallyy(a, b)

is the probability that IM use#i sends a chat message or

a file transfer request tbin the history. Let@ be the
whole set of IM users. We have:

Z m(a,b) =1, foranya e Q@
vbeQ

(13)

We use the EWMA (exponentially weighted moving av-

erage) approach to updatéa, b). First, we discretize
time into intervals of the same length. A time interval
here can represent, for instance, a week.7;éi, b) de-
note ther(a, b) value estimated after theth time inter-

val and7;(a, b) denote the fraction of chat messages or

file transfer requests that are sent frarto b during the
i-th time interval. We then updatg (a, b) as follows:

mi(a,b) = p7i(a,b) + (1 — ¢)mi—1(a,b), (14)

wherep € [0, 1] is the weighting factor. It is trivial to
verify that Eq. (13) must be true for any € @ and
i > Lifinitially > y,co mo(a, b) is equal to 1.

We define sequencel/) = {Jflf)}meN andJ® =
{Jﬁ“)hneN as follows:

J(f> - Z(a,b)gW,(Lf) In max{#,r(a,b)}
n — ‘W’,(lf)l
(w) - Z(a,b)ew,(l“) In max{#,r(a,b)} (15)
" (Wi
whereir € (0,1). —) and—g™ give the average log-

likelihood of file transfer requests and URL-embedded

chat messages within measurement windﬁ\ﬁ), re-
spectively. In Eq. (15), we use the minimum #fand
m(a,b) in case that the latter is O.

We then monitor abrupt change dﬁf) and J,(l“) to
detect self-restraining IM worms:

IM worm that uses the token-based scheme to control
its propagation speed. The total number of tokens is
T. We assume that at the initial stage of worm propa-

gation, each worm instance has received at most one to-
kert. Also let the number of online buddies per user be

m. To ease analysis, we further assume that under nor-
mal conditions, the nominators and denominators in Eqg.

(15) are constant. That is,

JO = B
Jw _ BU™M) (16)
noT AT

whereA(J), B(JH), A(J™), andB(J™) are con-
stants. Suppose that the self-restraining IM worm starts
propagating at the beginning of theh measurement
window and Algorithm 2 detects it aftermeasurement
windows. We ignore the cases in which the worm sends
a file transfer request or a URL-embedded chat message
fromw to v but there is also a normal file transfer request
or URL-embedded chat message franandwv. This is

a reasonable assumption because the infection attempts
by a self-restraining IM worm are usually small (other-
wise, Algorithm 1 can detect it). Suppose that we choose
a small# such that it is smaller thatym. We then have:

o 52T
Th +Td+Te
55T
Th+Ta+Te

In(1) + B(X)
+ A(X)

z -

—z-B(X) > 0(X),

17
where X is J) or J) depending on the spreading
vector of the IM worm. Hence, the CUSUM algorithm is
able to detect the self-restraining IM worm aftemea-

4If a worm instance has received more than one token, the worm
instance will not attempt to infect the buddies that it hasadsy tried.

Parameters in Algorithm 2 are specified in a similar this may not hold for the'-th generation worm instances#X— >
g9

manner as in Algorithm 1. For brevity, we do not repli-
cate it here.

1, but after that, it is very likely that tokens are passed daifigrent
IM users.

surement windows, where This subset has 193 internal IM users; on average, each
of them has 22 IM buddies. In total, 3851 external IM

p= __ 0(X) 7. (18) contacts appear on the buddy lists of these 193 inter-
T) +HBX) B(X) nal IM users. Unfortunately, we cannot get the buddy
Ty TAX) lists of these external IM users. As observed in [12, 17],

IM networks tend to have power-law structures. We use
the Power-Law Out-Degree Algorithm [15] to generate

Theorem 3 Given the assumptions we have made, Algo_power-law graphs with 3581 nodes, whose average out-

rithm 2 needs approximatelymeasurement windows to gegreje is 22. The power Iawltexfponen1t2|s f;}t t?:be 17
detect the self-restraining IM worm, whetds given in ased on measurement resufts from [.]. For sim-
Eq. (18). plicity, we let the buddy relationships in the external

graph be symmetric. Furthermore, if an external user is
From Eq. (18), it is clear that a too largg¢X) or ~ ON the buddy list of an internal user, she also has that

