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Abstract

The deep neural networks (DNNs) trained by adversarial
training (AT) usually suffered from significant robust gener-
alization gap, i.e., DNNs achieve high training robustness
but low test robustness. In this paper, we propose a generic
method to boost the robust generalization of AT methods
from the novel perspective of attribution span. To this end,
compared with standard DNNs, we discover that the gen-
eralization gap of adversarially trained DNNs is caused by
the smaller attribution span on the input image. In other
words, adversarially trained DNNs tend to focus on specific
visual concepts on training images, causing its limitation
on test robustness. In this way, to enhance the robustness,
we propose an effective method to enlarge the learned at-
tribution span. Besides, we use hybrid feature statistics for
feature fusion to enrich the diversity of features. Extensive
experiments show that our method can effectively improves
robustness of adversarially trained DNNs, outperforming
previous SOTA methods. Furthermore, we provide a the-
oretical analysis of our method to prove its effectiveness.

1. Introduction
Deep neural networks (DNNs) have shown remarkable

success in solving complex prediction tasks. However, re-
cent studies have shown that they are particularly vulnera-
ble to adversarial attacks [22], which take the form of small
perturbations to the input that cause DNNs to predict in-
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Figure 1. A visual illustration of attribution span under ResNet-
18. (a) is the original image; (b) and (c) are attribution spans of
the standard model and robust model in the inference phase, re-
spectively. ASC is Attribution Span Coverage; (d) is the differ-
ence between the standard model and the robust model in terms of
attribution span; (e) is the result after partial feature erasure of the
original image using (d).

correct outputs. The defense of adversarial examples has
been intensively studied in recent years and several defenses
against adversarial attacks have been proposed in a great
deal of work [17, 18].

Among the various existing defense strategies, adversar-
ial training (AT) [10, 15] has been shown to be one of the
most effective defenses [16] and has received a lot of atten-
tion from the research community. However, adversarially



trained DNNs typically show a significant robust general-
ization gap [27]. Intuitively, there is a large gap between the
training robustness and test robustness of the adversarially
trained model on the adversarial examples. Some existing
methods [23, 25, 27] narrow the robust generalization gap
from the perspective of weight loss landscapes. Other exist-
ing methods [13,24,32] enhance robust generalization from
the perspective of training strategies. However, this work
ignores a critical factor affecting generalization robustness,
which is the learned knowledgeable representation.

Training DNNs with robust generalization is particu-
larly difficult, typically possessing significantly higher sam-
ple complexity [8, 29, 31] and requiring more knowledge-
able [4, 19]. Compared with standard DNNs, we discover
that the generalization gap of adversarially trained DNNs
is caused by the smaller attribution span on the input im-
age. In other words, adversarially trained DNNs tend to
focus on specific visual concepts on training images [8],
causing its limitation on test robustness. Specifically, we
explore the difference between the standard model (training
w/o AT) and the robust model (training w/ AT) in the in-
ference phase through empirical experiments. As shown in
Figure 1 (b) and Figure 1 (c), the standard model and the
robust model have different attribution span for the same
image in the inference phase, and the attribution span of the
standard model is larger than that of the robust model in
general. Through our further exploration, we find that these
different spans (see Figure 1 (d)) affect the model’s deci-
sion on clean data and hardly affect the model’s decision
on adversarial examples. This indicates that AT enables the
model to learn robust features, but ignores the features of
generalization. This motivates us to design a method to en-
large the attribution span to ensure that the model focuses on
robust features while enhancing the focus on other features
to improve the generalization ability of the robust model.

To this end , we propose a generic method to boost the
robust generalization of AT from the novel perspective of
attribution span. Specifically, we use the class activation
mapping to obtain the attribution span of the model under
real and fake labels, and mix these two spans proportion-
ally to complete the enlargement of the attribution span and
make the model focus on the features within this span dur-
ing the training process. In addition, in order to increase
the diversity of features and ensure the stable training of the
model under the enlarged attribution span, we adopt the fea-
ture fusion implemented by hybrid feature statistics to fur-
ther improve the generalization ability of the model. Com-
pared to other methods, our method can further improve the
accuracy of the model on clean data and adversarial exam-
ples. Meanwhile, our work provides new insights into the
lack of good generalization of robust models.

Our main contributions are summarized as follows.

• We find that adversarially trained DNNs focus on a

smaller span of features in the inference phase and
ignores some other spans of features. These spans
are generally associated with generalization ability and
have little impact on robustness.

