
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Samsara: Efficient Deterministic Replay in
Multiprocessor Environments with Hardware

Virtualization Extensions
Shiru Ren, Le Tan, Chunqi Li, and Zhen Xiao, Peking University;

Weijia Song, Cornell University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/ren

USENIX Association 2016 USENIX Annual Technical Conference 551

Samsara: Efficient Deterministic Replay in Multiprocessor Environments
with Hardware Virtualization Extensions

Shiru Ren1, Le Tan1, Chunqi Li1, Zhen Xiao1, and Weijia Song2

1Department of Computer Science, Peking University
2Department of Computer Science, Cornell University

Abstract

Deterministic replay, which provides the ability to travel
backward in time and reconstruct the past execution flow
of a multiprocessor system, has many prominent applica-
tions. Prior research in this area can be classified into two
categories: hardware-only schemes and software-only
schemes. While hardware-only schemes deliver high
performance, they require significant modifications to
the existing hardware which makes them difficult to de-
ploy in real systems. In contrast, software-only schemes
work on commodity hardware, but suffer from excessive
performance overhead and huge logs caused by tracing
every single memory access in the software layer.

In this paper, we present the design and implemen-
tation of a novel system, Samsara, which uses the
hardware-assisted virtualization (HAV) extensions to
achieve efficient and practical deterministic replay with-
out requiring any hardware modification. Unlike prior
software schemes which trace every single memory ac-
cess to record interleaving, Samsara leverages the HAV
extensions on commodity processors to track the read-set
and write-set for implementing a chunk-based recording
scheme in software. By doing so, we avoid all memory
access detections, which is a major source of overhead
in prior works. We implement and evaluate our system
in KVM on commodity Intel Haswell processor. Evalua-
tion results show that compared with prior software-only
schemes, Samsara significantly reduces the log file size
to 1/70th on average, and further reduces the recording
overhead from about 10×, reported by state-of-the-art
works, to 2.3× on average.

1 Introduction

Modern multiprocessor architectures are inherently non-
deterministic: they cannot be expected to reproduce the
past execution flow exactly, even when supplied with
the same inputs. The lack of reproducibility compli-

cates software debugging, security analysis, and fault-
tolerance. It greatly restricts the development of parallel
programming.

Deterministic replay helps reconstruct non-
deterministic processor executions. It is extensively
used in a wide range of applications. For software
debugging, it is the most effective way to reproduce
bugs, which helps the programmer understand the
causes of the bug [1, 33]. For security analysis, it can
help the system administrator analyze the intrusions
and investigate whether a specific vulnerability was
exploited in a previous execution [17, 18, 7, 11, 37]. For
fault-tolerance, it provides the ability to replicate the
computation on processors for building the hot-standby
system or data recovery [6, 43, 42, 32].

In the multiprocessor environment, memory accesses
from multiple processors to a shared memory object may
interleave in any arbitrary order, which become a signif-
icant source of non-determinism and pose a formidable
challenge to deterministic replay. To address this prob-
lem, most of the existing research focuses on how to
record and replay the memory access interleaving us-
ing either a pure hardware scheme or a pure software
scheme.

Hardware-only schemes record memory access inter-
leaving efficiently by embedding special hardware com-
ponents into the processors and redesigning the cache
coherence protocol to identify the coherence messages
among processors [38, 22, 21, 15, 9, 29, 14, 35, 23, 30].
The advantage of such a scheme is that it allows effi-
cient recording of memory access interleaving in a mul-
tiprocessor environment. On the down side, it requires
extensive modifications to the existing hardware, which
significantly increases the complexity of the circuits and
makes them largely impractical in real systems.

In contrast, software-only schemes achieve determin-
istic replay on the existing hardware by modifying the
OS, the compiler, the runtime libraries or the virtual ma-
chine manager (VMM) [19, 13, 8, 34, 33, 34, 25, 2,

552 2016 USENIX Annual Technical Conference USENIX Association

26, 20, 41, 4]. Among them, virtualization-based deter-
ministic replay is one of the most promising approaches
which provides full-system level replay by leveraging the
concurrent-read, exclusive-write (CREW) protocol to se-
rialize and log the total order of the memory access in-
terleaving [13, 8, 27]. While these schemes are flexible,
extensible, and user-friendly, they suffer serious perfor-
mance overhead (about 10× compared to the native ex-
ecution) and generate huge logs (approximately 1 MB/s
on a four core processor after compression). The poor
performance can be ascribed to the numerous page fault
VM exits led by tracing every single memory access in
the software layer.

To summarize, it is inherently difficult to record mem-
ory access interleaving efficiently by software alone
without proper hardware support. Although there is
no commodity processor with dedicated hardware-based
record and replay capability, some advanced hardware
features in these processors are available to boost the per-
formance of the software-based deterministic replay sys-
tems. Therefore, we argue that the software scheme can
be a viable approach in the foreseeable future if it can
take advantages of advanced hardware features.

In this paper, the main goal is to implement a software
approach that can take full advantages of the latest hard-
ware features in commodity processors to record and re-
play memory access interleaving efficiently without in-
troducing any hardware modifications. The emergence
of hardware-assisted virtualization (HAV) provides the
possibility to meet our requirements. Although HAV
cannot be used for tracing memory access interleaving
directly, we have found a novel use of it to track the
read-set and write-set, and bypass the time-consuming
process in traditional software schemes. Specifically, we
abandon the inefficient CREW protocol that records the
dependence between individual instructions, and instead
use a chunk-based strategy that records processors’ ex-
ecution as a series of chunks. By doing so, we avoid
all memory access detections, and instead obtain each
chunk’s read-set and write-set by retrieving the accessed
and the dirty flags of the extended page table (EPT).
These read and write sets are used to determine whether
a chunk could be committed, and the determinism is en-
sured by recording the chunk size and the commit order.
To further improve the system performance, we propose
a decentralized three-phase commit protocol, which sig-
nificantly reduces the performance overhead by allowing
chunk commits in parallel while still ensuring serializ-
ability.