B(X) extends the detection period. But in reality(X) internal user on her own buddy list.
and B(X) change over time. Hence, makifgX) or In our experiments, we consider only IM worms that
B(X) too small can introduce high false alarm rates. ~ are based on file transfers. Due to some technical prob-
Implementation. One implementation issue with the lems, we are not able to obtain sufficient data on normal
aforementioned algorithm is the complexity of collect- file transfers between internal IM users or between in-
ing J7(Lf) and JT(Lu)_ The algorithm requires knowledge ternal IM users and external IM users as of writing. We
of buddy relationships in the IM system. If the algo- thu_s use measurement results f_rom [10]: on average an
rithm is implemented at the IM servers, such knowledgeon“”e IM user _sends out 1.84 file transfer requests per
is already available, as the IM servers need it to notify24 hours. Similarly, we assume that the average num-
an IM client of the presence statuses of her buddies iP€r Of file transfer requires an IM user receives is also
they change. For instance, in the AIM system, when_1-84- For eac_:h flle transfer request, the probability that
an IM user logs in, the client software sends a list ofit falls into a time interval is proportional to the number
her IM buddies in screen names to the message serve‘?f online internal IM users; once the time interval is cho-
these names will be monitored for login/logout events.SeN, ItS exact appearance time at the enterprise gateway
If the detection algorithm is implemented at the enter-IS uniformly distributed within that time interval.
prise gateway, we need to parse IM command messages Now we introduce how to generate the sender and re-
to derive buddy relationships. For instance, the detecceiver of a file transfer request if it is issued by an inter-
tion algorithm designed for the AIM system can capturena| IM user. For each of the 193 internal IM users, we
the “oncoming buddy” commands at the enterprise gatebuild a buddy relationship table, an entry in which indi-
way that appear in the following three cases: first, thecates the probability that a chat message is sent from her
AIM messenger server notifies each user of the statuse® the corresponding contact on her buddy list within the
of her buddies when she is logging into the system; seccurrent week (i.e., not history based). These probabili-
ond, whenever one of the buddies comes online after €S are empirically measured from the IM dataset. Let
user logged in, she gets a notification from the servers? (u,v) denote the probability that a chat message goes
third, the IM servers regularly use these commands tdrom internal IM user. to another IM user. Also, we
update the buddy list of each user [13]. measure the probability that an outbound chat message
Algorithm 2 also requires knowledge afa, b) from (i.e. it i_s.ge_nerated from an internal IM user) comes from
each online IM useu to each of her buddies As text- & Specific internal IM usea, denoted byw(u). Then,
based chat messages and file transfer requests go throu@ﬁe” a file tfar!Sf?f request sent by an mternal IM user
IM servers, we can calculate(a, b) by parsing IM chat S generated within a tlme interval, We_f|rst eollect the
messages or IM command messages for setting up filgntire set of IM user pairgu, v), whereu is an internal

transfers at the IM servers or the enterprise gateway. M user and both IM userg andv are online during that
time interval. Let® be this set. Then, IM user pdit, v)

We can thus establish the following theorem:

5 Experimental Evaluation is chosen with probability(u, v):
.. . p(u U) _ w(u) i ﬁ(“?”) (19)
We use a realistic MSN IM messaging dataset to eval- ’ Z(%b)@w(u) -7 (a,b)

uate the effectiveness of our algorithms in detecting IM

worms. This dataset, collected from a large corporate In the experiments, we assume that the delay in sec-
network, records chat messages of internal IM users andnds from one IM user to another obeys normal distribu-
their online durations within a year. Our experiments aretion A/(0.1,0.01) in seconds. The time that a recipient
based on part of this dataset that has ten weeks’ recordsf a file transfer request spends on deciding whether to

accept the request is exponentially distributed with meamworm propagation, Algorithm 1 cannot detect it based on
5 seconds. The downloading time is generated from northe number of file transfer requests observed.
mal distribution\/(2,1). We ignore the execution time Fig. 3 depicts the detection delay in terms of mea-
of downloaded malware in our experiments. We vary thesurement windows. For most of the scenarios, it takes
acceptance ratio of a file transfer request (ig),among between one and three measurement windows to detect
0.25, 0.5, 0.75, and 1.0. We also vary the vulnerablehe IM worm propagation. We, however, observe that
probability of a machine (i.eR,) among 0.25, 0.5, 0.75, when both the acceptance ratio and vulnerable proba-
and 1.0. bility are low, it takes a significant number of measure-
For each simulation scenario, we randomly pick an IMment windows to detect the IM worm. This is because
node, either internal or external, as the initial infection in these cases the IM worm propagates very slowly and
The first infection takes place at simulation time 42000thus does not generate a large number of file transfer re-
seconds For each simulation scenario, we run it 10 guests within a single measurement window. This is fur-
times with different random number generation seeds. Iriher confirmed in Fig. 4, which demonstrates the fraction
our experiments, IM worm detection is performed at theof internal IM contacts that are infected among all inter-

enterprise gateway. nal vulnerable machines when the IM worm is detected.
Itis observed that for those cases with large detection de-
5.1 Fast Scanning IM Worms lays, the fraction of internal infections is below 10%. On

