
An Automated Approach to Increasing the Robustness of C Libraries

Christof FETZER, Zhen XIAO

AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 07932
fchristof, xiaog@research.att.com

Abstract

As our reliance on computers increases, so does the need
for robust software. Previous studies have shown that many
C libraries exhibit robustness problems due to exceptional
inputs. This paper describes the HEALERS system that uses
an automated approach to increasing the robustness of C li-
braries without source code access. The system extracts the
C type information for a shared library using header files
and manual pages. Then it generates for each global func-
tion a fault-injector to determine a “robust” argument type
for each argument. Based on this information and option-
ally, some manual editing, the system generates a robust-
ness wrapper that performs careful argument checking be-
fore invoking C library functions. A robustness evaluation
using Ballista tests has shown that our wrapper can prevent
crash, hang, and abort failures. Moreover, the wrapper gen-
eration process is highly automated and can easily adapt to
new library releases.

1. Introduction

Traditionally, computer software has been optimized for
efficiency with robustness only as a secondary considera-
tion. During the past several decades, we have seen an ex-
ponential increase in processing power. Consequently, one
might expect that efficiency is becoming less of an issue and
that more systems will be developed using safe languages
like Java or ML. In practice, however, the demand for com-
puting power in emerging applications (e.g., data mining)
has also increased rapidly. Therefore, there is still a strong
demand for efficient programming.

C and C++ are known as two of the most efficient lan-
guages. In addition, C and C++ give programmers exten-
sive control over system resources, in particular, memory.
Compared with languages that support automatic memory
management (e.g., garbage collection), C and C++ permit

savvy programmers to optimize resource usage based on
application knowledge. This explicit control over memory
also supports memory mapped I/O, which is important for
system-level programming. In fact, for safe languages it
is often necessary to introduce extra functionality through
customized C-stubs.

A large percentage of existing software is written in ef-
ficient but unsafe languages like C or C++. Most C li-
braries are optimized for high performance at the expenses
of system robustness. The Ballista team [8, 6] has shown
that many POSIX C library functions are brittle with re-
spect to invalid inputs: a function invoked with invalid in-
puts may cause the calling process to crash, hang, or give
erroneous results. This is because many functions make
implicit assumptions about their arguments and often omit
validity checks for efficiency reasons. For example, the
strcpy(dst, src) function assumes that the location
pointed to by dst is writable and has enough space to ac-
commodate the source string. Violating this assumption
may cause a segmentation fault or a security vulnerability.
Such a design prevents correct programs from being penal-
ized by unnecessary checks.

With the increasing reliance on computers, there is a vi-
tal need for tools that increase the robustness of software.
The emphasis of C and C++ on efficiency and explicit re-
source control makes it difficult to build robust and secure
libraries. There are some safe libraries that increase the
robustness of a subset of the standard C library without a
substantial performance overhead [7]. In this paper, we de-
scribe a system called HEALERS (HEALers Enhanced Ro-
bustness and Security) that does not attempt to modify the
library itself. Rather, it uses an automated approach to gen-
erate robustness wrappers based on adaptive fault-injection
experiments. A fault-injector for a given library function
f calculates a robust argument type for each argument of
f : if f is called with an argument that is not an element of
the computed robust argument type, f will crash or return
with an error. A robustness wrapper checks that each ar-
gument passed to a function belongs to the specified robust

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

Pages
Manual

Files
Header

Wrapper
LibraryModifications

Manual

Shared
Library

Fault−Injector

FilesHeaderFunction
Names

Function
Prototype

Fault−
Injector Declaration

Function
Robustness

WrapperGenerator
Wrapper

Generator

Figure 1. Architecture of the wrapper generation process.

argument type before invoking the function. Otherwise, the
wrapper returns an error code indicating that the function
was called with an invalid argument. The advantage of this
approach is that one can improve the robustness and the se-
curity of libraries that are only available as binaries.

The rest of the paper is organized as follows. We first
introduce the architecture of the HEALERS system in Sec-
tion 2. Then, in Sections 3 and 4, we show how we use au-
tomated fault-injection experiments to determine what kind
of argument checks a robustness wrapper has to perform
for individual functions. Section 5 describes how HEAL-
ERS creates robustness wrappers and some techniques that
we used for argument checking. We evaluate the robustness
and performance of our wrappers in Sections 6 and 7. Re-
lated work is described in Section 8. Section 9 concludes
the paper.

2. Architecture

We increase the robustness of applications by running a
wrapper that sits between an application and its shared li-
braries. The wrapper itself is a shared library that has pri-
ority over the other libraries to resolve undefined symbols
of the application. Figure 1 depicts the wrapper genera-
tion process that consists of two phases. In the first phase,
our system extracts the C type information for the global
functions in a shared library using header files and man-
ual pages. Based on this information, it generates for each
global function a fault-injector to compute a robust argu-
ment type for each argument of the function. The fault-
injectors generate function declarations that are fed into the
wrapper generator. Some function declarations may need
manual editing to prevent all robustness violations. How-
ever, this task is largely automated.