• We propose a method to boost AT, called AGAIN,
which is short for Attribution Span EnlarGement and
Hybrid FeAture FusIoN. During model training, we
expand the region where the model focuses its features
while ensuring that it learns robust features, and com-
bine feature fusion to enhance the generalization of the
model over clean data and adversarial examples.

• Extensive experiments have shown that our proposed
method can better improve the accuracy of the model
on clean data and adversarial examples compared to
state-of-the-art AT methods. Particularly, it can be eas-
ily combined with other methods to further enhance
the effectiveness of the method.

2. Related Work
2.1. Adversarial Attack Methods

Sezgedy et al. [22] first introduced the concept of ad-
versarial examples, i.e., adding noise that is imperceptible
to the human eye to the original clean examples, so that
the perturbed examples cause DNNs prediction errors. Af-
ter this concept was introduced, many works investigated
the robustness of the model and proposed a series of at-
tack methods. Goodfellow et al. [10] proposed a clas-
sical adversarial attack method called Fast Gradient Sign
Method (FGSM), which finds the most aggressive pertur-
bation within a fixed range of perturbations by exploiting
the gradient information of the model. Madry et al. [15]
further improved FGSM by proposing a multi-step version
of FGSM called projected gradient descent (PGD). PGD
generates stronger adversarial examples by means of multi-
step iterative projection. Carlini Wagner et al. [3] pro-
posed an optimization-based method to generate adversarial
examples that can be widely used to evaluate the robust-
ness of deep learning models. Croce et al. [6] proposed
a parameter-free combination of attacks to evaluate the ro-
bustness of the model. First they proposed two extensions
of the PGD attack to overcome failures due to suboptimal
step size and objective function problems. Then they com-
bined the new attack with two complementary existing at-
tacks, which is called AutoAttack.

2.2. AT Defense Methods

As a series of attack methods have been proposed, a large
number of defense strategies have been developed to de-
fend against adversarial attacks. Athalye et al. [1] showed
that: most defense methods are ineffective against gradi-
ent mask-based adaptive adversarial attacks, and only the



AT defense strategy is the only proven effective defense.
AT defends against adversarial attacks by using adversar-
ially generated data in model training [10] and is formu-
lated as a minimal optimization problem. Madry et al. [15]
proposed the main AT framework to improve the robust-
ness of the model. The channel-wise activation suppressing
(CAS) [2] strategy suppresses redundant activations from
adversarial perturbations during AT. Wang et al. [25] im-
proved the process of generating adversarial examples by
simultaneously applying misclassified clean examples, as
well as adversarial examples for model training (MART).
Zhang et al. [31] explored the tradeoff between standard ac-
curacy and adversarial robustness. To achieve a better trade-
off, they decomposed the adversarial prediction error into
natural error and boundary error and proposed TRADES to
control these two terms simultaneously (TRADES). Zhang
et al. [32] proposed Friendly Adversarial Training (FAT),
instead of using loss-maximizing mostly adversarial exam-
ples, they searched for the least lossy adversarial examples
among the adversarial examples with confident misclassifi-
cation. The solution proposed by Cui et al. [7] is to con-
strain the logits from a robust model that takes adversarial
examples as input and makes them similar to the logits of a
clean model with corresponding natural examples as input
(LBGAT). Jia et al. [13] proposed the concept of ”learnable
attack policy”, called LAS-AT, which learns to automati-
cally generate attack policies to improve the robustness of
the model. All these methods improve the robustness of the
model, but still suffer from insufficient generalization.

2.3. Class Activation Mapping

The class activation mapping [33] is one of the meth-
ods to visualize the attribution span, which highlights the
distinguishing object fraction detected by the convolutional
neural network. Given a classification network, the class ac-
tivation mapping uses the parameters of the final fully con-
nected layer obtained from training as class weights are pro-
jected onto the final convolutional features and the weighted
features are linearly summed to identify the importance of
the image regions. The equation is as follows:

Mc =
∑
k

wc
kAk, (1)

where Ak denotes the value of the k-th feature map; wc
k de-

notes the class weight of the k-th feature map corresponding
to class c; and Mc denotes the sum of the weights of the dif-
ferent activation feature maps for identifying a certain class
c, which is the attribution span that the model focuses on
during inference.