)) . the other hand, when the vulnerable probability is 1.0,
In Fig. 2, we present the growth curves of internal in- .« fraction of internal infections reaches between 15%

fections (i.e., infected machines that are behind the enz 4 2004 when the IM worm is detected, even though

terprise gateway) when the IM worm uses the fast Scany takes only one measurement window. In these cases,

ning spreading strategy. Obviously, when the acceptancge can accelerate IM worm detection by decreasing the
ratio (i.e., Py) is fixed, a higher percentage of vulnera- ,oosurement window size.

ble IM contacts leads to faster IM worm spreading; sim-

ilarly, when a fixed portion of IM contacts is vulnera- 5.2 Self-Restraining IM Worms

ble, a higher acceptance ratio also accelerates IM worm) o)
propagation. Both observations agree with our intuition./V& now consider a self-restraining IM worm that lim-

Moreover, the maximum number of infected internal IM ItS itS spreading speed to evade detection by Algorithm
contacts is bounded by the number of internal vulnera

1. This worm allows only three infection attempts (i.e.,
ble machines. This is confirmed in the right graph: thefile transfer requests in our experiments) every 300 sec-
number of internal infections is always less than 97 (re-

onds. It uses the token-based protocol, as described in
call that there are 193 internal IM users in our dataset)>€ction 4, to control its propagation speed. Fig. S de-
However, this is not true when the acceptance ratio ioicts the number of internal infections at simulation time
fixed at 50% and the vulnerable probability is 100%. It 220,000 seconds as a function of acceptance ratio and
is because an IM user can receive multiple file transfeiulnerable probability. Compared against the fast scan-

requests from different buddies and accepting any one dfing IM worm, the self-restraining IM worm propagates
them leads to a new infection. much more slowly. For instance, when the acceptance

We now investigate how effective Algorithm 1 is in ratio is 50% and the vulnerable probability is 75%, the

detecting these fast scanning IM worms. We let the meghumber of internal infections is only 9 after simulation

surement window size be 300 seconds. The thresholee 250,000 seconds, as opposed to 88 internal infec-

parameter is computed based on Eq. (7), in which we |epon_s with the fast scanning spreading strgtegy. .
¢ be 3 andd be 3. Here, we choose a relatively large Fig. 6 presents the successful detection ratio of the

so that effects of white noise (e.g., bursts of normal fileS€!f-restraining IM worm by Algorithm 1. Among 160

transfer requests) can be offset. We first test the (';\Igo§""mpl,e runs, Algorlthm 1 can only catch 11, of them be-
rithm when there is no IM worm spreading. No false fore simulation time 250,000 seconds. This leads to a

positives have been observed. We then test 160 sampReoor average detection ratio of 7%. The result is not

runs with 16 different combinations of vulnerable prob- surprising because Algorithm 1 relies on the abrupt in-
abilities and acceptance ratios. We find that there ar&rease of file transfer requests for detection but the self-
eight false negatives. A closer examination at the eighﬁsnam'?g IM worm generates only a “m',teg number of
false negatives reveals that in all of them either one (th lle transter reqluests Eer rpreas_,urement \meI OW'h .
initial infection point) or two have been infected before We now evaluate the effectiveness of Algorithm 2 in

simulation time 250,000 seconds. Due to no widespreat‘jkatecting self-restraining IM worms. The measurement
window 5 used in this algorithm is also set to be 300

SThis initial infection time is carefully chosen so that there a ~ S€conds. We let the Weightipg factprbe 0.25 in Eq.
significant number of online IM users at that point. (14) and parametet be 10~Y in Eq. (15). Ther; pa-