In the second phase, the wrapper generator can generate
a variety of wrappers to suit the needs of individual appli-
cations. In this paper, we focus on how to generate robust-

ness wrappers that prevent all crash and hang failures dis-
covered by the Ballista test suite. Robustness wrappers in
our system provide a flexible trade-off between efficiency
and robustness. If needed, a system developer could decide
which functions should be wrapped and which processes
should run with a wrapper. For example, a process with
root privilege may use our wrapper to detect buffer over-
flow attacks [4] that are a major cause of security breaches
in modern operating systems. In contrast, a process owned
by an ordinary user may use only a minimal wrapper to pre-
vent system crashes without much performance overhead.
Moreover, different wrappers can be used in the life-cycle
of an application. For example, a wrapper in the debugging
phase may abort the execution of an application upon de-
tection of an invalid input. After the application has been
deployed, a wrapper should try to keep the application run-
ning and log invalid inputs.

Our wrapper-based approach can protect existing appli-
cations transparently without having to modify or recompile
the applications or the C libraries. In addition, the wrapper
generation process is highly automated and can easily adapt
to new library versions. As shown in [6], new library re-
leases are sometimes more robust than previous versions
due to bug fixes, and sometimes less robust due to bugs
introduced in new features. Using an automated approach
greatly simplifies what would otherwise be a labor intensive
and error prone process of hardening each new release of a
library.

3. Function Declaration Generation

A function declaration describes certain properties of the
function that are needed by the wrapper generator. In this
section, we first describe the structure of function declara-
tions and then explain how we derive such declarations in
an automated fashion. A function description includes (in
addition to other information like pre- and post-conditions):

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

� Function Name: The name and version of the func-
tion. Since the interface and the semantics of func-
tions may evolve over time, modern libraries assign a
version number to each function they define (e.g. see
[9]). This allows the dynamic link loader to resolve a
symbol using the correct version of the function.

� Function Type: The C type of all arguments and re-
turn value of the function.

� Robust Argument Types: Enforcing an argument to
be of the type specified in the prototype of a function
is usually not sufficient to prevent robustness failures.
A robust argument type prevents some if not all func-
tion crash failures (see Figure 2 for an example and
Section 4 for a precise definition).

� Error Return Code: C functions typically return a
unique error code (e.g. �1) to indicate that an error
has occurred. Many functions also set variable er-
rno to specify the reason of the error. (errno is
usually implemented as a function to make it thread-
safe.)

� Function Attributes: Two attributes are used for the
generation of robustness wrappers: safe or unsafe. A
safe function already checks that all arguments passed
to it are valid. There is no need for additional argu-
ment checking in the wrapper. In contrast, an unsafe
function may crash or hang when invoked with in-
valid argument values and hence needs protection in
the wrapper.

Figure 2 depicts the function declaration for asctime.
Although its argument prototype in the C library is const
struct tm*, its robust argument type determined by our
fault-injector is either a null pointer or a pointer to an allo-
cated and readable block of memory with at least 44 bytes.
In the remainder of this section, we explain how to extract
each item in a function declaration automatically from C
libraries.

3.1. Extracting Function Names

We use the utility programobjdump to extract the name
and version of all global functions defined in a shared li-
brary. Most C libraries adopt the convention that all func-
tion names starting with an underscore (e.g. IO fflush)
denote internal functions that should not be used by applica-
tions. Hence, typically it is sufficient to only wrap functions
whose names do not start with an underscore1. This can lead

1Note that some functions used by programmers (e.g., setjmp) might
be macros that are mapped to an internal function. To avoid this problem,
one could extract all undefined functions from an application instead and
wrap all functions that are resolved by the library.

<function>
<name>asctime</name>
<argument>const struct tm*
<robust_type>R_ARRAY_NULL[44]</robust_type>

</argument>
<return_type>char*</return_type>
<error_value>NULL</error_value>
<errors>
<errno>EINVAL</errno>

</errors>
<attribute>unsafe</attribute>

</function>

Figure 2. Function declaration for asctime.

to a substantial reduction in the number of functions that
have to be wrapped. For example, in glibc2.2 more than
34% of the global functions are internal. In the following,
we focus only on global functions that are external.

3.2. Extracting Function Types

Extracting function type information for functions in C
libraries is non-trivial because such information is not stored
in the shared libraries. This is different from C++ libraries
where both the name and the type of a function are encoded
in its symbol name. This encoding was introduced to per-
mit function overloading across multiple object files. It also
allows easy extraction of function type information.

We address this problem in C libraries by parsing header
files that contain the prototypes of global functions. How-
ever, it turns out that there typically does not exist a well-
defined set of header files that describe the interface of a
shared library. In addition, some functions are defined mul-
tiple times in different header files while the definitions of
other functions are spread across multiple header files. To
determine the proper set of header files that contain the full
definition of a function type, we parse the manual page that
describes the function. By convention, manual pages con-
tain a list of all header files that need to be included by a
program that wants to use the function.