In addition, Selvaraju et al. [20] proposed a method
called Grad-CAM for improving the interpretability and
transparency of deep neural networks. The Grad-CAM
method is based on gradient information and can be applied

to any type of convolutional neural network and does not re-
quire modifying the structure of the model. Chattopadhay et
al [5] improved on Grad-CAM by proposing Grad-CAM++
and providing a mathematical interpretation. The method
uses the weighted combination of the positive and negative
derivatives of the last convolutional layer feature maps with
respect to the specific category scores as weights to produce
visual interpretations for the considered category labels.

3. Attribution Span of The Model
In this section, we investigate the difference between the

standard model and the robust model from the perspective
of attribution span and show the correlation between attri-
bution span and generalization ability. Specifically, we train
ResNet-18 [11] and VGG-16 [21] on CIFAR-10 [14] using
standard training and PGD-AT [15]. Then, we visualize the
attribution span in the second last layer of the model using
class activation mapping. We explore two main questions:

Q1: What differences exist between the standard
model and the robust model in terms of attribution
span?

To begin with, in order to quantify the attribution span
and to better analyze the difference between the standard
model and the robust model in terms of attribution span, we
define the Attribution Span Coverage (ASC). The larger the
ASC, the wider the attribution span of the model.

ASC =

∑N
i=1 I(Mi > λ ·Mmax)

N
, (2)

where I is the indicator function; M is the attribution span
calculated according to Equation (1); N is the total number
of elements in M; Mi is the i-th element in M and Mmax is
the maximum value in M; λ is the hyperparameter, which is
set to 0.5 here, i.e., the model is considered to be concerned
with this span when the elements in M are greater than 50%
of the maximum value.

Taking the CIFAR-10 dataset as an example, the experi-
mental results are shown in Figure 1(b) and Figure 1(c). As
can be seen from the results, the ASC of the standard model
is larger than that of the robust model, which is common
throughout the dataset. The ResNet-18 model has this phe-
nomenon in 79.38% of the data in the entire CIFAR-10, of
which the average ASC of the standard model is 54.86%,
and the average ASC of the robust model is 51.80%; VGG-
16 model in the entire CIFAR-10 dataset, this phenomenon
exists in 74.15% of the data, where the average ASC of the
standard model is 46.84%, and the average ASC of the ro-
bust model is 43.70%. This indicates that training the model
using AT makes the model focus on some of the more robust
features and ignores the learning of other features, which re-
sults in a smaller ASC value for the robust model.

Q2: What decisions of the model are affected by these
differences.



Figure 2. A visual illustration of our proposed method. It consists of two parts: attribution span enlargement (ASE) and hybrid feature
fusion (HFF). ASE is used in the second last layer of the model; HFF is used before ASE.

Table 1. Accuracy of the model on original data and corrupted data. These features mainly affect clean data and essentially have no effect
on the adversarial examples.

Network Training method Original clean Corrupted clean Original adv Corrupted adv

ResNet-18 Std training 100% 79.4% 00.7% 03.6%
Adv training 100% 84.4% 76.9% 72.3%

VGG-16 Std training 100% 65.3% 00.3% 04.3%
Adv training 100% 85.5% 76.6% 71.7%

In the previous section, we found that the attribution span
of the robust model is generally smaller than that of the stan-
dard model. Next, we explore Q2.

We first obtain the different spans in the attribution span
for the standard model and the robust model. Then we bi-
narize it to generate a mask (see Figure 1(d), where white
represents the feature span to be saved and the other colors
represent the feature span to be deleted). Then we perform a
Hadamard product of the mask with the original data to get
the corrupted data (see Figure 1(e)). We select data from the
original dataset that can be classified correctly by the model
and generate adversarial examples using PGD attack [15].

The mask is applied to the clean data and the adversar-
ial examples to generate corrupted clean data (Corrupted
clean) and corrupted adversarial examples (Corrupted adv),
respectively, and the model is used to classify these cor-
rupted data. The results are shown in the Table 1. Analyses
are as follows. Taking ResNet-18 as an example, the ac-
curacy of the model under standard training decreased by
20.6% on the corrupted clean data compared with the orig-
inal clean data; the accuracy of the model trained under AT
decreased by 15.6%. In the same case, the accuracy of the
model on the adversarial examples do not change signifi-
cantly.

Through empirical experiments, we find that these attri-
bution spans that are ignored by the robust model are highly
susceptible to influence the model’s decisions of clean data.
In addition, the adversarial perturbation has an inherent

structure, which is broken by some methods of random
masking thus reducing the aggressiveness [28]. But these
attribution spans ignored by the robust model hardly affect
the aggressiveness of the adversarial examples, indicating
that no special attention is paid to these spans when gen-
erating the adversarial examples. Through the study of the
above two problems, we propose a hypothesis:

In the process of AT, ensuring that the model learns
robust features while enlarging the attribution span of its
learning can improve the generalization ability of the ro-
bust model.