200

=)
S

vulnerability prob 0.25 —— acceptance ratio 0.25 ——

vulnerability prob 0.5 - acceptance ratio 0.5 acceptance ratio 0.25 ——

45 acceptance ratio 0.50 - |
40 Y acceptance ratio 0.75 - _|

vulnerability prob 0.75 acceptance ratio 0.75
i 0

@
S

3
H
E 150 vulnerability prob 1. g acceptance ratio 1.0 £ acceptance ratio 1.00 &
O S R g @
E 100 g z ¥
3 s | A e 2
g LI B P e e el § 25
= 5 7 E 2
I 5 | e I 45
50 — I — °
I e P s £ 20 i 3
E | E ; ° 10
= = i £
o am— o g8 O al
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 8 0 0.25 0.5 0.75 1
Simulation time (sec) Simulation time (sec) Vulnerable probability
(1) Acceptance ratio = 0.5 (2) Vulnerable prob = 0.5

Figure 3: Detection delay in measure-
Figure 2: Growth curves of internal infections when the IMrmaises ment windows for fast scanning IM

the fast scanning spreading strategy worms

0.2

Internal infections
detection ratio

o

a
N
S

1
ceptance ratio 0.25 —+— 078
acceptance ratio 0.50 -

Inerabl
acceptance ratio 0.75 % v ngfb ® 05
acceptance ratio 1.00 —&
0.25)35

OO ™
[SERT S)

coooooo00

o
1=
o

Fraction of internal infections
at detection time
o
o

vulnerable
prob 05 075
O‘QCCeplance ratio

o

Oa‘r’cceptance.ralio
0.25 0.5 0.75 1 1.25

Vulnerable probability

Figure 4: Fraction of internal infec- Figure 5: Number of internal in- Figure 6: Detection ratio of self-
tions at detection time for fast scan-fections with the self-restraining restraining IM worms with Algo-
ning IM worms spreading strategy rithm 1

rameter in Eq. (14) is updated every week. Similar to thethat IM worms can be effectively mitigated by disabling
experiments in Section 5.1, we let bethndd be 3. the top few most connected IM accounts [17]. In [22],
The experimental results show that Algorithm 2 is ableWilliamson et al. demonstrated the effectiveness of a
to detect the propagation of the self-restraining IM wormvirus throttling algorithm against IM worm propagation.
in all the 160 sample runs. Fig. 7 depicts the number ofXie et al. proposed a framework called HoneylM that
measurement windows that are needed to detect the IMses decoy IM accounts in normal users’ buddy lists to
worm under different combinations of acceptance ratiodetect IM propagation in enterprise-like networks [24].
and vulnerable probabilities. The average detection de€ompared with previous solutions, our work focuses on
lay is 16 measurement windows, which is equivalent toa centralized approach that leverages statistical metrics
one hour and 20 minutes. Fig. 8 gives the fraction of in-collected from IM systems. As our solution does not re-
ternal infections among all internal vulnerable machinesquire involvement of IM clients, it can be more easily
when the IM worm is detected. Obviously, only a small deployed than those distributed detection schemes such
fraction of internal IM contacts has been infected beforeas HoneyIM.
the IM worm is detected, suggesting that Algorithm 2 is Applying change-point detection techniques to detect
effective in detecting self-restraining IM worms at their network attacks is not a new idea. Wang et al. applied the

early stages. non-parametric CUSUM algorithm to detect TCP SYN
flooding attacks [21]. The CUSUM algorithm has also
6 Related Work been used to detect Internet worms in [2, 3]. IM worms

differ from traditional Internet worms such as Code Red
IM malware has posed significant security threats toll and Slammer because they propagate in social IM net-
both residential and enterprise IM users. Mannan etvorks. In our work, we demonstrate that the change-
al. presented a survey on secure public instant mespoint detection techniques are effective in catching IM
saging in [9]. They later proposed to use limited throt- worms with different spreading strategies.
tling and CAPTCHA-based challenge-response schemes
to defend against IM worms [10]; they also developed a7 Conclusions And Future Work
cryptographic protocol to further enhance authentication
and secure communications in public IM systems [11].In this paper, we have proposed to apply change-point
Smith analyzed a French language IM system and afdetection techniques to detect both fast scanning and
ter observing the IM network is scale-free, he suggestedelf-restraining IM worms. We monitor abrupt increase

30
acceptance ratio 0.25 —+—

acceptance ratio 0.50 -~
acceptance ratio 0.75 ¥
acceptance ratio 1.00 &

25 %

20

3

¥

Detection delay (measurement windows)
=

0.25 0.5 0.75 1
Vulnerable probability

0.18

acceptance ratio 0.25 —+—
» 0.16 acceptance ratio 0.50 -
s acceptance ratio 0.75 -
5, 0.14 acceptance ratio 1.00 &
(o3
EE 012
T5 o1 e 3 *
[oks] g
£8 o008 [
=
- POV R T
St 006 :
2 0.04 [-
3 : —_ ey
w 0.02