We have experienced a few problems with this approach.
The first problem is that many global functions have no
manual page. For example, we found that only 51:1% of
the glibc2.2 functions in SuSE LINUX 7.2 Professional are
listed in its online manual. In addition, a small percentage
(1:2%) of manual pages do not list the header files that need
to be included. Worse yet, 7:7% of the manual pages list the
wrong header files: none of the listed header files (nor any
files included by them) define a prototype for the function.
We nevertheless use the manual pages first because we have
a higher chance of success in case the function is defined
across multiple header files. If a function has no manual

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

page or its manual page does not include the proper header
files, we search through all header files (below a given path)
to locate the prototype of the function. Using this approach
we were able to find header files for 96:0% of the glibc2.2
functions. Note that if a function is not found in any header
file, it most likely means that the function is only intended
for internal use or that the function is deprecated.

After locating the header files for a function, we parse
them to extract the prototype of the function. Currently
this is achieved using the CINT C/C++ interpreter [5]. The
advantage of CINT is that it provides an easy interface to
query extended run-time type information of all functions
that are declared.

3.3. Determining Error Return Code

When a robustness wrapper detects a robustness viola-
tion, it needs to set errno and then returns an error return
code to notify the application of the error. We determine the
error return code of a function using adaptive fault-injection
experiments. Based on the extracted function name and
type information described previously, our system creates a
fault-injector for each function in a library. A fault-injector
generates a sequence of test cases based on the argument
types of a function, similar to Ballista tests. However, our
goal here is different: while Ballista tests aim to detect ro-
bustness violations in a C function, our goal is to discover
the robust argument types of a function – the types that pre-
vent the function from crashing. A fault-injector iterates
over a sequence of test cases to determine which of them
results in a crash. To reduce the number of test cases, we
use an adaptive testing technique where the future test cases
depend on the results of previous tests (see Section 4 for de-
tails). If a test case does not result in a crash, we record the
return code and the status of errno. We use this informa-
tion to classify functions as follows:

� No Return Code: The function has no return value
(i.e., return type is void) or returns a type for which
neither the equal operator (==) nor the not-equal op-
erator (!=) is defined. The latter is a reasonable as-
sumption since programs typically use equal or not-
equal operator to check for an error.

� Consistent Error Return Code: The function sets
errno at least once during the fault-injection exper-
iments and always returns the same value every time
errno is set.

� Inconsistent Error Return Code: The function re-
turns different values when setting errno.

� No Error Return Code Found: The function did not
set errno during the fault-injection experiments.

3.4. Determining Function Attributes

In addition to determining the error return code of a func-
tion, a fault-injector also determines if the function is safe or
unsafe. A function is unsafe if at least one test case causes
the function to crash or to hang for some predefined time-
out period. The wrapper generator creates robustness wrap-
pers only for unsafe functions. In this way, it avoids the
overhead of unnecessary argument checks.

4. Determining Robust Argument Types

This section describes how to determine robust argument
types for a function using adaptive fault-injection experi-
ments.

4.1. Fault-Injector Generation

Our system generates for each function a specialized fault-
injection program. Such a fault-injector calls the function
under test with a sequence of test cases. The sequence of
test cases is the cross product of the test cases for each indi-
vidual argument. The test case generation is adaptive in the
sense that if a function crashes, our fault-injector attempts
to determine which argument caused the crash based on the
address where the segmentation fault occurred. It then tries
a finite number of times to change that input value until the
violation disappears or another argument causes the viola-
tion. For example, in order to determine the size of an ar-
ray, we first allocate an array of zero size. We use hardware
memory protection to make sure that an access to an ele-
ment after the last allocated element generates a memory
segmentation fault. By catching segmentation faults, we
can determine by how much the array has to be enlarged.
The array is iteratively enlarged until no more segmentation
faults occur (or, we run out of memory).

The fault-injector generator (see Figure 1) uses the C ar-
gument type to select at least one test case generator for
each argument of a function. A test case generator produces
a finite sequence of test cases. Each of these test cases has
the same C type. To be able to use the generator for an ar-
gument, the C type has to be castable to the C type of that
argument.

Our system has generic test case generators for all basic
types, pointers, and structures. This permits the generation
of fault-injectors for all functions. However, we also permit
the addition of new test case generators that contain specific
test cases for certain types. For example, we have a generic
pointer test case generator but also a specific generator for
pointers to the FILE structure.

The generated fault-injector iterates over all test cases
and when it is done, it computes for each argument a robust

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

argument type. The fault-injector itself is robust. To per-
form a call of the tested function, the fault-injector spawns
a child process. The child sets a signal handler for seg-
mentation faults and then calls the function. In most cases,
the signal handler of the child will intercept segmentation
faults. However, some segmentation faults cannot be in-
tercepted (e.g., some caused by longjmp). This is why a
child process executes the actual calls.

