
A Flexible Generator Architecture for Improving Software Dependability

Christof FETZER, Zhen XIAO

AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 07932
fchristof, xiaog@research.att.com

Abstract

Improving the dependability of computer systems is in-
creasingly important as more and more of our lives depend
on the availability of such systems. Wrapping dynamic link
libraries is an effective approach for improving the reli-
ability and security of computer software without source
code access. In this paper we describe a flexible frame-
work to generate a rich set of software wrappers for shared
libraries. We describe the architecture of the wrapper gen-
erator, the problems of how to generate wrappers efficiently,
and our solutions to these problems. Based on a set of prop-
erties declared for a function, the generator can create a va-
riety of wrappers to suit the diverse requirements of appli-
cation programs. Performance measurements indicate that
the overhead of the generated wrappers is small.

Keywords: wrappers, wrapper generator, software fault-
tolerance, middleware, reliability, security.

1. Introduction

With the growing importance of computer applications
in our society, the reliability of computer programs has re-
ceived a lot of attention. Previously replication mechanisms
targeted towards increasing the reliability of distributed ser-
vices have been intensively investigated in the literature.
For example, in the state machine approach [11] a service
is replicated among a group of servers that process each re-
quest in lock step. The service remains available even if
some servers in the group crash. This approach works well
if the failures of different servers are independent. For ex-
ample, power failures are independent if different servers
have an independent power supply/backup. In addition, cer-
tain hardware failures can be made independent by running
a service on different types of machines.

On the other hand, software failures are usually not in-
dependent and cannot be handled through replication [7]: if

there is a bug in the software, the bug is likely to be repli-
cated to all servers in the group. In recent years the com-
plexity of software programs has increased dramatically.
Therefore, an effective approach to handle software failures
is critical to improving the reliability of distributed service.

One way to enhance the correctness of computer soft-
ware is through formal methods. In this approach, the prop-
erties of a computer program are described by a set of spec-
ifications. An example of a specification for a distributed
service can be that all messages received must be deliv-
ered in FIFO order. The correctness of an implementation
is checked against its specification through formal analysis.
This can give strong guarantees regarding the behaviors of
the program in various execution contexts.

However, formal methods cannot address all problems
related to software robustness. The specifications of a pro-
gram usually abstract away many implementation details
that need to be considered in practice. In fact, such a pro-
gram often needs to be written in some special, safe lan-
guage amenable to formal analysis and manipulation. Un-
fortunately, the majority of software (including most oper-
ating systems) today are written in unsafe languages like C
or C++ that cannot be verified using formal methods. More-
over, the source code of commercial software is usually not
available.

In this paper, we describe a novel generator approach
to increasing software reliability through fault containment
wrappers. The wrappers are generated automatically by a
wrapper generator for dynamic link libraries in C . The gen-
erated wrappers can be used to detect various software fail-
ures without access to the source code. They can be used to
collect statistics regarding failure types and causes in pop-
ular applications. They can also be used to provide appro-
priate debugging and failure diagnosis support. The wrap-
per generator is developed as part of the HEALERS project
which is targeted towards increasing the robustness of ap-
plications.

The rest of the paper is organized as follows. Section 2
introduces the architecture of the wrapper generator. Sec-

1
Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



tion 3 describes a retry wrapper that can retry failed func-
tion calls due to transient problems in the system. In Sec-
tion 4 we discuss implementation issues one has to address
when creating a wrapper. Section 5 provides careful mea-
surements of the overhead of the generated wrappers. Re-
lated work is described in Section 6. Section 7 concludes
this paper.

2. Architecture

We have designed and implemented a system called
HEALERS (HEALers Enhanced Robustness and Security).
The goal of our system is to increase the robustness of ap-
plications even if the source code is not available. This is
achieved through a set of dynamically loadable C library
wrappers that perform careful error checking for every func-
tion call to the C library. On most UNIX systems a user
interested in using our wrapper can preload it by defining
the LD PRELOAD environment variable. When a program
executes a function, it invokes the version of the function in
our wrapper which can then perform error checking, usage
metering, or various other tasks.

A very simple wrapper is illustrated in Figure 1 for the
exit function. In C the exit function causes a program to
terminate normally. However, sometimes we find that a pro-
gram terminates unexpectedly and would desire some de-
bugging information regarding the execution context when
the program terminates. Therefore, we wrapped the exit
function so that it invokes the abort function instead. This
generates a core dump file when the program terminates
which contains useful debugging information such as the
stack trace. A nice feature of this approach is that it requires
no source code modification or recompilation.