We implement our prototype, Samsara, which, to the
best of our knowledge, is the first software-based de-
terministic replay system that can record and replay
memory access interleaving efficiently by leveraging
the HAV extensions on commodity processors. Ex-

perimental results show that compared with prior soft-
ware schemes based on the CREW protocol, Samsara
reduces the log file size to 1/70th on average (from
0.22MB/core/second to 0.003MB/core/second) and re-
duces the recording overhead from about 10× to 2.3×
compared to the native execution.

Our main contributions are as follows:

• We present a software-based deterministic replay
system that can record and replay memory access
interleaving efficiently by leveraging the HAV ex-
tensions. It improves the recording performance
dramatically with a log size much smaller than all
prior approaches.

• We design a decentralized three-phase commit pro-
tocol, which further improves the performance by
enabling the chunk commit in parallel while ensur-
ing serializability.

• We build and evaluate our system in KVM on Intel
Haswell processor, and we plan to open-source our
system to the community.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general architecture and shows how
Samsara achieves deterministic replay. Section 3 illus-
trates how to record and replay the memory access inter-
leaving. Section 4 presents the optimization and the im-
plementation details. We evaluate Samsara in section 5.
Section 6 reviews related work and section 7 concludes
the paper.

2 System Overview

In this section, we present the system overview of Sam-
sara. We first outline the overall architecture of Sam-
sara. Then, we discuss how it records and replays all
non-deterministic events.

2.1 System Architecture
Samsara implements the deterministic replay as an ex-
tension to VMM, which has access to the entire virtual
machine and can take full advantage of the HAV exten-
sions, as illustrated in Figure 1. The architecture of Sam-
sara consists of four principal components, namely, the
Controller, the record and replay component, the DMA
recorder, and the log record daemon as shown in orange
boxes in the figure. The controller is in charge of all pol-
icy enforcement. It provides a control interface to users,
manages the record and replay component in KVM, and
is in charge of the log transfer. The record and replay
component acts as a part of VMM working in the kernel
space being responsible for recording and replaying all

2

USENIX Association 2016 USENIX Annual Technical Conference 553

x86 with Hardware-assisted Virtualiza�on

Log Record

Daemon

Windows

WindowsWindows

Applica�ons

QEMU

Controller
DMA

Recorder

Linux

WindowsLinux

Applica�ons

QEMU

Controller
DMA

Recorder

Virtual Machine

Linux

Applica�ons

KVM

Linux

Virtual Machine

Record and Replay Component

Memory Interleaving Recorder

Figure 1: Architecture overview.

non-deterministic events, especially the memory access
interleaving. The DMA recorder records the contents
of DMA events as part of QEMU. Finally, we optimize
the performance of logging by utilizing a user-space log
record daemon. It runs as a background process that sup-
ports loading and storing log files.

Samsara implements deterministic replay by first log-
ging all non-deterministic events during the recording
phase and then reproducing these events during the re-
play phase. Before recording, the controller initializes
a snapshot of the whole VM states. Then all non-
deterministic events and the exact points in the instruc-
tion stream where these events occurred will be logged
by the record and replay component during recording.
Meanwhile, it transfers these log data to the userspace
log record daemon, which is responsible for the persis-
tent storage and the management of the logs. The replay
phase is initialized by loading the snapshot to restore all
VM states. During replay, the execution of the virtual
processors is controlled by the record and replay com-
ponent which ignores all external events. Instead each
recorded event will be injected at the exact same point as
in the recorded execution.

2.2 Record and Replay Non-deterministic
Events

Non-deterministic events fall into three categories: syn-
chronous, asynchronous, and compound. The following
illustrates what events will be recorded and how record-
ing and replaying is done in our system.

Synchronous Events. These events are handled im-
mediately by the VM when they occur. They always take
place at the exact same point where they appear in the in-
struction stream, such as I/O events and RDTSC instruc-
tions. The key observation is that they will be triggered

by the associated instructions at the fixed point if all pre-
vious events are properly injected. Therefore, we just
record the contents of these events. During replay, we
merely inject logged data to where the I/O (or RDTSC)
instruction is trapped into the VMM.

Asynchronous Events. These events are triggered by
external devices, such as external interrupts, so they may
appear at any arbitrary time from the point of view of the
VM. Their impact to the state of the system is determin-
istic, but the timing of their occurrences is not. To replay
them, all such events must be identified with a three-tuple
timestamp (including program counter, branch counter,
and the value of ECX) like the approach in ReVirt [12].
The first two are used to uniquely identify the instruc-
tion where the event appears in the instruction stream.
However, the x86 architecture introduces the REP pre-
fixes to repeat a string instruction the number of times
specified in the ECX. Therefore, we also need to log the
value of ECX which stores how many iterations remain
at the time of this event takes place [12]. During replay,
we leverage a hardware performance counter to guaran-
tee that the VM stops at the recorded timestamp to inject
them.

Compound Events. These events are non-
deterministic in both their timing and their impact on the
system. DMA is an example of such events: the comple-
tion of a DMA operation is notified by an interrupt which
is asynchronous, and the data copy process is initialized
by a series of I/O instructions which are synchronous.
Hence, it is necessary to record both the completion time
and the content of a DMA event.