When a function causes a segmentation fault, the child
process queries the test case generators that provided the
arguments of the function if the address at which the fault
occurred belongs to the test case generator. For at most one
of the generators this test will be true. If one is found, that
generator is called to adjust its test case and if it is able to
adjust the test case, a new child process retries the function
call. Otherwise, the testing continues with the next test pat-
tern. This adaptive testing behavior is particularly useful to
determine the exact amount of memory needed for an argu-
ment without using a massive number of static test cases.

4.2. Test Case Generators

Test case generators are essential to finding robust argu-
ment types for a function. Because C types are not suf-
ficiently powerful to be used to compute robust argument
types, we designed and implemented an extensible type sys-
tem. Each test case generator can define a set of types and
their relationship to each other and potentially to types de-
fined by other generators. Because some of the details are
important, we are a little more formal in this subsection.

We use (T ;�) to refer to the partially ordered set of
types defined by the test case generators. Each element T
of the set T is a type and defines a set of values V (T) 6= ;.
Relation � defines the subtype/supertype relation over T .
A type T1 is a subtype of type T2 if and only if the value set
V (T1) is a strict subset of V (T2), i.e., T1 � T2 $ V (T1) �
V (T2). Type T2 is called a supertype of T1. We say that
a supertype is weaker than any of its subtypes because its
value set contains more elements. Similarly, we say that a
subtype is stronger than any of its supertypes.

There are two kinds of types in T : fundamental types
and unified types. The intuition is that each test case gener-
ator produces elements of fundamental types. The wrapper
library provides for each unified type T (but not necessarily
for each fundamental type) a checking function that tests
if a value belongs to its value set V (T). The value set of
a unified type TU is the union of value set of all its strict
subtypes, i.e., V (TU) =

S
V (Ts) : Ts � TU . We require

that the value sets of any two fundamental types T1 and T2
be non-overlapping: V (T1)

T
V (T2) 6= ;) T1 = T2. A

fundamental type is never a supertype.
On a practical note, in order to define unified types that

have overlapping value sets, we need to define appropriate

fundamental types first. For example, if we want to define
the unified types of non-negative and non-positive numbers
(which are overlapping), we would define three fundamen-
tal types: negative numbers, positive numbers, and zero.
The non-negative numbers are represented by a unified type
of the two fundamental types of positive numbers and zero.

The separation into non-overlapping fundamental types
is an essential property of our algorithm to compute robust
argument types. For the sake of argument, consider a 1-
ary function f that does not crash for non-negative argu-
ments. If we had only non-negative and non-positive types,
we would detect that f crashes for some non-positive val-
ues but not all (i.e., not for value zero). Hence, we could
not conclude that the robustness wrapper can check that an
argument is non-negative before calling f since some non-
positive numbers do not crash the function too. By splitting
the types in disjoined fundamental types we can compute
that the non-positive test case that does not crash f actually
also belongs to the non-negative numbers. Hence, it is safe
to check that numbers are non-negative.

Each test case generator G defines a finite sequence of
test cases CG = (ci)i2IG . Note that even though the test
case generation might be adaptive, a posteriori we know the
sequence. While all test cases generated by a test case gen-
erator have the same C type, we associate each test case
with a type that is used in the computation of robust argu-
ment types. Each test case ci is therefore represented by
a pair (v; T) such that T 2 T is a fundamental type and
v 2 V (T). Note that for unified types there exist no test
cases.

Test Case Generator for Fixed Size Arrays To be more
concrete, we describe a test case generator for fixed size
arrays and for file pointers. The tasks of the fixed size array
test case generator is (1) to determine if a pointer points to
a fixed size array of a certain size, and (2) to test whether
the array has to be readable and/or writable. To do this, the
generator defines five fundamental types and seven unified
types. The type hierarchy of fixed size arrays is depicted in
Figure 3.

Each of the value sets of the three fundamental types
RONLY FIXED[s], RW FIXED[s], and WONLY FIXED[s]
consists of a set of pointers that point to a memory region of
exactly s bytes and the region is either read only, readable
and writable, or write only, respectively. Fundamental type
NULL consists of a null pointer which points to an inacces-
sible memory region. Fundamental type INVALID consists
of non-null pointers that each point to an inaccessible mem-
ory region.

The unified types R ARRAY[s], RW ARRAY[s], and
W ARRAY[s] each consists of a set of pointers that point
to a memory region of at least s bytes that is either readable,
readable and writeable, or writable, respectively. These three

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

subtype supertypeunified type

UNCONSTRAINED

INVALID

W_ARRAY[t]R_ARRAY[t]

s<= t

NULL

t<=u t<=u t<=u

RW_FIXED[v] WONLY_FIXED[v]

RW_ARRAY[u]

RONLY_FIXED[v]

t<=v

s<= t s<= t

s<= t

u<=v

t<=v

R_ARRAY_NULL[s]

RW_ARRAY_NULL[t]

W_ARRAY_NULL[s]

Figure 3. Type hierarchy of fixed size arrays.

unified types are combined with fundamental type NULL to
define three further unified types. Finally, unified type UN-
CONSTRAINED is the set of all pointers.