2.1. Wrapper Generation Steps

The generation of wrappers is performed in two steps
(see Figure 2): the first step is performed by the fault-
injection generator and the second step by the wrapper gen-
erator. The fault-injection generator derives the prototypes
of the functions in a library by parsing header files and man-
ual pages in the library. To generate wrappers, the wrapper
generator might need to know additional properties of the
wrapped functions. For example, a robustness wrapper in-
creases the robustness of libraries by checking that the argu-
ments of a function call are “robust”, i.e., do not result in a
crash of the function. To derive some of the needed proper-
ties, our system performs automated fault-injection experi-
ments. For example, we determine robust argument types
for a function using fault-injection experiments. We call the
prototypes of the functions in a library combined with other
properties like the robust argument types function declara-
tions. More details on the first step can be found in a com-

Wrapper:

void exit(int status) {
abort() ;

}

Start wrapper

> setenv LD_PRELOAD ‘pwd‘/wrapper.so

Test it:

> date

Wed Oct 18 13:06:41 EDT 2000

Abort

Figure 1. An example wrapper that overwrites
exit by abort.

panion paper [4]. The function declarations are then used
by the wrapper generator to generate a variety of wrappers
(e.g., robustness or security wrappers) in the second step.
In the remainder of this section, we describe the function
declarations and the architecture of the wrapper generator
in more details.

2.2. Structure of Wrapped Functions

In the previous example (Figure 1), the wrapper substi-
tutes a C library function with a different function. More
commonly, a wrapped function performs the same func-
tionalities as the original function but provides more er-
ror checking. Figure 3 illustrates the typical structure of
a wrapped function fw that consists of some prefix code,
a call to the original function fo, and some postfix code.
The prefix code, for example, may check that the arguments
passed to the function are valid. If not, it can return an error
code without executing the original function. For example,
the fopen(path, mode) function causes a segmenta-
tion fault if the mode flag is a null pointer. To avoid a
program crash, the wrapped function returns an error code
EINVAL (invalid argument) when it detects that the second
argument is not a valid C string. Similarly, the postfix code
can check if the function execution results in an error. For
example, the malloc function returns a NULL point if the
memory allocation fails. In this case, the wrapped function
can write an error message in a log file for failure diagno-
sis or may even try to overcome the error. We will describe
how the wrapper can overcome failures due to temporary
resource unavailability in Section 3.

The generator emits slightly better code if the postfix
code is empty. In this case the wrapper jumps to the origi-
nal function instead of calling the original function. In this
way, the wrapper does not need to copy the arguments of

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



Shared
Library

Wrapper
Library

Declaration
FunctionFault−

Injector

generates

generates uses

uses

generates

Generator
Wrapper

Wrapper

reads

probes

Fault−Injector
Generator

Figure 2. Architecture of the wrapper generation process.

Wrapper fw

int f(int arg1, int arg2) {

}

Original Function f o

int f(int arg1, int arg2) {

}

...
ret = (*addr_f)(arg1,arg2);

...

...

postfix code

prefix code

Figure 3. A wrapper fw of function f consist of
some prefix code, a call to the original func-
tion f , and some postfix code. The address
of the original function is stored in variable
addr f.

the function and can instead use the arguments provided by
the call to the original function.

2.3. Function Declarations

One challenge in the design of a wrapper generator is
how to efficiently generate a large number of wrapped func-
tions. Clearly it is undesirable to write every function from
scratch. Our approach is to generate function declarations
by parsing header files and manual pages and the use of
automated fault-injection experiments [4]. A function dec-
laration includes (in addition to other information):

� Function name.

� Type of arguments and their valid domains.

� Return type of the function.

� Return value if an error occurs. For example, many C
library functions like open return �1 on an error and
an non-negative number when no error has occurred.

� Pre-,post-, and argument conditions. Some functions
do not define an error return value even though they
can fail. For example, abs (absolute value of an inte-
ger) can fail due to an arithmetic overflow: abs of the
smallest negative number results in the smallest neg-
ative number for machines that use 2s complement to
represent integers. To detect when such functions fail,
we permit the definition of pre- and post-conditions in
addition to constraints for arguments.

� Set of possible error codes (i.e., possible values for
errno). This set might be empty.

� Attributes of the function (described later).

Figure 4 shows an example of a function declaration
for abs. As previously mentioned, this function fails if
its argument is the smallest negative integer (denoted by
MIN INT). Hence the declaration specifies that the argu-
ment must not be MIN INT. The generator can emit code
to check the argument. If the argument is invalid, the
wrapper returns an error return value (specified by field
error value) and sets errno to EINVAL (invalid argu-
ment). This directs the wrapper generator to produce the
argument checking code as shown in Figure 5. The code
includes a recursion detection flag in wrapper to avoid
potential circular dependencies that may occur during the
function resolution process (see Section 4 for details). The
generator can additionally emit code that logs this failure
before it returns.

Function attributes reflect certain properties of the func-
tion that can be useful to the wrapper generator. The fol-
lowing is a partial list of function attributes.

� const: This is a mathematical function. Given the same
input, it always produces the same output. It does not
rely on any system state. Examples: exp, floor,
sin.