Memory Access Interleaving. In the multiprocessor
environment, memory accesses from multiple processors
to a shared memory object may interleave in any arbi-
trary order, which become a significant source of non-
determinism. More specifically, if two instructions both
access the same memory object and at least one of them
is write, then the access order of these two instructions
should be recorded during the recording phase. Unfortu-
nately, the number of such events is orders of magnitude
larger than all the other non-deterministic events com-
bined. Therefore, how to record and replay these events
is the most challenging problem in a replay system.

3 Record and Replay Memory Access In-
terleaving with HAV Extensions

How to record and replay memory access interleaving ef-
ficiently is the most significant challenge we face during
the design and implementation of Samsara. In this sec-
tion, we describe on how Samsara uses HAV extensions
to overcome this challenge. Firstly, we show the specific
design of our chunk-based strategy, then we discuss two

3

554 2016 USENIX Annual Technical Conference USENIX Association

P0

Chunk StartMicro-Checkpoint

LD (A)

COW ST (A)

ST (A)

ST (B)COW

Chunk Complete

Trunca�on Reason:

I/O Instruc�on

Commit

P1

LD (A)

Squash & Rollback

LD (B)

ST (B)

Re-execu�on

LD (D)

ST (D)

Conflict

Detec�on

-set { A }

W-set { A , B }

Trunca�on Reason:

Chunk Size Limit

R-set { D }

W-set { D }

R-set { A , B }

W-set { B }

Memory Opera�on

Chunk Name

Chunk Execu�on

Chunk Commit

COW

COW

Figure 2: The execution flow of our chunk-based ap-
proach.

technical issues when implementing this strategy in soft-
ware: how to obtain the read-set and write-set efficiently
and how to reduce the commit overhead. Finally, we give
a brief description on how to replay the memory access
interleaving in Samsara.

3.1 Chunk-based Strategy
Previous software-only schemes leverage CREW proto-
col to serialize and log the total order of the memory
access interleaving [19], which produces huge log size
and excessive performance overhead because every sin-
gle memory access needs to be checked for logging be-
fore execution. Therefore, chunk-based approach has
been proposed on the hardware-based replay system to
reduce the log size [21]. In this approach, each processor
executes instructions grouped into chunks. Thus, it just
needs to record the total order of chunks. However, this
approach is not directly applicable to a software-only re-
play system, because tracing every single memory access
to obtain the read-set and write-set during chunk execu-
tion in software will still be as time-consuming as di-
rectly logging the memory access interleaving itself. To
eliminate this performance overhead, we find HAV ex-
tension extremely useful. Instead of tracing every single
memory access, HAV offers a fast shortcut to track the
read-set and write-set, which can be used to implement
the chunk-based approach in software layer.

To implement a chunk-based recording scheme, we

need to divide the execution of virtual processors into
a series of chunks. In our system, a chunk is defined
as a finite sequence of machine instructions. Similarly
to the database transaction, chunk execution must satisfy
the atomicity and serializability requirements. Atomicity
requires that the execution of each chunk must be “all or
nothing”. Serializability requires that the concurrent ex-
ecution of chunks have to result in the same system state
as if these chunks were executed serially.

To enforce serializability, firstly, we must guarantee
no update within a chunk is visible to other chunks un-
til it commits. Thus, on the first write to each memory
page within a chunk, we create a local copy on which
to perform the modification by leveraging copy-on-write
(COW) strategy. When a chunk completes execution, it
either gets committed, copying all local data back to the
shared memory, or gets squashed, discarding all local
copies. Moreover, an efficient conflict detection strat-
egy is necessary to enforce serializability. Particularly,
an executing chunk must be squashed and re-executed
when its accessed memory pages have been modified by
a newly committed chunk. To optimize recording perfor-
mance, we leverage lazy conflict detection. Namely, we
defer detection until chunk completion. When a chunk
completes, we obtain the read-set and write-set (R&W-
set) of this chunk. We intersect all write-sets of other
concurrent chunks with this R&W-set afterwards. If the
intersection is not empty, which means there are colli-
sions, then this chunk must be squashed and re-executed.
Note that the write-write conflict must be detected even
if there is no read in these chunks. Specifically, the con-
flict detection is implemented at the page-level granular-
ity, therefore any attempts to make the write-conflicting
chunks serial may overwrite uncommitted data and cause
a lost update. Finally, there are certain instructions that
may violate atomicity because they lead to externally ob-
servable behaviors (e.g., I/O instructions may modify de-
vice status and control activities on a device). Once any
of such instructions has been executed in a chunk, this
chunk could no longer be rolled back. Therefore, we
truncate a chunk when any of such instructions is en-
countered. Then the execution of such instructions must
be deferred until this chunk can be committed.

Figure 2 illustrates the execution flow of our chunk-
based approach. First, we make a micro-checkpoint of
the status of a virtual processor at the beginning of each
chunk. During chunk execution, the first write to each
memory page will trigger a COW operation that creates
a local copy. All the following modifications to this page
will be performed on this copy until chunk completion.
A currently running chunk will be truncated when an I/O
operation occurs or if the number of instructions exe-
cuted within this chunk reaches the size limit. When a
chunk completes, we obtain its R&W-set. Then the con-

4

USENIX Association 2016 USENIX Annual Technical Conference 555

flict detection is done by intersecting its own R&W-set
with all W-sets of other chunks which just committed
during this chunk execution. If the intersection is empty
(as C1 or C2 in Figure 2), this chunk can be commit-
ted. Finally, we record the chunk size and the commit
order which together are used to ensure that this chunk
will be properly reconstructed during replay. Otherwise
(as C3 in Figure 2), all local copies will be discarded
and we rollback the status of the virtual processor with
the micro-checkpoint we made at the beginning and re-
execute this chunk.