To examine this hypothesis, we propose a novel AT strat-
egy. We describe this method in detail in the next section.
Subsequently, our proposed hypothesis is confirmed by a
large number of experiments, and the experimental results
show that our proposed method significantly improves the
accuracy of the model on clean data and adversarial exam-
ples.

4. The Proposed Method
In this section, we present the proposed method in detail.

Its overall framework is shown in Figure 2. It consists of
two parts: Attribution Span Enlargement and Hybrid Fea-
ture Fusion.

4.1. Attribution Span Enlargement

Two main tasks need to be accomplished in this part:
1) enable the model to learn the original robust features



to ensure the robustness of the model itself; 2) enable the
model to learn features from other spans to achieve the en-
largement of attribution span and improve the generaliza-
tion ability of the model. The class activation mapping gives
us a solution to this problem.

First, we obtain the robust attribution span that the model
focuses on under the true label y of the data. Secondly, we
randomly disrupt y in the same batch to generate y′. Then
under the fake label, we obtain the other attribution span of
the model. Finally, these two attribution spans are fused in
a certain ratio to generate a new attribution span to achieve
our goal. The point to note is that, unlike the purpose of
class activation mapping, we need the weighted features
to maintain their original dimensionality for the subsequent
process of feature extraction or classification, and thus there
is no need to perform the weighted summation operation at
the end. In order to achieve the final purpose, we modify
Eq. 1. The equation is as follows.

Âl = α ·Al ·Wy + (1− α) ·Al ·Wy′
, (3)

where Al ∈ RB×Cl×Wl×Hl is the feature at l-th layer of
the model, B is the number of samples in a batch, and Cl,
Wl, and Hl are the number of channels, width, and height
of the feature output at l-th layer, respectively. Âl is the
weighted feature; Wy ∈ RB×Cl×1×1 and Wy′

represent
the parameter weights corresponding to the true label and
fake label in the fully connected layer, respectively; α ∈
[0.5, 1] is a hyperparameter to balance the weights between
the robust attribution span and other attribution span.

In addition, the class activation mapping is implemented
by replacing the fully connected layer of the original model
with a global average pooling layer. This is not applicable
in our case. An alternative method is to first train a robust
model using AT, such as PGD-AT, to provide the desired
attribution span. However, this method is wasteful of re-
sources and not flexible enough.

To address this problem, we received inspiration from [2]
and designed an auxiliary network (see Figure 2), called At-
tribution Span Enlargement (ASE), containing only a fully
connected layer to implement the above process. We mod-
ify Eq. 3 and the final equation is as follows.

Âl = α ·Al ·Wy
ASE + (1− α) ·Al ·Wy′

ASE , (4)

where Wy
ASE and Wy′

ASE represent the parameter weights
corresponding to the true and fake labels in the fully con-
nected layer of the ASE, respectively.

In ASE, we first perform a global average pooling op-
eration on the features of the l-layer, and then feed them
into the fully connected layer for classification. In the infer-
ence phase, we weight the features using only the parameter
weights Wped

ASE corresponding to the labels predicted by the
model in the fully connected layer of ASE. It is worth not-
ing that during inference, we do not randomly generate fake

labels, so there is no gradient confusion [1]. ASE has its
own independent output and thus needs to be trained jointly
with the original classification network.

4.2. Hybrid Feature Fusion

The purpose of feature fusion is twofold: 1) to increase
the diversity of features and provide a richer attribution
span for ASE to make the model training more stable. 2)
to make the model pay more attention to the structural in-
formation of the data and further increase the robustness
of the model [9]. Inspired by AdaIN [12], we designed
the Hybrid Feature Fusion (HFF). In practice, we randomly
shuffle the output features Al to generate a new set of fea-
tures A′

l as the style data. First we use AdaIN to calcu-
late hybrid features A1

l and A2
l : A1

l = AdaIN(Al,A
′
l),

A2
l = AdaIN(A′

l,Al). Second, we use the original fea-
tures and the generated hybrid features to calculate the hy-
brid feature statistics. The equation is as follows.