� query: The result of the function depends on the state
of the system. However, it does not modify any state.
Examples: feof, getcwd, getpid.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



<function>
<name>abs</name>
<argument>

int <cond>!=MIN INT</cond>
</argument>
<return type>int</return type>
<error value>MAX INT</error value>
<attribute>const</attribute>

</function>

Figure 4. Declaration of function abs.

int abs(int arg1) f
int ret = MAX INT;
if (in wrapper) f

return (*addr abs)(arg1) ;
g
in wrapper = true ;
if (!(arg1 != MIN INT)) f

errno = EINVAL ;
g else f

ret = (*addr abs)(arg1) ;
g
in wrapper = false ;
return ret ;

g

Figure 5. Wrapped function for abs.

� update: This function changes system state and its re-
sult may depend on some system state. Examples:
malloc, fopen, mkdir.

� signal: This function causes a signal to be thrown. Ex-
amples: alarm, abort.

� fexception: This function can raise a floating-point ex-
ception. Examples: div.

� atomic: This function does not modify any system
state if it returns an error code. Examples: malloc,
fopen.

� safe: This function already checks that all arguments
passed to it are valid. There is no need for additional
argument checking in the wrapped function. Exam-
ples: log, alarm, strerror.

� unsafe: This function does not check all its arguments.
The function might hang or abort if called with an
invalid argument. Additional argument checking is
needed in the wrapped function. Examples: strlen,
atof.

� noreturn: This function does not return. Examples:
abort, exit.

Function attributes can be useful in generating the wrap-
per. For example, if a function is const, then its correct-
ness does not rely on any system state. In contrast, if a
function is query or update, then additional state keeping
may be needed. One example is the free function which
frees a block of previously allocated memory. The wrapped
free function needs to check that the memory to be freed
was previously allocated by malloc, calloc, or real-
loc. Otherwise, it should return an error code instead of
executing the function. This requires the wrapper to keep
track of the memory allocation status in the system. In [3]
we described how our wrapper can be used to detect buffer
overflows in existing systems. The safe versus unsafe prop-
erties describe the robustness of a function with respect to
invalid inputs. These properties are used in the generation
of robustness wrappers as described in [4].

The atomic attribute is an interesting one. A function is
atomic if it does not modify any system state upon failures.
Hence one can safely retry this function if the failure is due
to a temporary shortage in resources. We will explore this
and a weaker attribute, failure-idempotent, in detail in Sec-
tion 3.

We automatically generated function declarations for
more than 800 functions in the C library using the tech-
nique described in [4]. The advantage of this approach is
that a function declaration allows us to focus on the unique
properties of the function instead of writing a lot of simi-
larly structured code.

2.4. Wrapper Generation

After the function declarations have been generated, our
system creates a set of wrappers through the wrapper gen-
erator. The challenge here is that applications may have
different levels of reliability and security requirements and
hence, need different wrapper support. For example, an ap-
plication with root privilege usually needs a higher level
of security assurance than a user application. Similarly,
an application running inside a virtual private network can
have very different security requirements from an applica-
tion running outside the firewall. Moreover, even the same
application may need different types of wrappers through-
out its life-cycle: during the product development phase, a
wrapper may abort the execution of an application upon de-
tection of a robustness violation (e.g., writing to an invalid
memory address). In contrast, after the application has been
deployed, a robustness wrapper should try to keep the appli-
cation running and log invalid arguments for a later failure
diagnosis.

This raises the question as how to generate a rich set of
wrappers to suit the diverse needs of applications. Writing

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



Micro−Generator 1

Micro−Generator 2

Micro−Generator 3

Micro−Generator N

Code by MG 2

Code by MG 3

Code by MG N

... ...

Prefix of a function f

Code by MG 1

Figure 6. The prefix code consists of code
fragments generated by a set of micro-
generators. The order of the postfix code is
reversed, i.e., code generated by MG N is first
and the code of MG 1 is last.

each wrapper type manually is time consuming and error
prone. It is difficult to maintain the correctness and consis-
tency of the wrappers. For example, a new library version
might contain new functions and the robustness of old func-
tions might have changed. Each manually written wrapper
would have to be checked and potentially updated for each
new library version.

We address this problem through a modular approach
where the functionality of a wrapper generator is decom-
posed into a number of “features”, each supported by a
micro-generator. Each micro-generator generates a frag-
ment of the prefix and postfix code of a function. The
micro-generators can be switched on or off individually at
generation time to implement the required features for a par-
ticular application. Each micro-generator has a fixed prior-
ity. The priority determines the order of the generated code
in a wrapped function as illustrated in Figure 6.

