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Abstract

The approach of vertically partitioning the index has long
been considered as impractical for building a distributed
search engine due to its high communication cost. With
the recent surge of interest in using High Performance
Computing networks such as Infiniband in the data cen-
ter, we argue that vertical partitioning is not only prac-
tical but also highly scalable. To demonstrate our point,
we built a distributed image search engine (VertiCut) that
performs multi-round approximate neighbor searches to
find similar images in a large image collection.

1 Introduction

With the explosion of multimedia information on the
Web, there is an increasing demand to build bigger and
faster search engines to index such data. Inevitably, such
a scalable search engine must be distributed in order to
leverage the aggregate memory and CPU resources of
many machines.

Distributed search has long been an open challenge.
The traditional approach is tohorizontally partition the
index such that each machine stores a subset of all doc-
uments and maintains a corresponding local in-memory
index. To process a request, the search engine first dis-
patches the query toall machines each of which performs
a search locally. It then aggregates the partial results
from all machines before returning the final answer to
the user. Although this scheme can use the aggregate
memory of many machines, it does not have scalable per-
formance: as each request is processed byall machines,
query latency and performance do not improve as more
machines are added.

A promising alternative isvertical partitioning. In this
scheme, the index of the entire document collection is cut
vertically such that each machine stores a subset of the
indexed features. To process a request, the search engine
needs to fetch multiple indexed features (each of which

is located on a different machine) and then filter or join
them locally to obtain the final results. This scheme is
scalable: since the number of features being looked up is
independent of the number of machines, one can poten-
tially improve performance by adding more machines.

Despite its promise for scalability, vertical partition-
ing has long been considered impractical [9]. This is
because multimedia search engines need to sift through
tens of thousands of indexed features, resulting in huge
communication cost per query. Optimizations that re-
duce communication significantly increase the number of
roundtrips during the search and hence are not practical
when running on top of the Ethernet where a roundtrip is
around∼ 0.1ms. As a result, existing distributed search
engines are almost always horizontally partitioned [3].

In this paper, we argue that now is time to adopt ver-
tical partitioning for distributed search. This revolution
is made possible by recent technological trends in dat-
acenter networks that aim to incorporate High Perfor-
mance Computing (HPC) network features such as ultra-
low latency [1, 14]. With a roundtrip latency of several
microseconds, a vertically-partitioned search engine can
potentially issue tens of thousands of lookups sequen-
tially to refine its results while still achieving sub-second
query latency.

We demonstrate the practicality of vertical partitioning
by building VertiCut, an image search engine running on
top of Infiniband, a popular HPC network. VertiCut im-
plements a distributed version of the multi-index hash-
ing algorithm [15] which performs K-Nearest-Neighbor
(KNN) search in a high-dimensional binary space oc-
cupied by all images. VertiCut uses a distributed hash
table to (vertically) partition the indexed binary codes.
To process a request quickly, VertiCut also uses two cru-
cial optimizations. First, it performs approximate KNN
search by issuing hash table reads sequentially and stop-
ping early as soon as enough “good” results are found.
This optimization drastically reduces the amount of hash
table reads done by each query. Second, VertiCut elim-



Figure 1: The indexing process of the multimedia search

inates a huge number of lookups for non-existant keys
by keeping a local bitmap at each machines. Our experi-
ments show that VertiCut achieves better and more scal-
able performance compared to a horizontally partitioned
search engine. Furthermore, VertiCut’s KNN approxi-
mation has very little impact on the quality of the search
results.

2 Challenges of Distributed Multimedia
Search

Background on Multimedia Search: To search multi-
media files such as images, music and video, a common
approach is based on mapping multimedia data to binary
codes. Under this approach, an offline indexer first ex-
tracts an array of features using some domain specific
algorithms (e.g. using SIFT [11] descriptors for images)
for each file. It then maps each high-dimensional feature
descriptor into a compact binary code using a transfor-
mation function that preserves semantic similarity such
as a locality sensitive hash function [6]. The common
length of the binary code is 128 bits since 128-bit binary
code can achieve more accurate result according to [15].
The indexer then builds an index out of the collection
of binary codes. Figure 1 illustrates the indexing pro-
cess. To search for images that are similar to a given
query image, the search engine finds its k nearest neigh-
bors (KNN) in terms of Hamming distance among the
collection of binary codes.