µ̂ = γ1 · µ(Al) + γ2 · µ(A′
l) + γ3 · µ(A1

l ) + γ4 · µ(A2
l )

σ̂ = γ1 · σ(Al) + γ2 · σ(A′
l) + γ3 · σ(A1

l ) + γ4 · σ(A2
l ),

(5)

where the mean µ(·) and variance σ(·) are calculated in-
dependently for each channel and sample; γ1, γ2, γ3, γ4 ∈
[0, 1] are randomly generated, and γ1 + γ2 + γ3 + γ4 = 1.
Finally, the hybrid feature statistics are applied to the style-
normalized Al.

FeatureFusion(Al) = σ̂
Al − µ(Al)

σ(Al)
+ µ̂. (6)

To obtain a new hybrid feature, we linearly interpolated
the statistics from these four features. That is, unlike previ-
ous methods, our approach mixes the statistics from multi-
ple dimensions, which leads to a richer enhancement effect.
HFF can be easily applied on each layer of the model, and
in this paper, we apply it before ASE.

4.3. Training Strategy

In our proposed method, ASE can be considered as an
auxiliary network with its own parameters and outputs.
Therefore, it needs to be trained together with the original
network during the training process. In view of this, we use
a joint loss function [2] to train the model. Moreover, al-
though feature fusion is used in our proposed method, we
do not fuse on the labels during the training process, but use
the original labels. Under AT, the overall loss function is as
follows.

L = LCE(Fori(xadv), y)

+ LCE(FASE(F
l
ori(xadv)), y),

(7)

where LCE(·) is the CrossEntropy Loss function; Fori(·)
is the output of the original model after softmax; FASE(·)



is the output of the ASE module after softmax; F l
ori(·) is

the output of the l-th layer of the original model after global
average pooling; xadv and y are the adversarial example and
the true label, respectively.

In addition, since the model does not learn the features
of the data in the early stage of training. Therefore, in the
early stage of model training, we use original AT to train the
model with high probability. As training epochs increase,
we gradually increase the probability of using the proposed
method. The algorithm of the training process is shown in
Appendix.

5. Experiments

In this section, we conduct comprehensive experi-
ments on the CIFAR-10 and CIFAR-100 datasets [14]
with ResNet-18 [11] and WideResNet-34-10 [30] to come
in and assess the effectiveness of the proposed method,
which includes an empirical exploration of the proposed
method, comparison experiments, and ablation experi-
ments. More models, datasets, and exploratory experimen-
tal results are presented in Appendix. Our code is available
at https://github.com/InsLin/AGAIN.

5.1. Competitive Methods

In order to evaluate the effectiveness of proposed
method, we compare proposed method with the current
mainstream benchmark methods, which mainly include
standard AT (PGD-AT) [15] , MART [25], TRADES [31],
FAT [31], LBGAT [7], CAS [2], AWP [27] and LAS-
AT [13]. The combination of our proposed method and
some of these methods are respectively referred to as
AGAIN-PGD-AT, AGAIN-MART and AGAIN-AWP

5.2. Implementation Details

5.2.1 Training Phase.

In the training phase, except for LAS-AT, we use a fixed
training strategy: throughout the training, we use an SGD
optimizer with an initialized learning rate of 0.1 and a learn-
ing rate variation of [0.1, 0.01, 0.001], adjusting the learn-
ing rate at the 75th, 90th and 100th epoch of training respec-
tively, for a total of 120 epochs of training; the maximum
perturbation intensity of the attack is 8/255, the step size is
4/255, and the number of iterations is 10. For LAS-AT, all
settings are consistent with those in [13]. The hyperparam-
eter α in our method is set to 0.6.

5.2.2 Evaluation Phase.

In the evaluation phase, the robustness of the model is eval-
uated by measuring the correct accuracy of the model under
different adversarial attacks and approximating the upper
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Figure 3. Standard generalization (on clean data) and robust gen-
eralization (on adversarial examples) of different methods.

bound of the robustness on the test set. We choose sev-
eral adversarial attack methods to attack the trained model,
including PGD (PGD-10, PGD-20, PGD-50, and PGD-
100) [15], C&W [3], and AutoAttack (AA) [6]. The maxi-
mum perturbation strength of all attack methods under L∞
is set to 8/255. Meanwhile, in order to fairly compare other
defenses with proposed method, we use adaptive white-box
attacks for the proposed method, i.e., the attacks are per-
formed on the loss function of the original network and the
loss function of the auxiliary network.

5.3. Experiments on ResNet-18

Our proposed method is a plug-and-play and thus can
be easily combined with other methods to further improve
its robustness. We evaluate the robustness of all defense
methods against several types of white-box attacks. The
results for CIFAR-10 and CIFAR-100 are shown in Table 2
and 3.