Our modular generator architecture proves to be an ef-
ficient way to implement a large number of wrapper types:
since each micro-generator only implements a single fea-
ture, it is easy to optimize and reuse. The wrapper gener-
ator is highly flexible and one can easily add new micro-
generators to support new features, which can then be com-
bined with existing micro-generators to implement a new
wrapper type.

2.5. Micro-Generators

To add a new micro-generator, one can overload a small
number of methods of a generic micro-generator (which is
provided in the form of a base class). There is one method
for each of the following code fragments:

� Data Allocation Code Fragment: defines the global
variables needed by the wrapper.

Data allocation

long long num_calls[..];

Initialization

num_calls[..] = 0;

/* emit XML */

Prefix of function f

Postfix of function f

/* empty */

Collection

micro−generator
call_counter

num_calls[INDEX]++;

Figure 7. Structure of the call counter micro-
generator.

� Initialization Code Fragment: initializes the variables
defined by the data allocation fragment.

� Prefix Code Fragment: defined for each wrapped func-
tion fw and is located in the prefix of fw.

� Postfix Code Fragment: defined for each wrapped
function fw and is located in the postfix of fw.

� Collection Code Fragment: uploads the data collected
by the wrapper.

For example, Figure 7 illustrates the structure of a
“call counter” micro-generator that counts how many times
a wrapped function is called. The prefix code in the gen-
erated wrapper increments a counter associated with each
function. The postfix code is empty. The micro-generator
also generates code for allocating the required data struc-
tures, initializing them, and collecting the results. In this
example, it allocates an array of counters that contains an
entry for each wrapped function. This array is initialized
to zero when the wrapper is loaded. Just before the ap-
plication terminates, the collection code is called to send
the gathered information to a central server. Since different
types of wrappers can be used in a distributed environment,
the gathered information sent to the server is in form of a
“self-describing” XML document. The server can extract
from the document which functions were wrapped and what
kind of information was collected. Such information is then
stored for later processing.

Figure 8 depicts the wrapper function wctrans. This
code is generated by combining three micro-generators1:
prototype, call counter, and caller. The prototype and
caller are standard micro-generators that generate the pro-
totype of the wrapper function and the call to the original
function, respectively. Note that all code generation is done
by micro-generators to increase the flexibility of the system.
For example, we could disable the micro-generator caller

1Note that since this wrapper neither calls any functions in the prefix
nor in the postfix code, we do not need to enable a recursion detection
micro-generator (see Section 4).

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



/* Prefix code by micro-gen prototype */
wctrans t wctrans(const char* a1) f

wctrans t ret;
/* Prefix code by micro-gen call counter */

num calls[1206]++;
/* Postfix code by micro-gen caller */

ret = (*addr wctrans)(a1);
/* Postfix code by micro-gen prototype */

return ret;
g

Figure 8. Wrapper for function wctrans gen-
erated by three micro-generators: prototype,
call counter, and caller.

and enable one that generates jumps to original function in-
stead – which saves copying the arguments of the function.

3. Retry Wrappers

Some of the Heisenbugs, i.e., non-deterministic bugs, are
caused by resource depletion, such as depletion of memory
or file descriptors. Resource depletion failures can result
in the erroneous termination of programs and can be very
hard to reproduce and debug. One can recover from such
failures by retrying failed function calls given that there is
some fluctuation in the resource usage. To reduce the work
for program developers and to increase the robustness of
existing programs, we created a micro-generator that gener-
ates code to retry failed function calls.

A retry wrapper first needs to decide which functions are
retryable. As described earlier, an atomic function does not
change the state of the system in case it returns an error.
Hence, it can be safely retried if the failure is due to tran-
sient problems in the execution environment. Determining
if a function is atomic can be difficult. One would have
to look into the source code of the function to determine
its exact behavior in case an error occurs. However, even
non-atomic functions might be retryable. For example, con-
sider function readlink that reads the value of a symbol
link and stores it in a given argument buf. Typically, an
implementation of this function will be atomic: it will not
change buf if it returns an error code. However, the behav-
ior of functions in case an error occurs may not be well de-
fined and could differ between implementations. Neverthe-
less, even if readlinkwould changebuf, one could retry
the function since the retry will overwrite previous changes
made to buf. Consequently, we introduce a weaker prop-
erty, failure-idempotent, to simplify the determination if a
function is retryable.

3.1 Failure-Idempotent Functions

Most functions have to be modeled as mathematical
relations since they can be non-deterministic. For example,
resource depletions failures can result in non-deterministic
behavior of functions. Let f be a (programming language)
function that takes an argument of type A and transforms
the state S of a program and returns a value of type T . We
can model f as a relation, i.e.,

f � S �A� S � T .
We assume that if f fails due to a resource depletion failure,
it returns a value in some set E � T ^ E 6= ;. For f
to be failure-idempotent it has to satisfy the following
conditions:

1. When one retries the execution of a failure-idempotent
function after a resource depletion failure, there ex-
ists the possibility that this retry succeeds: 8s1; s2 2
S;8a 2 A;8e 2 E : (s1; a; s2; e) 2 f ) 9s3 2
S; 9t 2 T �E : (s2; a; s3; t) 2 f:

2. A retry of a failure-idempotent function does not
change the semantics of the function – the result of
the retry must be equivalent to some single execution
of f : 8s1; s2; s3 2 S;8a 2 A;8e 2 E;8t 2 T :
(s1; a; s2; e) 2 f ^ (s2; a; s3; t) 2 f ) (s1; a; s3; t) 2
f .