In our design, there are two major challenges: 1) how
to obtain the R&W-set (section 3.2); 2) how to commit
the chunks in parallel while ensuring serializability (sec-
tion 3.3).

3.2 Obtain R&W-set Efficiently via HAV

The biggest challenge in the implementation of a chunk-
based scheme in software is how to obtain the R&W-
set efficiently. Hardware-based schemes achieve this by
tracing each cache coherence protocol message. How-
ever, doing so in software-only schemes will result in se-
rious performance degradation.

Fortunately, the emergence of HAV provides the pos-
sibility to reduce this overhead dramatically. HAV exten-
sions enable efficient full-system virtualization utilizing
the help from hardware capabilities. Take Intel Virtual-
ization Technology (Intel VT) as an example. It provides
hardware support for simplifying x86 processor virtual-
ization. The EPT that provided in HAV is a hardware-
assisted address translation technology, which can be
used to avoid the overhead associated with software man-
aged shadow page tables. Intel Haswell microarchitec-
ture also introduces the accessed and dirty flags for EPT,
which enables hardware to detect which page has been
accessed or updated during execution. More specifically,
whenever the processor uses an EPT entry as part of the
address translation, it sets the accessed flag in that entry.
In addition, whenever there is a write to a guest-physical
address, the dirty flag in the corresponding entry will
be set. Therefore, by utilizing these hardware features,
we can obtain the R&W-set by gathering all leaf entries
where the accessed or the dirty flag is set, which can be
archived by a simple EPT traversal.

Moreover, the tree-based design of EPT makes it pos-
sible to further improve performance. EPT uses a hi-
erarchical, tree-based design which allows the subtrees
corresponding to some unused part of the memory to be
absent. A similar feature is also present for the accessed
and the dirty flags. For instance, if the accessed flag of
one internal entry is 0, then the accessed flags of all page
entries in its subtrees are definitely 0. Hence, it is not
necessary to traverse these subtrees. In practice, due to

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Update

Write-back
Update

(a)

Subsequent
Chunk

Lock

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Update

Write-back
Update

(b)

Subsequent
Chunk

Lock

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Update

Write-back
Update

(c)

Subsequent
Chunk

Lock

Insert Info Node

Update Chunk
Info

Synchroniza�on

Obtain
R&W-set

Obtain
R&W-set

Obtain
R&W-set

Figure 3: General design of decentralized three-phase
commit protocol: a) chunk timeline of a naı̈ve design, b)
moving update write-back operation out of the synchro-
nized block, and c) a design of decentralized three-phase
commit protocol.

locality of reference, the access locations of most chunks
are adjacent. Thus, we usually just need to traverse a tiny
part of EPT, which incurs negligible overhead.

3.3 A Decentralized Three-Phase Commit
Protocol

Apart from obtaining the R&W-set, chunk commit is
another time-consuming process. In this section, we
discuss how to optimize this part using a decentralized
three-phase commit protocol.

Some hardware-based solutions add a centralized ar-
biter module to processors to ensure that one chunk gets
committed at a time, without overlapping [21]. However,
when it comes to software-only schemes, an arbiter will
be slow. Thus, we propose a decentralized commit pro-
tocol to perform chunk commit efficiently.

The chunk commit process includes at least three
steps in our design: 1) conflict detection that determines
whether this chunk can be committed, 2) update broad-
cast that notifies other processors which memory pages
are modified, 3) update write-back that copies all updates
back to shared memory. A naı̈ve design of the decen-
tralized commit protocol is shown in Figure 3 a). With-
out a centralized arbiter, we leverage a system-wide lock
to enforce serializability. Each virtual processor main-
tains three bitmaps: an access bitmap, a dirty bitmap,
and a conflict bitmap. The first two bitmaps help mark
which memory pages were accessed or updated dur-

5

556 2016 USENIX Annual Technical Conference USENIX Association

P0

Chunk

Start

ST (1 � A)

Chunk

Complete

Commit

Complete

P1

LD (A � 0)

LD (A � 1)

P2

A=0 A=0 A=0

Figure 4: An example of out-of-order commit.

ing the chunk execution (same as the R&W-set). Each
bit in the conflict bitmap indicates whether its corre-
sponding memory page was updated by other commit-
ting chunks. To detect conflict, we just need to intersect
the first two bitmaps with the last one. If the intersec-
tion is empty which means this chunk can be committed,
this virtual processor broadcasts its W-set to notify others
which memory pages have been modified by performing
a bitwise-OR operation between the other virtual proces-
sors’ conflict bitmaps and its own dirty bitmap. Then it
copies its local data back to the shared memory. Finally,
it clears its three bitmaps before the succeeding chunk
starts. This whole commit process is performed while
holding this lock.

However, lock contention turns out to cause signifi-
cant performance overhead. In our experiments, it con-
tributes to nearly 40% of the time spent on commit-
ting the chunks. To address this issue, we redesign the
commit process to reduce the lock granularity. We ob-
serve that the write-back operation involves serious per-
formance degradation due to lots of page copies, and all
these pages committed concurrently by different chunks
have no intersection, which is already guaranteed by con-
flict detection. Based on this observation, we move this
operation out of the synchronized block to reduce the
lock granularity, as shown in Figure 3 b). This not only
reduces the cost of the locking operation substantially,
but also increases parallelism because multiple chunks
can now commit concurrently.