Test Case Generator for File Pointers The file pointer
test case generator (Figure 4) defines three fundamental types
and four unified types. The value set of the fundamen-
tal types RONLY FILE, RW FILE, WONLY FILE consist
each of pointers to FILE structures that are opened for read
only, read and write, or write only access, respectively. The
unified types R FILE and W FILE are file pointers to read-
able or writeable files, respectively. Note that types R FILE
and W FILE are not comparable because the intersection
of their value sets is a strict non-empty subset of both their
value sets. This intersection is the value set of type RW FILE.
Note however that the value set of a type can be a strict sub-
set of the intersection of the value set of its supertypes.

Unified type OPEN FILE is the set of all file pointers
that are opened for any access pattern while OPEN FILE-
NULL is further unified with the NULL pointer type. One

can define a relation between existing types and newly de-
fined types, e.g., OPEN FILE is a subtype of RW ARRAY[s]
(where s � size and size is the allocated size of a FILE
structure). Note that the extension of an existing type hier-
archy might require that previous fundamental types be re-
defined (or, alternatively be replaced by a new unified type).
Due to the definition of the file pointer hierarchy, we need
to restrict the value set of RW FIXED[size] to make sure
that the value set of OPEN FILE and RW FIXED[size] do
not overlap.

4.3 Robust Argument Type Selection

We first explain how to compute robust argument types
for functions with a single argument and then generalize the
technique for functions with multiple arguments.

OPEN_FILE

RW_ARRAY_NULL[s] RW_ARRAY[s]

OPEN_FILE_NULL

subtype supertypeunified type size= #bytes per FILE

RONLY_FILE WONLY_FILERW_FILE

R_FILE W_FILE

s <= size s <= size

NULL

void*

Figure 4. Type hierarchy of file pointer types.

Single Argument Function asctime has one argument
of C type const struct tm*. Our system uses the
test case generator for fixed size arrays to inject faults into
this function. The test case generator always starts with an
empty array and then gradually increases its size whenever
the function crashes because the size is too small.

After all test cases are performed, the fault-injector tries
to compute a robust argument type T . Ideally, T is chosen
such that none of the test cases in the value set V (T) causes
the function to crash and any test case that is not in V (T)
causes the function to crash. If such a type T exists, we
call it the safe argument type. Whenever such a safe argu-
ment type exists, the robust argument type computed by our
system is safe.

In the example of asctime, the test cases for funda-
mental types RONLY FIXED[s � 44], RW FIXED[s �
44], and NULL succeed while all other test cases fail. Fig-
ure 3 indicates that the weakest supertype of these three fun-
damental types is R ARRAY NULL[44], which actually is
the safe argument type.

Sometimes such a safe type may not exist in the type hi-
erarchy. For example, consider an implementation of asc-
time that returns an error code when invoked with pointer
�1 instead of crashing. In this case, R ARRAY NULL[44]
is not a safe argument type since it does not include �1.
If we can assume that functions are atomic (i.e., a function
does not change any system state if it returns an error code),
then a robustness wrapper could just return an error code for
all invalid pointers instead of calling asctime with �1.

We generalize the notion of safe argument type as fol-
lows. The system finds a weakest type T such that all test
cases for which the function returns successfully (i.e., with-
out an error) are in V (T) and for each supertype ST of T
there exists at least one test case in V (ST) for which the
function crashes. Note that V (T) might contain values for
which the function crashes and hence, we call such an argu-
ment type robust instead of safe. Such a robust type always
exists in our type hierarchy (due to the existence of uncon-

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

strained types). Note that each safe argument type is robust.
Whenever there exists a safe argument type, the robust ar-
gument type computed by our system is safe.

We have not experienced any problems by assuming func-
tions to be atomic. If we want to be more conservative, we
can require a robust argument type to be the weakest type T
such that all test cases for which the function returns (with
or without an error) are in V (T) and as before, for each su-
pertype ST of T there exists at least one test case in V (ST)
for which the function crashes.

Multiple Arguments For n-ary functions (n � 1) the
computation of robust argument types can be generalized as
follows. We need to define n-dimensional type vectors such
that the i-th element of a vector is the type of the i-th argu-
ment of the function. The partial order over types defines
a partial order over the type vectors. In particular, it intro-
duces the notion of subtypes and supertypes for type vec-
tors. Each function call by the fault-injector consists of n
test cases (we call this a test case vector) and these uniquely
define a type vector consisting of fundamental types. The
value set V (TV) of a type vector TV consists of a set of
value vectors that is uniquely defined by the value set of the
n types.

We can generalize the definitions of safe type and robust
type for type vectors as follows. The safe type vector of a
function is the type vector TV such that all test case vectors
for which the function does not crash are in V (TV) and
none of the test case vectors for which the function crashes
is in V (TV). We call the i-th element of TV the safe type
of argument i. Similarly, we define the robust vector type
of a function to be the weakest type vector TV such that all
test case vectors for which the function returns without an
error are in V (TV) and for each supertype ST of TV there
exists at least one test case vector in V (ST) for which the
function crashes. We call the i-th element of TV the robust
type of argument i. If there exists a safe type vector, the
robust type vector computed by our system is safe.