The readlink function in the previous example is
failure-idempotent. First, there exists the possibility that
a retry succeeds in case it previously failed due to insuf-
ficient kernel memory (errno is set to ENOMEM). Sec-
ond, a retry will overwrite any modification of argument
buf that might have been done during previous attempts
of executing readlink. A function declaration can spec-
ify if the function is failure-idempotent and the set of er-
ror codes that indicate a resource depletion failure. Only
if the function declaration says that it is failure-idempotent
or atomic will the micro-generator be permitted to generate
retry code. The declaration of function readlink and the
generated retry code are depicted in Figure 9 and 10, respec-
tively. Note that an idempotent function is not necessarily a
failure-idempotent function. However, all atomic functions
are failure-idempotent (assuming they return an error code
if they fail).

3.2 Resource Manager

Sometimes resource contention due to competing pro-
cesses may lead to situations that cannot be easily resolved
by retrying. Consider a system that consists of multiple ap-
plication processes, each of which requires a certain num-
ber of file descriptors. It may happen that the total num-
ber of file descriptors required by all processes exceeds the

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



(1) <function>
(2) <name>readlink</name>
(3) ...
(4) <error return>-1</error return>
(5) <attribute>
(6) failure-idempotent
(7) <errno>ENOMEM</errno>
(8) </attribute>
(9) ...
(10) </function>

Figure 9. Declaration of function readlink.

int readlink(const char *path, char *buf, size t bufsiz) f
......
f

bool contRetry = true; int retry = 0;
for (retry = 0 ; retry < MAXRETRY
&& contRetry ; ++ retry) f
contRetry = false;
......
ret = readlink(path, buf, bufsiz);
......
if ((ret == -1) && errno == ENOMEM) f

contRetry = true;
need memory(); usleep(RETRY DELAY);

g
g

g
......

g

Figure 10. Retry code generated for read-
link.

maximum number of file descriptors available in the sys-
tem. In this case, if each process just keeps retrying, the
system will not make progress since all resources are oc-
cupied.2 Ideally, in this case certain low-priority processes
should either be terminated or voluntarily free up resources
for high-priority processes.

We address this problem by using a resource manager in
the system. When a process starts, its wrapper reports the
id and the priority of the process to the resource manager.
(For simplicity, we assume there exists some external mech-
anism to assign a priority to a process based on its impor-

2Whether such a situation occurs in practice depends on the relative
timing of different processes in acquiring and releasing resources.

process

process
process

1

process

manager
resource

not enough file descriptors

need m
em

ory

re
le

as
e 

m
em

or
y

3

4

2

release fil
e descriptors

Figure 11. The resource manager can decide
what a process should do in case of resource
contention.

tance.) When a function call fails due to resource depletion
(e.g., fopen returns a NULL pointer and sets errno to
ENFILE), the wrapper notifies the resource manager of the
problem. The resource manager then attempts to free some
resources by sending low priority processes a signal that
they should either free up file descriptors or that they have
to terminate. This is illustrated in Figure 11. Voluntary re-
lease of resources requires the applications to be modified.
They need to implement a signal handler that catches the
signals sent by the resource manager and release resources
in response to such signals. Applications that do not pro-
vide such a signal handler are terminated as soon as they
receive the first signal from the resource manager.

We evaluated the effectiveness of our retry wrapper in a
system with 6 processes. Each process repeatedly tries to
acquire 1000 file descriptors, and then releases all of them.
The maximum number of file descriptors for all processes
in the system is 4096. Consequently, a process occasionally
may fail to obtain a file descriptor due to resource depletion.
In this case, the resource manager asks one of the processes
to give up all its file descriptors. We measured how many
times it takes for the retry wrapper to open a file success-
fully. Our results indicate that 99:9% of the time a process
was able to open the file in the first try. However, some-
times a process may need to retry several times before it
can obtain a file descriptor. For example, 0:04% of the time
it took the wrapper 21 tries to open a file (20 microsecond
sleep between retries). The maximum number of retries we
observed in this experiment was 61.

4. Implementation Issues

As described earlier, we increase the robustness of appli-
cations by running a wrapper that sits between an applica-
tion and its shared libraries. For a wrapped function f to
be able to call the original function, it needs to find out the

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



1

2

int resolve_f(int arg1, int arg2) {

Resolver

}

addr_f = dlsym(...);
return (*addr_f)(arg1,arg2);

...