From the experimental results, we can see that our pro-
posed method outperforms other methods in most attack
scenarios, not only improving the accuracy of the model
on clean data, but also further improving the accuracy on
adversarial examples. On CIFAR-10, our method achieves
87.88% accuracy on clean data, and the robustness under
different attacks is significantly improved. Our method also
improves the robustness of different defense methods under
various attacks. The proposed method improves the perfor-

https://github.com/InsLin/AGAIN


Table 2. Test robustness on the CIFAR-10 database. The best results are boldfaced, and the second best results are underlined.

Method Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA
PGD-AT 84.25% 46.88% 46.56% 44.85% 44.76% 45.75% 41.69%
MART 81.61% 52.38% 51.28% 50.93% 50.80% 47.77% 46.09%

TRADES 83.64% 52.05% 50.67% 50.38% 50.20% 49.68% 48.41%
FAT 87.32% 45.80% 43.53% 43.11% 42.98% 43.50% 40.76%

LBGAT 85.73% 53.12% 52.05% 51.78% 51.68% 50.63% 49.04%
CAS 86.24% 51.38% 51.49% 51.77% 51.04% 53.66% 46.69%
AWP 79.45% 55.04% 54.47% 54.36% 54.30% 51.17% 49.40%

LAS-AT 82.39% 54.74% 53.70% 53.70% 53.72% 51.96% 49.94%
AGAIN-PGD-AT 87.88% 54.87% 54.43% 53.62% 53.13% 55.80% 49.31%
AGAIN-MART 87.13% 56.63% 56.00% 55.71% 55.67% 58.56% 50.77%
AGAIN-AWP 86.52% 59.99% 59.35% 59.11% 58.85% 61.19% 51.89%

Table 3. Test robustness on the CIFAR-100 database. The best results are boldfaced, and the second best results are underlined.

Method Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA
PGD-AT 62.34% 21.24% 21.38% 21.05% 21.01% 22.15% 19.76%
MART 55.14% 28.52% 28.08% 27.79% 27.91% 25.65% 24.04%

TRADES 58.18% 28.71% 28.25% 28.10% 27.99% 24.22% 24.03%
FAT 61.61% 19.33% 18.35% 18.08% 17.98% 19.31% 17.38%

LBGAT 56.78% 32.84% 32.21% 32.11% 32.07% 27.46% 26.39%
CAS 64.04% 31.66% 31.55% 31.26% 31.02% 34.82% 24.40%
AWP 54.00% 31.78% 31.49% 31.44% 31.74% 28.20% 26.19%

LAS-AT 58.38% 32.32% 31.89% 31.82% 31.77% 28.48% 26.84%
AGAIN-PGD-AT 66.92% 32.97% 32.88% 32.54% 32.15% 35.59% 26.21%
AGAIN-MART 63.61% 33.75% 33.69% 33.46% 33.28% 37.99% 27.22%
AGAIN-AWP 64.51% 35.58% 35.44% 35.39% 35.08% 40.02% 28.69%

mance of MART by 2.33% and 3.22% under PGD-100 and
AA attacks, respectively. It also improves the performance
of AWP by 4.55% and 3.49% under the same attacks, re-
spectively. In addition, our method is able to achieve the
highest accuracy of 61.19% under C&W attack. At CIFAR-
100, the proposed method achieves not only the highest ac-
curacy on clean data, but also the best robust performance
under all attack scenarios. In detail, our proposed method
helps MART and AWP to improve the accuracy on clean
data by 8.47% and 10.51%, respectively. In terms of at-
tacks, when our proposed method is combined with AWP,
the highest accuracy is achieved under PGD-100 and AA
attacks, reaching 35.08% and 28.69%, respectively.

In addition, it can also be seen that the improvement for
C&W attack is more obvious than that for other attacks.
As shown in Figure 4, the deep feature distribution learned
by the trained model of our method is similar to Center
Loss [26], i.e., it is more compact in the same class and
more separated in different classes. This makes it more dif-
ficult for margin-based attacks such as C&W to succeed [2].

5.4. Experiments on WideResNet-34-10

We use the WideResNet-34-10 [30] for experiments on
the CIFAR-10 dataset. To evaluate the model, we use

(a) AT w/o AGAIN (b) AT w/ AGAIN

Figure 4. The t-SNE two-dimensional embedding of the depth
features extracted from the penultimate layer of the ResNet-18
model trained on CIFAR-10 using our proposed training method
(AGAIN) and PGD-AT.