5. Robustness Wrapper

After the function declarations have been generated, the
wrapper generator creates a robustness wrapper that substi-
tutes each unsafe function in the declarations with a safe
version that provides the same functionality but performs
careful error checking. The typical structure of a wrapped
function consists of some prefix code, a call to the original
function, and some postfix code. The prefix code may check
that the arguments passed to the function are “robust”. If
not, it returns an error return code and sets errno appro-
priately without executing the original function. The wrap-
per generator can additionally emit code that logs this er-
ror for a later failure diagnosis. Similarly, the postfix code

can check if the function execution is successful. Figure 5
shows the wrapper code generated for function asctime.
The prototype of the function is generated from the func-
tion declarations in Figure 2. The variable libc asctime
stores the address of the original asctime function. This
code includes a recursion detection flag in flag to avoid
potential circular dependencies that may occur during the
function resolution process. In the remainder of this sec-
tion, we describe some techniques that we used to check
the validity of function arguments.

char* asctime (const struct tm* a1) {
char* ret;
if (in_flag) {

return (*libc_asctime)(a1);
}
in_flag = 1 ;
if (!check_R_ARRAY_NULL(a1,44)) {

errno = EINVAL ;
ret = (char*) NULL;
goto PostProcessing;

}
ret = (*libc_asctime)(a1) ;
PostProcessing: ;
in_flag = 0 ;
return ret;

}

Figure 5. Wrapper code generated for asc-
time from the function declaration in Figure
2.

5.1 Validating Memory

Many robustness violations are due to memory access
errors that arise during C function calls. For example, func-
tions in the string library often omit boundary checks of
destination buffers. This has been exploited by malicious
users to launch buffer overflow attacks that are a major cause
of security breaches in modern operating systems.

An important feature of our system is that it keeps track
of memory allocation status on the heap. When a program
calls malloc to allocate a block of memory, the wrapper
intercepts the call and records the address and size of the al-
located block in an internal table. Later when the program
calls a C library function to write to a buffer on the heap, the
wrapper consults its table to locate the memory block that
contains the buffer and performs boundary checks before
invoking the original function. This is called stateful check-
ing because the wrapper needs to perform state keeping for
allocated blocks. In [4] we have shown that this technique
can detect and prevent heap buffer overflows successfully.

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

Moreover, our wrapper can prevent stack-smashing attacks
using the same mechanism as Libsafe [1].

If a buffer is neither on the heap nor on the stack, the
wrapper sets up a signal handler and tests the accessibility
of the memory. For large buffers that spread across mul-
tiple memory pages, only one byte per page needs to be
tested. This approach was previously used in [2] to harden
I/O libraries. It is a stateless approach because no extra state
information is maintained.

5.2 Validating Data Structure

While validating memory accessibility can prevent most
robustness violations in the string library, it is insufficient
for some other libraries that may use special data structures.
For example, many functions in I/O libraries use FILE *
pointers. If an argument is a file pointer, the wrapper first
needs to make sure it points to a memory region of sufficient
size that is both readable and writable. Then it needs to
verify that the content of the memory region correspond to
a valid file structure. To do so, the wrapper calls fileno
to extract the file descriptor in the FILE structure and then
calls fstat to check the validity of the file descriptor. In
theory, this is not a complete test because a FILE structure
may be corrupted even if it happens to contain a valid file
descriptor. In practice, however, we found it sufficient for
almost all cases. An advantage of this approach is that the
wrapper does not maintain extra state information to keep
track of file pointers.

Unfortunately, C libraries do not provide checking func-
tions for all its data types. For example, closedir ex-
pects its argument to be a DIR * pointer that is returned
by a previous call to opendir. However, POSIX does not
define any function to verify that a pointer points to a valid
directory structure. We address this problem using a state-
ful approach similar to the memory tracking technique dis-
cussed previously. More specifically, the wrapper intercepts
all directory related function calls and keeps track of all di-
rectory pointers in an internal table. When a program calls
closedir, the wrapper consults its internal table to deter-
mine whether the directory pointer is valid. Stateful check-
ing has the disadvantage that one has to switch on wrappers
for a potentially larger set of functions in order to maintain
state information, even though some of these functions may
be safe and do not need to be wrapped otherwise.

6. Robustness Evaluation

In this section, we evaluate the effectiveness of the gen-
erated wrapper in preventing robustness failures. Instead of
testing our wrapper on all functions in glibc2.2, we con-
centrate on the 86 POSIX functions that were previously
found to suffer crash failures in the Ballista test under Linux

Unwrapped Full Auto
Wrapped

Semi Auto
Wrapped

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

96.25%

24.51%

2.63%

1.31%

0.93%

74.18%

99.07% Errno set

Silent

CrashT
es

tC
as

es

0.00%

1.12%

Figure 6. Test results of 11995 Ballista tests
for 86 functions.