Wrapper fw

int f(int arg1, int arg2) {

} }

ret = (*addr_f)(arg1,arg2);

int f(int arg1, int arg2) {

Original Function f o

...

...

...

Figure 12. Initially, variable addr f points to a
generated function resolve f. Upon the first
call via addr f, function resolve f stores
the address of f in addr f and then calls fo.

address of the original function. (Note that if the wrapped
function just calls f , it would end up calling itself instead of
the original function.) This is achieved through a resolver
function as illustrated in Figure 12. Initially the variable
addr f contains the address of the resolver function. Dur-
ing the first time f is called, the resolver function finds the
address of f by resolving symbol f through an interface
function dlsym of the dynamic link loader. Then it stores
the address in variable addr f for later use. Hence the
overhead of the resolution is only incurred during the first
call to f .

We try to resolve all wrapped functions when a wrapper
is initialized or when the first wrapped function is called
– whichever happens first. If a wrapper cannot resolve all
function names successfully, it exits before the application
starts executing its main function. This provides failure
atomicity.

In some situations, the dlsym function may is-
sue calls to wrapped functions that have not been
resolved yet. For example, while resolving sym-
bols with the GNU C library (version 2.2), we ex-
perienced calls to the following not yet resolved
functions: calloc, pthread cond broadcast,
pthread mutex unlock, pthread mutex lock,
and pthread cond broadcast. This can introduce
circular dependencies as illustrated in Figure 13 for the
calloc function. Suppose the wrapped calloc function
calls dlsym to resolve the original function. In Unix
(unlike in Windows), this results in another call to the
wrapped calloc instead of to the original function. If the
wrapped calloc again calls dlsym to resolve the name,
it leads to an infinite recursion that ultimately ends up with
a stack overflow.

calls

resolved bydlsym

resolve_calloc

calloc

calloc

w

Figure 13. Resolving calloc can introduce
circular dependencies for implementations of
dlsym that need to call calloc.

Resolver

if(in_resolve_calloc)

return 0;

in_resolve_calloc = true;

addr_f = dlsym(...);

return (*addr_f)(arg1);

}

void* resolve_calloc(size_t arg1) {
resolve_calloc

dlsym

calloc 

resolve_calloc

return 0

calloc w

calloc w

Figure 14. Circular dependencies caused by
dlsym are detected and infinite recursion
avoided by resolving a symbol at most once
per thread.

We address this problem by associating a recursion de-
tection flag with each wrapped function. Initially, all these
flags are false. When a resolver function is called, it checks
whether the flag is set. If not, it sets the flag and calls dl-
sym to resolve the name. Otherwise, it returns a function
specific error code instead of calling dlsym again. (The
flag is never cleared since each function needs to be re-
solved at most once per thread.) Figure 14 illustrates this
process for the calloc function in the previous exam-
ple. The wrapper maintains a flag in resolve calloc
to record whether the resolver function resolve calloc
has been called previously. When the dlsym function calls
the wrapped calloc function to allocate memory, the re-
solver function detects the recursion and returns an NULL
pointer. The GNU implementation of dlsym (GNU C li-
brary version 2.2) uses in this case a statically allocated
buffer for the resolution instead.

Another form of circular dependencies can occur when

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



calls

resolved by

f

g o

w

...

f

Figure 15. Circular dependencies can occur
if the prefix or the postfix code of fw calls a
function go which in turn calls f (i.e., fw).

the prefix or postfix code of a wrapped function f calls an-
other function g which in turn calls f . For example, the
postfix code of write might call printf to print out
tracing information and printf might call write to out-
put this information on the console. Typically, we restrict
function calls made inside a wrapped function to original
functions only. Hence in this case the wrapped function f

will invoke the original function g. However, the imple-
mentation of function g may need to call f , in which case
the wrapped function f is invoked. This is illustrated in
Figure 15. Such dependencies between functions are im-
plementation specific and can vary across different library
vendors or even between different versions of a library from
the same vendor.

To avoid such recursions, we would like to have func-
tion g call the original function f instead of the wrapped
version. This is achieved by maintaining a boolean flag
in wrapper for each thread. This flag indicates whether
the thread is currently executing a wrapped function. Ini-
tially, all these flags are false. When a wrapped function is
invoked, it checks whether the flag is set. If so, it invokes
the original function directly without executing any prefix
or postfix code. This effectively ensures that any function
call made inside a wrapped function (either directly or in-
directly) invokes its original version instead of the wrapped
version.