There are many ways to perform KNN in the binary
code space. The recently proposed multi-index hash-
ing algorithm, MIH [15], provides a particularly efficient
way to index and search these binary codes. Specifically,
it divides each binary code intom disjoint pieces and in-
dexes each part into a separate hash table (shown in Fig-
ure 2).

To perform k nearest neighbor search, the MIH algo-
rithm first divides the query binary codeQ into m pieces
and then searches each pieceQi using the corresponding
i-th hash table. Suppose the length of the binary code
is s. The algorithm performs search in rounds with in-
creasing search radiusr starting from 0. In a round that
handles a specific search radiusr, the algorithm does the
following steps:

Figure 2: Multiple index hash tables

• For each hash tablei, enumerate all
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whose Hamming distance withQi are equal tor and
return all the items (i.e. images’ binary codes) in
those entries.

• Aggregate the results from allm hash tables into a
candidate set of binary codes.

• When there are more thank candidates whose Ham-
ming distance withQ are less than(r+1) ∗m (the
minimum Hamming distance in the next round of
search radius(r+1)), stop search procedure and re-
turn the topk items.

By dividing the binary code intom pieces, the algo-
rithm drastically reduces the number of enumerated in-
dex entries within a given hamming distance. Therefore,
this algorithm performs much better on large datasets
than the naive linear scan algorithm. However, MIH can-
not cut the binary code into too many pieces, because a
shorter substring length means fewer entries in the hash
tables, which cannot separate similar items from far apart
items well and leads to a huge but mostly useless candi-
date set. For 128-bit binary code, it is discovered that the
best choice ofm is 4 since 32-bit substring code can be
effectively used as the index in each hash tables.

Challenges of Distribution: How to distribute the
MIH algorithm effectively amongn machines? With hor-
izontal partitioning, we can assign a subset of images to
each machine which indexes and searches through them
using a local MIH algorithm. A central coordinator dis-
patches the query to alln machines and ranks then ∗ k
results collected from them to return the finalk nearest
neighbors to the user. As we discussed earlier, this ap-
proach does not scale withn since each query is pro-
cessed by all machines.

With vertical partitioning, we index each of them
pieces of binary code on a potentially different machine.
In particular, we can view the MIH algorithm as oper-
ating on top of a distributed instead of local hash table
to store its indexed codes. When a request comes, the
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Figure 3: System Architecture

search engine does the KNN search in the same way as
the MIH algorithm. This scheme has constant lookup
cost regardless of the number of machinesn. Better yet,
we expect it to perform fewer lookups per query as the
underlying image collection gets bigger. This is because
the more images in each entry of the hash tables, the
smaller the search radiusr is required to findk closeby
neighbors. The main challenge with this approach is its
large communication cost since there is a huge number
of binary codes to be enumerated and checked with even
a modest search radiusr.

3 Design of VertiCut

In this section, we present a fast and scalable multime-
dia search engine VertiCut that leverages the features of
Infiniband to address the distribution challenge.

Basic Design: Figure 3 shows the system architecture
of VertiCut. It contains two layers: search layer and stor-
age layer. In search layer, each node starts multiple pro-
cesses to deal with the user request in parallel. In storage
layer, we run the fast in-memory storage Pilaf [14] on
each server which uses the RDMA read interface of In-
finiband and organize the memory of the servers into a
transparent DHT.

Before VertiCut can answer queries, we first build up
multiple index hash tables for the whole data collection.
We vertically cut the binary codes into multiple disjoint
small parts (m parts) with each part consisting no more
than 32 bits and build an index hash table for each part
of the codes (just like the MIH algorithm does). Then in-
stead of storing different hash tables to different servers,
we store these hash tables into our fast distributed in-
memory storage (each entry in each hash table generates
an entry in our DHT).

When a query binary codeQ arrives, the search node
dividesQ into m parts and startsm processes, with each
process searching one index hash table using our simpli-
fied Infiniband “get” interface. A master process takes

responsibility for performing search iteratively with in-
creasing search radiusr, controlling each process to do
the search in parallel and aggregating the results from all
the processes. When there are more thank candidates
whose Hamming distance withQ is less than the mini-
mum Hamming distance in the next iteration of search
radius(r+1), the master process stops the search proce-
dure and returns the topk items to the user.

The naive MIH algorithm is not practical due to its
huge communication cost which increases explosively
with the search radiusr. Therefore, we introduce some
optimizations to cut down this cost.