However, one side effect of this design is that chunks
may get committed out-of-order, thereby violating seri-
alizability. One example is shown in Figure 4. C1 writes
A, then finishes its execution first and starts to commit.
Then, C2 starts committing as well and finishes before
C1. Meanwhile C3 starts to execute and happens to read

A immediately. Unfortunately, C1 may not accomplish
its commit process in such a short period, thus C3 fetches
the obsolete value of A. Suppose C3 reads A again and
gets a new value after C1 completes its commit. Then
C3 gets two different values of the same memory object,
which violates serializability. To maintain serializability,
we need to guarantee that before starting C3, P1 waits
until all the other chunks which start committing prior to
the commit point of C2 (e.g., C1 and C4) complete their
commit.

We develop a decentralized three-phase commit pro-
tocol to support parallel commit while ensuring serializ-
ability. To eradicate out-of-order commits, we introduce
a global linked list, commit order list, which maintains
the order and information of each current committing
chunk. Each node of this list contains a commit flag field
to indicate whether the corresponding chunk has com-
pleted its commit process. Moreover, this list is kept
sorted by the commit order of its corresponding chunk.
A lock is used to prevent multiple chunks from updat-
ing this list concurrently. This protocol consists of three
phases as shown in Figure 3 c):

1) The pre-commit phase: In this phase, each processor
must register its commit information by inserting an
info node at the end of the commit order list. The
commit flag of this info node will be initialized to 0,
which means this chunk is about to be committed.

2) The commit phase: In this phase, the memory pages
updated by this chunk will be committed (i.e., written
back to shared memory). Then the processor must
set the commit flag of its info node to 1 at the end of
this phase, which means it has completed its commit
process. Chunks can commit in parallel in this phase,
because pages committed by different chunks have no
intersection.

3) The synchronization phase: In this phase, this virtual
processor is blocked until all the other chunks which
start committing prior to the commit point of its pre-
ceding chunk have completed their commit. To en-
force this, it needs to check all commit flags of those
chunk info nodes which are ahead of its own node.
If at least one flag is 0, then this processor must be
blocked. Otherwise, the processor removes its own
info node from the commit order list and begins ex-
ecuting the next chunk. In practice, this blocking al-
most never happens, because a virtual processor tends
to exit to QEMU to emulate device operations be-
fore executing the next chunk, which happens to pro-
vide sufficient time for other chunks to complete their
commit.

This design noticeably improves performance via re-
ducing the lock granularity. In brief, only the conflict de-

6

USENIX Association 2016 USENIX Annual Technical Conference 557

tection and the update broadcast operation are protected
by a system-wide lock. Furthermore, It also reduces the
time spent on waiting for the lock, because the shorter the
time a chunk holds a lock, the lower the probability that
other chunks requesting it have to wait is. The most im-
portant characteristic is that this protocol can satisfy the
serializability requirement because it strictly guarantees
that the processor starting to commit a chunk first will
execute the subsequent chunk preferentially. The follow-
ing of this section presents a formal proof on how our
decentralized three-phase commit protocol ensures seri-
alizability.

Assume for the sake of contradiction that it does
not guarantee serializability. Then there exists a set of
chunks C0, C1 . . .Cn−1 which obey our three-phase com-
mit protocol and produce a non-serializable schedule. In
order to know whether this chunk schedule is serializ-
able or not, we can draw a precedence graph. This is
a graph in which the vertices are the committed chunks
and the edges are the dependencies between these com-
mitted chunks. A dependence Ci → Cj exists only if one
of the following is true: 1) Ci executes Store(X) before
Cj executes Load(X); 2) Ci executes Load(X) before Cj
executes Store(X); 3) Ci executes Store(X) before Cj ex-
ecutes Store(X).

A non-serializable chunk schedule implies a cycle in
this graph, and we will prove that our commit protocol
cannot produce such a cycle. Assume that a cycle ex-
ists in the precedence graph like this: C0 → C1 → C2
→ . . .→ Cn−1 → C0, for each chunk Ci, we define Ti to
be the time when Ci has been committed, and the corre-
sponding processor begins executing its next chunk Ci+1.
Then for chunks such that Ci → Cj, Ti < Tj. This is
because the commit order list maintains the total order
of these current committing chunks on all processors,
and the three-phase commit protocol guarantees that all
chunks will be processed in FIFO order. Specifically,
The pre-commit phase guarantees that the chunk will be
inserted in the commit order list in execution order, and
the synchronization phase guarantees that the chunk will
be blocked until all the other chunks which start com-
mitting prior to it have completed their commits. More-
over, the conflict detection ensures that an executing
chunk will be squashed and re-executed later when there
are collisions between it and a newly committed chunk,
therefore, will not affect the commit order. Then for this
cycle, we have: T0 < T1 < T2 < . . . < Tn−1 < T0, which
is a manifest contradiction. Hence, our three-phase com-
mit protocol can ensure serializability.

3.4 Replay Memory Access Interleaving

It is relatively simple and efficient to replay memory ac-
cess interleaving under a chunk-base strategy. Unlike the

CREW protocol which must restrict every single mem-
ory access to reconstruct the recorded memory access in-
terleaving, we just need to make sure that all chunks will
be re-built properly and executed in the original order. In
other words, our replay strategy is more coarse-grained.