The flag in wrapper is cleared before a wrapped func-
tion returns. Note that when a wrapper is interrupted by a
signal, the flag is cleared too. This can be done efficiently
by intercepting calls to signal handlers. Figure 16 shows
the pseudo code of a wrapped function f . The code for the
recursion detection is generated by a micro-generator. This
allows us to disable the recursion detection if no function is
called in the prefix and the postfix code of a particular wrap-
per type, such as the profiling wrapper described in Section
2.5.

fw

fw

Wrapper fw

int f(int arg1, int arg2) {

}

ret = (*addr_f)(arg1,arg2);

if (in_wrapper)

in_wrapper = true;
return (*addr_f)(arg1,arg2);

in_wrapper = false;

return ret;

in_wrapper = false

in_wrapper = true

g o

...

f

fo

prefix code

postfix code

Figure 16. Circular dependencies caused by
prefix or postfix code are avoided by skipping
the execution of these code fragments in case
of a recursive call.

5. Performance

In this section, we measure the performance overhead of
the generated wrappers. The measurements were conducted
on a 864MHz Intel Pentium III system with 384MBytes of
memory running a Linux 2.4.4 kernel and the GNU C li-
brary version 2.2. Each data point in the measurements is
the 10% trimmed mean of 100 executions: we repeated each
experiment 100 times, filtered out the 10 smallest and 10
largest values, and then computed the average. This ensures
better reproducibility of the results than the more commonly
used “mean”.

5.1. Loading Overhead

Consider that we want to run a program with a wrapper.
Before the program can start executing, the wrapper needs
to be loaded into memory and the functions it defines are
added to the set of symbols maintained by the dynamic link
loader. Hence, preloading a wrapper incurs certain over-
head. We measure how the loading overhead changes with
respect to the size of the wrapper. To do so, we generated
wrappers of different sizes. Each of them defines exactly
one function and uses padding of arbitrary bytes to achieve
the required size. We also generate a test program that con-
tains one undefined function. We measure the difference in
execution time of the test program with and without a wrap-
per. This difference is mostly due to the loading overhead of
the wrapper. Figure 17 indicates that the overhead increases
only slowly with the wrapper size. Recall that we take the
10% trimmed mean of 100 executions. Hence, the small
overhead is most likely because the wrapper is already in
memory or cache most of the time. Since multiple programs

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



8 16 32 64 128 256 512 1024
400

450

500

550

600

size of the wrapper (Kbyes)

tim
e 

to
 lo

ad
 th

e 
w

ra
pp

er
 (

µ 
se

c)

Figure 17. Overhead of loading a wrapper with
respect to its size. The x-axis is in log scale.

may use the same wrapper in practice, we think this is a re-
alistic measurement of the actual overhead. Note that even
if the wrapper is already in memory, it has to be mapped
into the address space of the starting process. Hence, the
loading overhead grows with the size of the wrapper and is
not constant.

5.2. Linking Overhead

After the wrapper and the program are loaded into mem-
ory, the dynamic link loader needs to link undefined sym-
bols used in the program with the functions defined in the
wrapper or the C library. The linking overhead depends on
two factors: the number of functions defined by the wrap-
per and the number of functions used by an application (i.e,
undefined symbols). In the second experiment, we gener-
ate wrappers that define between 100 and 1900 functions
(in increments of 100). For simplicity, these functions are
different from the existing functions defined in the GNU
C library, i.e., we do not overload any C library function.
We also generate test programs that use different subsets of
these functions. We measure the overhead in execution time
and show the results in Figure 18. As can be seen from the
figure, the more functions used in a test program, the higher
the overhead. This is because the dynamic link loader has
to resolve these functions during startup. The overhead also
grows with the number of functions defined by the wrap-
per. This is because such functions are added to the set
of symbols maintained by the dynamic link loader and the
overhead of resolving undefined symbols increases with the
total number of defined symbols.

0
500

1000
1500

2000

0

500

1000

1500

2000
0

1

2

3

4

#library functions used#wrapped functions

tim
e 

to
 lo

ad
 th

e 
w

ra
pp

er
 (

m
s)

Figure 18. Overhead of linking increases with
the number of functions defined by the wrap-
per and the number of functions used by a
program.

5.3. Resolution Time

After the wrapper and the program are loaded and linked,
the wrapper starts executing. During start-up the wrapper
needs to resolve each wrapped function fw using the dy-
namic link loader API function dlsym, i.e., it has to find
the original function fo (see Section 2.2).

To determine the overhead due to resolution of wrapped
functions, we generated wrappers that define between 100
and 2000 functions. We also generated a test program that
calls dlsym to resolve a randomly selected function name
defined in the wrapper. The results are shown in Figure 19.
The figure indicates that the resolution time increases with
the number of functions defined in the wrapper.

6. Related Work

Software wrappers were previously used in the Xept
project to handle exceptional conditions in the C library
[13]. Xept provides a language to write exception spec-
ifications for certain C functions as well as a convenient
framework to incorporate such specifications into applica-
tion code. For function calls that failed due to temporary re-
source shortage in the system, Xept can generate retry code
to mask the exceptions from application programs. Like
Xept, our system can generate retry wrappers to handle tran-
sient problems in the execution environment. Moreover, it
utilizes a resource manager to arbitrate resource contention
among competing processes based on their priorities.