Optimization I: Approximate nearest neighbor. In
the MIH algorithm, in order to get the exactk nearest re-
sults, for each search radiusr, we need to check whether
there are more thank candidates within a Hamming dis-
tance of(r+1)∗m after aggregating the results from all
the processes. This may cause the search radiusr to be-
come large in some cases although there have already
been nearlyk exact nearest neighbors in the candidate
set. We notice that the larger the search radiusr is, the
faster the search cost grows. Since we are not very strict
with the exactk nearest search results, we propose an
approximate search algorithm to further reduce the syn-
chronization cost and search radiusr while preserve an
acceptable precision at the same time. The optimiza-
tion we make is to change the search stop condition to
|Candidates| >= FactorApprox ∗ k. This intuitive opti-
mization can greatly reduce the search cost confirmed by
our evaluation results.

The trade off is that it may miss some exact search
results. For example, suppose we have a full candidate
setA (|A| = FactorApprox ∗ k), an itemb and the search
item Q. All candidates inA have some substring whose
Hamming distance with the corresponding substring of
Q is zero, while other parts of them are far away fromQ.
b has a small Hamming distance (e.g. 1) withQ in all
of its substrings. Then we miss the itemb whose Ham-
ming distance toQ is closer than that of candidates inA.
Therefore, we should carefully choose theFactorApprox

so that we can achieve a proper search precision and
query latency. According to our experiment, we find
that whenFactorApprox reaches 20, the search precision
exceeds 80%. However, the query latency does not in-
crease significantly, which is still much faster than the
exact search. Moreover, with arbitraryk, the average
Hamming distance of our approximate search result is
always very close to that of the exact search (the error
remains less than 1). Therefore, we choose 20 as our
defaultFactorApprox.

Optimization II: Eliminate empty lookups. : We find
that most of the entries in each index hash table are empty
with no items in it. For example, we have one billion
items in the whole data set, and the substring length is
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32. Then each index hash table has at least232−109

232 ≈ 3
4

empty entries. In fact, according to our experiment, there
are almost 90% empty entries. Although RDMA reads
are much faster than the Ethernet reads, they are still
slower than local memory reads. Therefore, we should
avoid looking up the empty entries in the distributed hash
tables. We create a bitmap for each index hash table
which records those empty entries and do the real RDMA
get operations only if the binary index is in the hash ta-
ble. We can also use a Bloom filter to avoid reading these
empty entries. According to our experiment, using a
Bloom filter is slower than using bitmap by 18% while it
saves the memory usage by 46%. Since the memory us-
age of bitmap does not increase with the image size and
using bitmap can bring us a 7.5x speedup of the search
procedure, we use bitmap as our default choice.

4 Evaluation

In this section, we evaluate the performance of VertiCut
on the image search application compared with the tradi-
tional horizontal cutting dispatch and aggregate scheme.

Experimental Setup: We set up our experiments on a
cluster of 12 servers. Each server is equipped with two
AMD or Intel processors, 16 or 32GB of memory, a Mel-
lanox ConnectX-2 20 Gbps Infiniband HCA and an Intel
gigabit Ethernet adapter. All servers run Ubuntu 12.10
with the OFED 3.2 Infiniband driver.

We use the one billion SIFT descriptors from the
BIGANN dataset [7] and LSH [6] to map from high-
dimensional data to binary codes. The default configu-
ration of image search application follows that of [15].
The queries are generated by randomly choosing 1000
images from the dataset.

We run each test case three times and take the average
query latency of 1000 queries as our primary metric to
measure the effectiveness of our system.

Scalability and Query Latency: To demonstrate the
scalability of VertiCut, we first run a 1000 nearest neigh-
bors search with vary data size. As the data size increases
from 10 million to 120 million images, we also increases
the number of servers from 1 to 12 so that each server
always processes 10 million images. We compare three
designs, VertiCut on Infiniband, the traditional horizontal
scheme on Infiniband (just use Ethernet over Infiniband
since the network usage of this scheme is very small) and
VertiCut on Ethernet, all of which use the same approxi-
mate search algorithm with bitmap optimization. Figure
4 shows that as the data size increases, the query latency
of the traditional scheme increases rapidly due to the in-
creased aggregation cost. Surprisingly, in VertiCut, the
latency decreases. The reason why the query latency de-
creases in VertiCut is that as the data increase, the num-
ber of images in the same entry of a hash table also in-

creases. Then searching for the fixedk nearest neighbors,
the number of entries we need to enumerate decreases
(This can be proved by the decreasing number of reads
per query shown on the figure 4). This makes VertiCut
more effective and scalable on the huge data set. Note
that although the query latency of VertiCut on Ethernet
has the same decline trend, it is still 8 times slower than
VertiCut on Infiniband and 4.4 times slower than tradi-
tional scheme.
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Figure 4: The latency of a query and its network cost (in
terms of bytes sent per query) with the number of servers
increases.