0.25 0.5 0.75 1
Vulnerable probability

Figure 7: Detection delay of self-restraining IM Figure 8: Fraction of internal infections at de-

worms with Algorithm 2

tection time with Algorithm 2

of file transfer requests or URL-embedded chat messagg$1] M. Mannan and P.C.v. Oorschot. A protocol for secure
to detect fast scanning IM worms; we leverage social
intimacy of IM users to detect stealthy IM worms that

spread slowly. Experimental results show that the pro-
posed solutions are effective in detecting both familieg[12]
of IM worms. We are currently developing algorithms
for detecting another type of stealthy IM worms, which

spread themselves between two online users only after

they observe some ongoing conversations between therfl3]

In the future, we plan to evaluate the detection schemes

proposed in this paper against more realistic IM datasetg 4]

References

(1]

(2]

(3]

(4]

(5]
(6]
(7]
(8]

El

[10]

B. E. Brodsky and B. S. DarkhovskyNonparametric
Methods in Change Point Problem&luwer Academic
Publishers, 1993.

T. Bu, A. Chen, S. V. Wiel, and T. Woo. Design and

evaluation of a fast and robust worm detection algorithm.[

In Proceedings of IEEE Infocom’Q&006.

J. Chan, C. Leckie, and T. Peng. Hitlist worm detec-
tion using source ip address history. Rroceedings
of Australian Telecommunication Networks and Applica-
tions Conference2006.

(15]

(16]

17]

(18]

IM security exploits explode in 2007ht t p: / / esj . [19]
conf news/ article.aspx?Editorial sl D=
http://ww. i nternetnews. con stats/

article. php/ 3521456. [21]
http://software.tekrati.comresearch/

9512/ .

http://ww. viruslist.conlen/viruses/ [22]
encycl opedi a?vi rusi d=78581.

M. Landesman. Kelvir worm overview.
http://antivirus. about.com od/ 23]

vi rusdescri ptions/a/ kel virfam htm

M. Mannan and P.C.v. Oorschot. Secure public instant
messaging: A survey. IRroceedings of Privacy, Security
and Trust (PST'04)2004.

M. Mannan and P.C.v. Oorschot. On instanct messaging
worms, analysis, and countermeasurefvceedings of
WORM'05 November 2005.

10

public instant messaging. financial cryptography and data
security. InProceedings of Financial Cryptography and
Data Security 2006 (FC'062006.

C. D. Morse and H. Wang. The structure of an in-
stance messenger network and its vulnerability to mali-
cious codes. IProceedings of ACM SIGCOMM 2005
Poster SessigrAugust 2005.

AIM/Oscar Protocol Specification. http:// www.
oi | can. org/ oscar/ .

E. S. Page. Continuous inspection scheniBiemetrika
41, 1954,

C. R. Palmer and J. G. Steffan.
topologies that obey power laws.
GLOBECOM'0Q 2000.

http://ww.theregister. co. uk/ 2005/ 04/
15/ i mwor mr uns _anok/ .

R. D. Smith. Instant messaging as a scale-
free network, 2002. http://arxiv.org/abs/
cond- mat / 0206378v2.

S. Staniford, V. Paxson, and N. Weaver. How to Own the
internet in your spare time. IRroceedings of the 11th
USENIX Security Symposium (Security }0)02.

http://ww. viruslist.conlen/viruses/
encycl opedi a?vi rusi d=75305.

Generating network
IRroceedings of

http://ww. viruslist.comen/
vi rusesdescri bed?chapt er =153312410.

H. Wang, D. Zhang, and K. G. Shin. Detecting SYN
flodding attacks. IfProceedings of IEEE INFOCOM’'Q2
June 2002.

M. Williamson, A. Parry, and A. Byde. Virus throt-
tling for instant messaging. Mirus Bulletin Conference
September 2004.

Z. Xiao, L. Guo, and J. Tracey. Understanding in-
stant messaging traffic characteristics.Phoceedings of
ICDCS’07, 2007.

] M. Xie, Z. Wu, and H. Wang. HoneyIM: Fast detec-

tion and suppression of instant messaging malware in
enterprise-like networks. IRroceedings of ACSAC'Q7
2007.