An advantage of our system is that it provides a flexible

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.75

1

1.25

1.5

1.75

2

#functions wrapped

re
so

lu
tio

n 
tim

e 
(µ

 s
ec

)

Figure 19. The time needed to resolve a sym-
bol using dlsym increases with the number
of functions defined in the wrapper.

trade-off between reliability and efficiency. High-level re-
liability requirements in the system are decomposed into a
set of orthogonal properties that are implemented by micro-
generators. This allows a new wrapper type to be created
easily by composing a set of micro-generators to suit the
needs of a specific application. Such a modular architec-
ture was built on previous work in micro-kernel designs and
group communication systems. x-Kernel, for example, de-
fines a modular structure for implementing network soft-
ware [9].

The authors of [10] used fault containment wrappers to
improve the robustness of COTS micro-kernels. By veri-
fying certain predicates when a system call is performed,
the wrapper detects errors due to corrupted parameters and
may optionally perform some corrective actions to restore
the system into a consistent state. Horus [12] and Ensem-
ble [6] are two examples of modular group communication
systems where protocol layers can be stacked on top of each
other in a variety of ways.

Exception handling mechanisms in several languages
have been studied in [2]. Some of them focus on language
design. For example, both Mesa [8] and exceptional C [5]
provide explicit support for retry semantics. Languages like
Java [1] provide garbage collection support and eliminate a
large class of memory related errors. In contrast, our focus
is on providing transparent support for existing C programs
even if the source code is not available. We believe the two
approaches are complementary to each other and both rep-
resent important research directions to pursue.

7. Conclusion

Wrapping dynamic link libraries is an effective approach
for improving the reliability and security of critical applica-
tions without source code access. This paper describes a
flexible framework to generate a rich set of software wrap-
pers through the concept of micro-generators. Given a
declarative description of the functions in a library, our sys-
tem can customize the generated wrapper types to fit the
diverse requirements of application programs. The wrapper
generator also provides support to address certain imple-
mentation issues we encountered during the development
process, such as detecting circular dependencies among
wrapped functions to avoid unbounded recursions. Exten-
sive performance measurements demonstrate that the over-
head of generated wrappers is small.

Acknowledgments

We like to thank Bob Gruber and the anonymous review-
ers for comments on an early draft of the paper.

References

[1] Ken Arnold, James Gosling, and David Holmes. The
Java Programming Language. Addison-Wesley, June
2000.

[2] Peter A. Buhr and W. Y. Russell Mok. Advanced
exception handling mechanisms. IEEE Transactions
on Software Engineering, 26(9):820–836, September
2000.

[3] Christof Fetzer and Zhen Xiao. Detecting heap smash-
ing attacks through fault containment wrappers. In
Proceedings of the 20th IEEE Symposium on Reliable
Distributed Systems, October 2001.

[4] Christof Fetzer and Zhen Xiao. An automated ap-
proach to increasing the robustness of C libraries. In
Proceedings of the International Conference on De-
pendable Systems and Networks, June 2002.

[5] N. H. Gehani. Exceptional C or C with Exceptions.
Software Practice and Experience, 22(10):827–848,
October 1992.

[6] Mark Hayden. The Ensemble System. PhD thesis, Jan-
uary 1998.

[7] David E. Lowell, Subhachandra Chandra, and Pe-
ter M. Chen. Exploring failure transparency and the
limits of generic recovery. In Proceedings of the 2000
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Oct 2000.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 



[8] James G. Mitchell, William Maybury, and Richard
Sweet. Mesa language manual, April 1979.

[9] Sean W. O’Malley and Larry L. Peterson. A dynamic
network architecture. ACM Transactions on Computer
Systems, 10(2):110–143, May 1992.

[10] Frederic Salles, Manuel Rodriguez, Jean-Charles
Fabre, and Jean Arlat. Metakernels and fault contain-
ment wrappers. In Proceedings of the 29th Interna-
tional Symposium on Fault-Tolerant Computing, June
1999.

[11] F. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial. ACM Com-
puting Surveys, 22(4):299–319, Dec 1990.

[12] Robbert van Renesse, Kenneth P. Birman, and Silvano
Maffeis. Horus: A flexible group communication sys-
tem. In Communications of the ACM, April 1996.

[13] K-P. Vo, Y-M. Wang, P. Chung, and Y. Huang. Xept:
a software instrumentation method for exception han-
dling. In Proceedings of the Eighth International Sym-
posium on Software Reliability Engineering, pages
60–69, Albuquerque, NM, USA, Nov 1997.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) 
1071-9458/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