Effects of k: To show the low query latency of Verti-
Cut on Infiniband in arbitraryk nearest neighbors search,
we run a test on 120 million images using 12 servers
with varying k (from 1 to 1000). Figure 5 shows that
VertiCut on Infiniband is almost twice as fast as the tra-
ditional scheme for arbitraryk although its network cost
is about 6 times larger than that of traditional scheme,
while VertiCut on Ethernet is much slower than the other
two. This demonstrates that VertiCut on Infiniband is the
best scheme for the large scale multimedia search engine.

Effects of Optimizations: To demonstrate the advan-
tages of our two optimizations, we runk nearest neigh-
bors search on 120 million images with and without our
optimizations. We vary thek from 1 to 1000, the compar-
ison of our VertiCut, MIH (No optimization), MIH with
approximate search optimization (Approximate KNN)
and MIH with bitmap optimization (Bitmap) is shown
in Figure 6 (Note that they axis is in log scale). From
the result, we can find that the approximate optimization
improves the search speed by 80 times, the bitmap opti-
mization improves 25 times, and our VertiCut achieves at
least 550 times improvement. This verifies that our two
optimizations are quite reasonable and effective, which
can make the distributed multimedia search much more
scalable and practical in reality.
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Figure 5: The latency of a query and its network cost as a
function ofk (the required number of neighbors return).
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Figure 6: The latency of a query and its number of read
operations with and without optimizations.

5 Related Work

There have been several previous works attempting to
provide distributed content-based image retrieval [2, 5,
8, 10, 12, 13, 15, 17–20]. They can be divided into two
categories: low dimensional and high dimensional ap-
proaches. In low dimensional approaches, [5, 18] focus
on distributing search on peer-to-peer (P2P) networks
based on Content-addressable Network (CAN) [16]. M-
CAN [5] uses a pivot-based method to map images from
the metric space to a low dimensional vector space. RT-
CAN [18] implements a variational R-tree on top of
CAN using low dimensional data (e.g. five dimensions).
[10, 12, 20] build the nearest neighbors search on top
of distributed computing framework MapReduce [4] for
low dimensional datasets (data with no more than 30 di-
mensions). [10] constructs a multi-dimensional index us-
ing R-tree. [12] uses a Voronoi diagram-based partition-

ing to assign objects. [20] maps data into one dimension
using space-filling curves and transforms KNN joins into
one-dimensional range searches. Although these low di-
mensional approaches can do fast search in large scale
data sets, they cannot achieve precise search results.

For high dimensional datasets, there are three ma-
jor approaches. The first one is Bag-of-features ap-
proach [8, 13, 19], in which each image is represented
as a histogram of occurrences of selected features (“vi-
sual words”) and search is done by using an Inverted
Index structure. Works belonging to this approach all
use traditional horizontal cut scheme: each server stores
and indexes a part of the dataset. We believe that our
VertiCut can also achieve a better scalability for this ap-
proach. The second one is distributed KD-tree approach.
[2] gives an implementation on MapReduce in which a
master stores the root of the tree, while multiple leaf
machines store the rest. When a query comes, the mas-
ter forwards the query to a subset of the leaf machines.
Unfortunately, this approach has high update cost: each
time adding or removing an image, it needs to rebuild
the tree. The third one is multiple index hashing ap-
proach. [15] provides a distributed scheme for MIH al-
gorithm which stores different index hash tables to dif-
ferent machines. [17] uses the family of LSH functions
based on p-stable distributions to conduct multiple hash
tables and distributes them using MapReduce. As ex-
plained before, this approach is not practical due to its
large communication cost.

6 Conclusions

With the rapid growth of multimedia information, multi-
media retrieval has become more and more popular in the
recent years. How to effectively distribute the search for
the increasing huge data collections has become an im-
portant challenge with immediate practical implications.
In this paper, we present a fast high-dimensional mul-
timedia search engine VertiCut based on the high per-
formance computing network Infiniband to address this
challenge. Experiments show that our design can achieve
a better scalability and lower response latency, which
makes the multimedia retrieval simpler and more prac-
tical in reality.
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