2.0.18 [6]. We downloaded all 11995 test programs for
which these functions exhibit robustness violations from the
Ballista project web site and rerun these programs under
Linux 2.4.4 and glibc2.2. The results are shown in Figure
6. Only 9 functions never crash. All other 77 functions
crashed for at least one test case.

We used our system to extract type information for all
these functions and generated a fault-injector for each of
them. Inspecting the robust argument types derived by the
fault-injector, we discovered a few interesting things. For
example, while functioncfsetispeed (sets the input baud
rate) only needs write access to its argument, function cf-
setospeed (sets the output baud rate) needs both read
and write access to its argument. In addition, functions
fopen and freopen crash when the mode string is in-
valid but can cope with invalid file names.

We also computed error return code for these functions
based on fault-injection experiments. The results are shown
in Table 1. We manually examined the results returned by
the generated fault-injectors. In particular, we were inter-
ested in the 37 functions for which there was no error code
found. Our system can automatically detect the error re-
turn code if a function sets errno. Only one of these 37
functions, fflush, is supposed to set errno. The two
functions that set errno inconsistently are fdopen and
freopen: they sometimes set errno even though a valid
file descriptor is returned.

We created a robustness wrapper from the generated func-
tion declarations and evaluated its effectiveness with Bal-
lista. Figure 6 indicates that this automatically generated
wrapper reduces the crash failure rates significantly: only
16 functions crashed with the wrapper, versus 77 without
the wrapper. The failures that remain undetected usually in-

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

Return Code Class Number Percentage
No Return Code 8 9.3%
Consistent Error Return Code 39 45.3%
Inconsistent Error Return Code 2 2.3%
No Error Return Code Found 37 43.0%

Table 1. Test results for error return code de-
termination.

volve corrupted data structures in accessible memory. Check-
ing the integrity of such data structures requires the wrapper
to keep state information, a task our system cannot automate
at this stage. One example is the closedir function de-
scribed in the previous section that requires its argument be
a directory pointer returned by a previous call to opendir
function.

In the next step, we manually edited the generated func-
tion declarations to add robust argument types and some ex-
ecutable assertions (which we used to track directory struc-
tures). With these additional checks we were able to elimi-
nate all crash failures in the Ballista test as shown in Figure
6. This does not necessarily mean that the resulting system
will never crash in practice, because Ballista tests do not
cover all possible failure scenarios. Nevertheless, it demon-
strates the effectiveness of our automated technique in pre-
venting a broad range of robustness violations.

7. Performance Overhead

In this section, we evaluate the performance overhead of
our robustness wrapper for four utility programs: tar, gzip,
gcc, and ps2pdf. For each program, we compute the per-
centage of execution time spent in argument checking. We
also compare the overall execution time with and without
the wrapper. As described earlier, our wrapper generator
can be configured to generate a variety of wrappers for dif-
ferent purposes. In order to better understand the causes of
performance overhead, we also generated a measurement
wrapper that measures the frequency of function calls for
the four utility programs and the percentage of their execu-
tion times that is spent in the wrapped C library. The results
are shown in Table 2.

As can be seen from the table, there is a substantial dif-
ference among the behaviors of the four programs. For
example, gcc spends far more time in the wrapped func-
tion calls than gzip. Consequently, it incurs a higher exe-
cution overhead. Another reason for its high overhead is
that gcc creates five processes and hence incurs the over-
head of loading the wrapper multiple times. Given the ex-
tensive error checking that were performed, we believe that
this overhead is reasonably small. Further improvements

Applications tar gzip gcc ps2pdf
#wrapped func/sec 3545 43 388998 378659
time in library 1:05% 0:01% 10:20% 7:96%
checking overhead 0.16% 0.0003% 1.72 % 1.88%
execution overhead 3.14% 1.12% 16.1% 5.67%

Table 2. Execution overhead of four utility pro-
grams.

can be achieved using the caching techniques to check the
validity of pointer as described in [3].

8. Related Work

Fault-injection experiments were previously used in the
Ballista system to evaluate the robustness of POSIX operat-
ing systems [8, 6]. In their approach, various combinations
of valid and invalid input values are generated automatically
based on argument types and are fed into C functions to see
whether exceptional conditions are handled correctly. They
found that many implementations of C libraries are not ro-
bust and may crash or hang due to invalid inputs. Moreover,
different implementations of C libraries are not completely
diverse and may exhibit common failures [6].

Both Ballista and HEALERS use automated fault-injection
experiments to discover robustness problems in C libraries.
However, the two systems are different in significant ways.
The Ballista testing methodology requires as input the pro-
totypes of POSIX functions. For a given function, it dis-
covers a list of function calls that exhibit robustness viola-
tions. In contrast, the HEALERS system extracts function
prototypes automatically by parsing header files and manual
pages. It constructs a hierarchy of types and uses adaptive
fault-injection experiments to compute the robust argument
types for a function instead of enumerating all test cases that
causes the function to crash. The generated function decla-
rations (with some manual editing) are then used to produce
a robustness wrapper that prevents all crash or hang failures
in the Ballista tests.