When we design the replay mechanism of Samsara, a
design goal is to maintain the same parallelism as the
recoding phase. Since the atomicity and the serializ-
ability have already been guaranteed in recording phase,
both the conflict detection and the update broadcast op-
erations are no longer required during replay. We just
need to ensure that all the preceding chunks have been
committed successfully before the current chunk starts.
More specifically, during replay, the processors generate
chunks according to the order established by the chunk
commit log. Then they use the chunk size in that log
to determine when they need to truncate these chunks.
Here, we use the same approach as above to confirm that
a chunk can be truncated at the recorded timestamp. Dur-
ing chunk execution, the COW operation is also required
to guarantee that the other concurrently executing chunks
will not access the latest data updated by this chunk. To
ensure chunk commit in the original order, we will block
the commit of a chunk until all the preceding chunks have
been committed successfully.

4 Optimizations and Implementation De-
tails

This section describes several optimizations for our
chunk-based strategy to improve the recording perfor-
mance and some implementation details of Samsara.

4.1 Caching Local Copies
In our chunk-based strategy, a copy-on-write (COW) op-
eration will be triggered to create a local copy on the first
write to each memory page within a chunk. In the orig-
inal design, these local copies will be destroyed at the
end of this chunk. However, we find that these COW op-
erations can cause a significant amount of performance
overhead, especially when recording computation inten-
sive applications.

By analyzing the memory access patterns, we observe
that the write accesses of successive chunks exhibit great
temporal locality with a history-similar pattern, which
means they incline to access roughly the same set of
pages. Particularly, when a rollback occurs, the re-
executed chunk will follow a similar instruction flow and
access the exact same set of pages in most instances.

Based on this observation, we decide to retain local
copies at the end of each chunk and use them as a cache
of hot pages. By doing so, when a processor modifies
a page which already has a copy in the local cache, it

7

558 2016 USENIX Annual Technical Conference USENIX Association

P1

LD (Z)

P2

LD (Z)

ST (Z)

x y z

P1’s Local Copies

z’

P2’s Local Copies

x y z’

ST (Y)

ST (X)

Shared Memory

COW

ST (Z)

COW

Read

Figure 5: An example of reading outdated data from lo-
cal copies.

acts just like it does in the unmodified VM with hardware
acceleration, and no other operations will be necessary.

However, this design may cause chunks to read out-
dated data. One example is shown in Figure 5: chunk
C4 reads z from its local cache, and meanwhile this page
is modified to z’ by another committed chunk C2 and
copied back to the shared memory. This does not cause
any collision, but unfortunately, chunk C4 reads the out-
dated data z.

These outdated copies can be simply detected by
checking the corresponding bit in the conflict bitmap for
each local copy. However, the crucial issue remains as
how to deal with these outdated copies. We can either
update local copies with the latest data in the shared
memory or simply discard these outdated copies which
have been modified by other committed chunks. These
two strategies both have their own advantages and short-
comings: the former reduces the number of COW oper-
ations but leads to relatively high overhead due to fre-
quent memory copy operations, while the latter avoids
this overhead but still retains some COW operations. We
combine the merits of these two strategies as follows: we
update outdated copies when a rollback occurs, and dis-
card them when a chunk is committed.

This optimization is essentially equivalent to adding a
local cache to buffer the hot pages which are modified
by successive chunks. In the current implementation, we
limit this cache to a fixed size (0.1% of the main memory
size) with a modified LRU replacement policy.

4.2 Adaptive Chunk Size

The chunk size is also a critical factor to the performance
of the replay system. If the chunk size is too small, its ex-
ecution time will not be long enough to amortize the cost
of a chunk commit. On the other hand, if the chunk size
is too large, the corresponding processor may experience
repeated rollbacks due to the increased risk of collision
during its commitment, which will eventually cause star-
vation. Moreover, different applications or even differ-
ent execution regions in the same application can exhibit
varying memory access patterns, which makes it difficult
to seek the sweet spot for chunk size, because the opti-
mal size might not be a constant, but rather change during
execution. Therefore, one of the major challenges in our
implementations is how to adjust chunk size adaptively
to achieve a good balance.

Therefore, we propose an adaptive additive-
increase/multiplicative-decrease (AIMD) algorithm
to adjust the chunk size dynamically during runtime.
In this algorithm, a processor will increase its chunk
size by a fixed amount after each successful commit
to probe for longer execution time. When collision is
detected, the processor decreases its chunk size by a
multiplicative factor. The idea is similar to the feedback
control algorithm in TCP congestion avoidance [10].
The decrease must be multiplicative because it is the
only effectual way to ensure that at every step the
fairness either increases or stays the same [10]. In
a nutshell, when a conflict takes place, this adaptive
AIMD algorithm ensures that all processors will quickly
converge to use equal chunk size. Therefore, each chunk
has same probability to be committed or squashed. One
limitation of this algorithm is that it is less effective for
some I/O intensive workloads due to the frequent chunk
truncations caused by the large number of concurrent
I/O requests.

4.3 Double Buffering

In our decentralized commit protocol, the conflict de-
tection and the update broadcast operation are both pro-
tected by a system-wide lock to enforce the serialization
requirement. Since the conflict bitmap will be modified
by other chunks due to the update broadcast operation,
while being read by its own chunk for the conflict de-
tection, it has to acquire this system-wide lock when-
ever one chunk try to set the corresponding bits in other
chunks’ conflict bitmap to broadcast its updates. Simi-
larly, it has to wait for this lock to be released whenever
its own chunk needs to read this bitmap for conflict de-
tection.

Double buffering mitigates this problem and can fur-
ther increase parallelism. Instead of using a single

8

USENIX Association 2016 USENIX Annual Technical Conference 559

bitmap, we use two bitmaps simultaneously to imple-
ment double buffering. One of them serves as a write
bitmap and the other as the read bitmap. Both bitmaps
can be accessed at any time. By doing so, we avoid lock-
ing the bitmap while reading and writing to it. We switch
these two bitmaps when the succeeding chunk starts its
conflict detection, so it can read the bitmap directly when
other chunks are free to set this bitmap simultaneously.
In our design, only this switch operation is protected by
a lock, and neither bitmap requires any locking at all.