PGD [15] (PGD-20, PGD-50), C&W [3] and A&A [6]. The
methods of comparison use MART [25], TRADES [31],
FAT [31], AWP [27] and LAS-AT [13]. The experimen-
tal results are shown in the Table 4. It can be seen from
the experimental results that when our proposed method is
combined with other AT methods, it is still effective in im-
proving the robustness of the model on large complex mod-
els with clean data and adversarial examples.



Table 4. WideResNet-34-10 result on CIFAR-10. The best results are boldfaced.

Method Clean PGD-20 PGD-50 C&W AA
MART 83.63% 56.74% 56.44% 53.16% 51.23%

TRADES 84.91% 55.78% 55.10% 54.29% 52.95%
FAT 84.91% 49.91% 49.69% 49.13% 48.01%
AWP 84.12% 58.09% 57.84% 56.08% 53.19%

LAS-AT 86.16% 56.28% 56.07% 55.67% 53.08%
AGAIN-AWP 90.31% 62.43% 62.29% 68.13% 53.59%

Table 5. The effect of our proposed method at different layers on
the CIFAR10 dataset.

Layer Clean PGD-20 PGD-100 C&W
Layer1 59.52% 29.04% 28.72% 33.47%
Layer2 78.09% 34.52% 34.05% 38.95%
Layer3 86.76% 42.68% 42.00% 40.56%
Layer4 87.88% 54.43% 53.13% 55.80%

5.5. Location of Attribution Span Enlargement.

ASE module is flexible to use on different layers of the
DNNs. Therefore, we explored the performance of the pro-
posed method on different layers and the experimental re-
sults are shown in Table 5. It can be seen from the exper-
imental results that the deeper the layers are, the better the
results of our proposed method. The reason for this phe-
nomenon is that ASE can be seen as a feature filtering pro-
cess, and if used in the first few layers of DNNs, it will make
the model lose some detailed features, which will affect the
learning of more advanced features by the deeper network,
and will eventually lead to a decrease in the accuracy of the
model. The deeper layers are more relevant to the final pre-
diction, so using it in the deeper layer will have a significant
effect enhancement.

5.6. Analysis of the Generalization

In this section, we explore the generalization ability of
the model under different methods. The experimental re-
sults are shown in Figure 3. From the experimental re-
sults, we can see that our methods, AGAIN and MART w/
AGAIN, can effectively reduce the standard generalization
gap (standard gen. gap) and robust generalization gap (ro-
bust gen. gap) compared with PGD-AT and MART. Some
other methods, such as AWP, LAS, etc., have smaller gen-
eralization gaps, but they are all implemented at the cost
of reducing accuracy on the training dataset. Our method
can maintain or even improve the accuracy on the training
dataset while still achieving a smaller generalization gap.
Meanwhile, when our method is combined with AWP, it can
further narrow the generalization gap and improve the ac-
curacy of the model on clean data and adversarial samples
while ensuring the accuracy of the model on the training

Table 6. Results of ablation experiments

ASE HFF Clean PGD-20 C&W
% % 84.25% 42.36% 43.75%
! % 86.33% 52.74% 53.97%
% ! 86.19% 44.71% 43.91%
! ! 87.88% 54.43% 55.80%

dataset.

5.7. Ablation Study

Our proposed method mainly consists of two parts: ASE
and HFF. In this section, we verify the effectiveness of the
proposed method. During the experiments, we remove the
ASE and the HFF, respectively, and the experimental results
are shown in Table 6. The accuracy of the clean data is
significantly improved when only ASE is available, and the
robustness under all attacks is improved. It can also be seen
that the generalization of the robust model can be improved
when HFF is used alone. The best results can be achieved
when ASE and HFF are combined.

6. Conclusion
In this paper, we discover the difference in attribution

span between standard and robust models, and explore a
possible reason for the low generalization of the robust
model from a new perspective. In order to improve the
generalization of the robust model, we propose an AT ap-
proach based on attribution span enlargement and hybrid
feature fusion. The method ensures that the model learns
robust features while paying extra attention to features in
other spans, and combines feature fusion to improve the ac-
curacy of the model on clean data and adversarial examples.
Comprehensive experiments show that our method is effec-
tive and general enough to improve the robustness of the
model across different AT methods, network architectures
and datasets.

7. Acknowledgment
The authors would like to thank the anonymous review-

ers for their comments. Zhen Xiao and Kelu Yao are the
corresponding authors.