Previously, software wrappers have been used for fault-
tolerance [10] and exception handling [11]. Xept is a soft-
ware instrumentation tool that can be used to handle excep-
tions from library functions [11]. It provides a language
to write exception specifications for certain C functions as
well as a convenient framework to incorporate such spec-
ifications into application code. The advantage of our ap-
proach is that the generation of function type information
and exception specifications (more importantly, how to avoid
exceptions) is highly automated. In addition, the wrapper
generator can be configured to generate a variety of wrap-
pers to suite the need of application programmers.

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

The invalid input handling capability of C functions in
I/O libraries have been evaluated in [2] using the Ballista
system. Their results show that even robust libraries like
SFIO [7] may still fail due to invalid file parameters or cor-
rupted data structures. The authors of [2] manually coded
safe versions of eight functions. As in our system, each
function performs argument checking before calling the orig-
inal function. However, their system tests memory accessi-
bility using a signal handler: the system touches the mem-
ory to see whether it generates memory access fault. If so,
the signal handler will catch the exception and the safe func-
tion can return an error code. In contrast, our system avoids
the usage of signal handlers for memory allocated on the
heap and on the stack. An advantage of our approach is that
it can detect buffer overflows that occur within the same
memory page. Such overflows typically do not generate
memory access fault and hence cannot be detected using a
signal handler. Nevertheless, they may overwrite other data
structures after the buffer and may impose security risks in
some systems [4, 1].

9. Conclusion and Future Work

Software robustness is essential to critical applications.
This paper presents an automated approach to increase the
robustness of C libraries through adaptive fault-injection
experiments. Our system extracts function prototypes in a
shared library through header files and manual pages. It
then generates a fault-injector based on a carefully crafted
type hierarchy to test the robust argument types of each
global function. Based on this information and some man-
ual editing, the system generates a robustness wrapper that
prevents all crash or hang failures in the Ballista tests.

Our approach can improve the robustness and security of
libraries that are only available as binaries. It also provides
transparent protection to existing programs without modifi-
cation or recompilation of the source code. In addition, the
highly automated nature of the wrapper generation process
makes it easy to adapt to new library releases.

In the future, we plan to evaluate the robustness of our
system using other types of fault injection techniques (e.g.
bit-flips) and its effectiveness with respect to real failure oc-
currences.

Acknowledgments

We are grateful to Trevor Jim, Karin Hogstedt, Bob Gru-
ber, and Joao Gabriel Silva for their helpful comments and
suggestions. We would also like to thank the anonymous
reviewers for comments on an early draft of the paper.

References

[1] Arash Baratloo, Navjot Singh, and Timothy Tsai.
Transparent run-time defense against stack smashing
attacks. In Proceedings of USENIX Annual Technical
Conference, June 2000.

[2] John DeVale and Philip Koopman. Performance eval-
uation of exception handling in I/O libraries. In Pro-
ceedings of the International Conference on Depend-
able Systems and Networks, July 2001.

[3] John P. DeVale and Philip Koopman. Robust software
– no more excuses. In Proceedings of the Interna-
tional Conference on Dependable Systems and Net-
works, June 2002.

[4] Christof Fetzer and Zhen Xiao. Detecting heap smash-
ing attacks through fault containment wrappers. In
Proceedings of the 20th IEEE Symposium on Reliable
Distributed Systems, October 2001.

[5] Masaharu Goto. CINT C/C++ interpreter, available at
http://root.cern.ch/root/Cint.html.

[6] Philip Koopman and John DeVale. The exception han-
dling effectiveness of POSIX operating systems. IEEE
Transactions on Software Engineering, 26(9):837–
848, Sep 2000.

[7] David G. Korn and K. Phong Vo. Sfio: Safe/fast
string/file IO. In Proceedings of USENIX Conference,
pages pp 235–256, 1991.

[8] Nathan P. Kropp, Philip J. Koopman, and Daniel P.
Siewiorek. Automated robustness testing of off-the-
shelf software components. In Proceedings of the 28th
International Symposium on Fault-Tolerant Comput-
ing, pages 30–37, June 1998.

[9] Sun Microsystems. Linker and libraries guide, July
2001.

[10] Frederic Salles, Manuel Rodriguez, Jean-Charles
Fabre, and Jean Arlat. Metakernels and fault contain-
ment wrappers. In Proceedings of the 29th Interna-
tional Symposium on Fault-Tolerant Computing, June
1999.

[11] K-P. Vo, Y-M. Wang, P. Chung, and Y. Huang. Xept:
a software instrumentation method for exception han-
dling. In Proceedings of the Eighth International Sym-
posium on Software Reliability Engineering, pages
60–69, Albuquerque, NM, USA, Nov 1997.

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