5 Evaluation

This section discusses our evaluation of Samsara. We
first illustrate the experimental setup and our workloads.
Then we evaluate different aspects of Samsara and com-
pare it with a CREW approach.

5.1 Experimental Setup

All the experiments are conducted on a Dell Precision
T1700 Workstation with a 4-core Intel Core i7-4790 pro-
cessor (running at 3.6GHz, with 256KB L1, 1MB private
L2 and 8MB shared L3 cache) running Ubuntu 12.04
with Linux kernel version 3.11.0 and QEMU-1.2.2. The
host machine has 12GB memory. The Guest OS is an
Ubuntu 14.04 with Linux kernel version 3.13.1.

5.2 Workloads

To evaluate our system on a wide range of applications,
we choose two sets of benchmarks that represent very
different characteristics, including both computation in-
tensive and I/O intensive applications.

The first set includes eight computation intensive ap-
plications chosen from PARSEC and SPLASH-2 bench-
mark suites (four from each): blackscholes, bodytrack,
raytrace, and swaptions form PARSEC [5]; radiosity, wa-
ter nsquared, water spatial, and barnes from SPLASH-
2 [36]. We choose both PARSEC and SPLASH-2 suites
because each of them has its own merits, and no single
benchmark can represent the characteristics of all types
of applications. PARSEC is a well-studied benchmark
suite composed of emerging multithreaded programs
from a broad range of application domains. In contrast,
SPLASH-2 is composed mainly of high-performance
computing programs which are commonly used for sci-
entific computation on distributed shared-address-space
multiprocessors. These eight applications come from
different areas of computing and are chosen because they
exhibit diverse characteristics and represent the differ-
ent worst-case applications due to the burdensome shared
memory accesses.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Lo
g

 S
iz

e
 (

M
B

/c
o

re
/s

)

1 core

2 cores

4 cores

Figure 6: Log size produced by Samsara during record-
ing (compressed with gzip).

0

0.05

0.1

0.15

0.2

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

BlackscholesBodytrack Raytrace swap�ons radiositywater_nsquaredwater_spa�albarnes kernel_buildpbzip2

Lo
g

 S
iz

e
 (

M
B

/c
o

re
/s

)

chunk commit order

Synchronous Events & Compound Events

Asynchronous

Figure 7: The proportion of each type of non-
deterministic events in a log file (without compression).

Although there are applications in the first set that per-
form certain amount of I/O operations, most of them are
disk read only. In the other set of benchmarks, we select
two more I/O intensive applications (kernel-build and
pbzip2) to further evaluate how well Samsara handle I/O
operations. Kernel-build is a parallel build of the Linux
kernel version 3.13.1 with the default configuration. In
order to achieve maximum degree of parallelism we use
the -j option of make. Usually, make -j n+1 produces a
relatively high performance on a VM with n virtual pro-
cessors. This is because the extra process makes it possi-
ble to fully utilize the processors during network delays
and general I/O accesses such as loading and saving files
to disk [13]. Pbzip2 is a parallel file compressor which
uses pthreads. We use pbzip2 to decompress a 111MB
Linux-kernel source file.

9

560 2016 USENIX Annual Technical Conference USENIX Association

5.3 Log Size

Log size is an important consideration of the replay sys-
tems. Usually, recording non-deterministic events will
generate huge space overhead which limits the duration
of the recording. The log size of some prior works is
approximately 2 MB/1GHz-processor/s [38]. Some can
support only a few seconds’ recording which is difficult
to satisfy long-term recording needs [38].

Experiment results show that Samsara produces a
much smaller log size which is orders of magnitude
smaller than the ones reported by prior work in software-
based schemes, and even smaller than some reported
in hardware-based schemes. Figure 6 shows the com-
pressed log sizes generated by each core for all the appli-
cations. The experiments indicate that Samsara generates
logs at an average rate of 0.0027 MB/core/s and 0.0031
MB/core/s for recording two and four cores, respectively.
For comparison, the average log size with a single core,
which does not need to record memory interleaving, is
0.0024 MB/s.

To compare the log size of Samsara and the previ-
ous software or hardware approaches, this experiment
was designed to be as similar as possible to the ones
in the previous papers. SMP-ReVirt generates logs at
an average rate of 0.18MB/core/s when recording the
workloads in SPLASH-2 and kernel-build on two dual-
core Xeons [13]. DeLorean generates logs at an average
rate of 0.03MB/core/s when recording the workloads in
SPLASH-2 on eight simulated processors [21].

We achieve a significant reduction in the log size be-
cause the size of the chunk commit log is practically
negligible compared with other non-deterministic events.
Figure 7 illustrates the proportions of each type of non-
deterministic events in each log file. In most work-
loads, the interleaving log represents a small fraction of
the whole log (approximately 9.36% with 2 cores and
19.31% with 4 cores). For the I/O intensive applications,
this proportion is higher, because the large number of
concurrent I/O requests leads to more chunk truncations.

Another reason is we avoid recording all disk reads.
In Samsara, we use QEMU’s qcow2 (QEMU Copy On
Write) disk format to create a write protected base image
and an overlay image on top of it to perform disk mod-
ifications during recording and replay. By doing so, we
can present the same disk view for replay without log-
ging any disk reads or creating another copy of the whole
disk image.