References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-

cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International confer-
ence on machine learning, pages 274–283. PMLR, 2018. 2,
5

[2] Yang Bai, Yuyuan Zeng, Yong Jiang, Shu-Tao Xia, Xingjun
Ma, and Yisen Wang. Improving adversarial robustness
via channel-wise activation suppressing. arXiv preprint
arXiv:2103.08307, 2021. 3, 5, 6, 7

[3] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. Ieee, 2017. 2, 6, 7

[4] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C
Duchi, and Percy S Liang. Unlabeled data improves adver-
sarial robustness. Advances in Neural Information Process-
ing Systems, 32, 2019. 2

[5] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader,
and Vineeth N Balasubramanian. Grad-cam++: General-
ized gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE winter conference on appli-
cations of computer vision (WACV), pages 839–847. IEEE,
2018. 3

[6] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on ma-
chine learning, pages 2206–2216. PMLR, 2020. 2, 6, 7

[7] Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learn-
able boundary guided adversarial training. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 15721–15730, 2021. 3, 6

[8] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola-
Bibiane Schönlieb. On the connection between adversarial
robustness and saliency map interpretability. arXiv preprint
arXiv:1905.04172, 2019. 2

[9] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231, 2018. 5

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 2, 3

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3, 6

[12] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 1501–1510, 2017. 5

[13] Xiaojun Jia, Yong Zhang, Baoyuan Wu, Ke Ma, Jue Wang,
and Xiaochun Cao. Las-at: Adversarial training with learn-
able attack strategy. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13398–13408, 2022. 2, 3, 6, 7

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3, 6

[15] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 1, 2, 3, 4, 6, 7

[16] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial
robustness against the union of multiple perturbation mod-
els. In International Conference on Machine Learning, pages
6640–6650. PMLR, 2020. 1

[17] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha,
and Ananthram Swami. Distillation as a defense to adver-
sarial perturbations against deep neural networks. In 2016
IEEE symposium on security and privacy (SP), pages 582–
597. IEEE, 2016. 1

[18] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The
odds are odd: A statistical test for detecting adversarial ex-
amples. In International Conference on Machine Learning,
pages 5498–5507. PMLR, 2019. 1

[19] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal
Talwar, and Aleksander Madry. Adversarially robust gener-
alization requires more data. Advances in neural information
processing systems, 31, 2018. 2

[20] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 3

[21] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[22] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1, 2

[23] Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu,
Anima Anandkumar, and Zhangyang Wang. Augmax: Ad-
versarial composition of random augmentations for robust
training. Advances in neural information processing systems,
34:237–250, 2021. 2

[24] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen
Zhou, and Quanquan Gu. On the convergence and robustness
of adversarial training. arXiv preprint arXiv:2112.08304,
2021. 2

[25] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In International
Conference on Learning Representations, 2019. 2, 3, 6, 7

[26] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A
discriminative feature learning approach for deep face recog-
nition. In European conference on computer vision, pages
499–515. Springer, 2016. 7

[27] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial
weight perturbation helps robust generalization. neural in-
formation processing systems, 2020. 2, 6, 7



[28] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for se-
mantic segmentation and object detection. In Proceedings of
the IEEE international conference on computer vision, pages
1369–1378, 2017. 4

[29] Dong Yin, Ramchandran Kannan, and Peter Bartlett.
Rademacher complexity for adversarially robust generaliza-
tion. In International conference on machine learning, pages
7085–7094. PMLR, 2019. 2

[30] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 6, 7

[31] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Lau-
rent El Ghaoui, and Michael Jordan. Theoretically principled
trade-off between robustness and accuracy. In International
conference on machine learning, pages 7472–7482. PMLR,
2019. 2, 3, 6, 7

[32] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui,
Masashi Sugiyama, and Mohan Kankanhalli. Attacks which
do not kill training make adversarial learning stronger. In
International conference on machine learning, pages 11278–
11287. PMLR, 2020. 2, 3

[33] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929,
2016. 3


	. Introduction
	. Related Work
	. Adversarial Attack Methods
	. AT Defense Methods
	. Class Activation Mapping

	. Attribution Span of The Model
	. The Proposed Method
	. Attribution Span Enlargement
	. Hybrid Feature Fusion
	. Training Strategy

	. Experiments
	. Competitive Methods
	. Implementation Details
	Training Phase.
	Evaluation Phase.

	. Experiments on ResNet-18
	. Experiments on WideResNet-34-10
	. Location of Attribution Span Enlargement.
	. Analysis of the Generalization
	. Ablation Study

	. Conclusion
	. Acknowledgment