In summary, the use of chunk-based strategy makes
it possible to significantly reduces the log file size by
98.6% compared to the previous software-only schemes.
The log size in our system is even smaller than the ones
reported in hardware-based solutions, since we can fur-
ther reduce the log size via increasing the chunk size

0

2

4

6

8

10

12

N
o

rm
a

li
ze

d
 O

v
e

rh
e

a
d

logging, 1 core KVM, 2 cores

logging, 2 cores logging, 4 cores

Figure 8: Recording overhead compared to the native ex-
ecution.

which is impossible in hardware-based approaches due
to the risk of cache overflow [21].

5.4 Performance Overhead Compared to
Native Execution

The performance overhead of a system can be evaluated
in different ways. One way is to measure the overhead
of the system relative to the base platform (e.g., KVM)
it runs on. The problem with this approach is that the
performance of different platforms can vary significantly
and hence the overhead measured in this manner does not
reflect the actual execution time of the system in real life.
Consequently, we decide to compare the performance of
our system to native execution, as shown in Figure 8.

As shown in the figure, the average performance over-
head introduced by Samsara is 2.3× for recording com-
putation intensive applications on two cores, and 4.1× on
four cores. For I/O intensive applications, the overhead is
3.5× on two cores and 6.1× on four cores. This overhead
is much smaller than the ones reported by prior works in
software-only schemes, which cause about 16× or even
80× overhead when recording similar workloads on two
or four cores [8, 27]. Samsara improves the recording
performance dramatically because we avoid all memory
access detections which are a major source of the over-
head. Further experiment reveals that only 0.83% of the
whole execution time is spent on handling page fault VM
exits in Samsara, while prior CREW approaches suffer
from more than 60% execution time spent on handling
page fault VM exits.

Among the computation intensive workloads, barnes
has a relatively high overhead (more than 3× on two
cores), while retrace has a negligible overhead (about
0.3× on two cores). After analyzing the shared mem-
ory access pattern of these two workloads, we find that
retrace contains many more read operations than write.
Since Samsara does not trace any read accesses, these
read operations do not cause any performance over-
head. In contrast, barnes contains a lot of shared mem-

10

USENIX Association 2016 USENIX Annual Technical Conference 561

0.7346

0

0.05

0.1

0.15

0.2

0.25

0.3

Lo
g

 S
iz

e
 (

M
B

/c
o

re
/s

)
CREW

Samsara

Figure 9: A comparison of the log file size between Sam-
sara and CREW (4 cores, compressed with gzip).

0

5

10

15

20

25

30

N
o

rm
a

li
ze

d
 O

v
e

rh
e

a
d

CREW

Samsara

Figure 10: A comparison of recording overhead between
Samsara and CREW (4 cores).

ory writes, and the unstructured communication pattern
negates the effects of our hot page cache. Moreover,
our page-level conflict detection may cause false con-
flicts (i.e., false sharing in SMP-ReVirt), which may lead
to unnecessary rollback and increase performance over-
head. When compared to computation intensive work-
loads, I/O intensive workloads incur relatively high over-
head. This is also caused by the large number of con-
current I/O requests, which keep the chunk size quite
small. Therefore, the execution time is not long enough
to amortize the cost of the chunk commits in these work-
loads.

5.5 A Comparison with Prior software Ap-
proaches

To further evaluate our chunk-based strategy in Samsara
against prior software-only approaches, we implement
the original CREW protocol [13] in our testbed.

Log Size: Figure 9 shows the comparison against
CREW protocol in log file size, in which Sam-
sara reduces the log file size by 98.6% (i.e., from
0.22MB/core/s to 0.003MB/core/s). To understand the

0%

20%

40%

60%

80%

100%

P
ro

p
o

r�
o

n
 o

f
E

xe
cu

�
o

n
 T

im
e

CREW

Samsara

Figure 11: Proportion of the execution time consumed
on handling page fault VM exits (4 cores).

improvement that Samsara achieves, we measure the pro-
portions of each type of non-deterministic events in the
log file. In this measurement, we find that nearly 99%
of the events are memory access interleaving in CREW
protocol, while only 10% of the events in Samsara are
chunk commit orders.

Performance Overhead: We also compare the per-
formance overhead of Samsara and the CREW protocol.
The results in figure 10 illustrate that with four cores
Samara reduces the overhead by up to 76.8% and the av-
erage performance improvement is 58.6% compared to
the native execution.

Time Consumed on Handling Page Fault VM Ex-
its: To understand why Samsara improves the record-
ing performance so dramatically, we evaluate the time
consumed on handling page fault VM exits in both ap-
proaches, since it is one of the primary contributors to
the performance overhead. Figure 11 shows that 65.6%
of the whole execution time is spent on handling page
fault VM exits in the CREW protocol. In contrast, this
proportion is only 0.83% in Samsara due to the HAV and
chunk-based strategy we used.

5.6 Benefits of Performance Optimizations
Benefits of Caching Local Copies: Experimental results
show that the average performance benefits contributed
by caching local copies are 15.2% for recording com-
putation intensive applications on four cores. For I/O
intensive applications, the benefits increase to 22.1%.
The effect of this optimization is highly dependent on
the amount of temporal locality the local cache can ex-
ploit and the frequency of write operations. This explains
why, for the applications, like water nsquared and wa-
ter spatial, which perform few write operations and ex-
hibit poor temporal locality, the benefits of this optimiza-
tion are less (-1.24% and 2.76%).

11

562 2016 USENIX Annual Technical Conference USENIX Association

Benefits of Double Buffering: The performance ben-
efits contributed by double buffering are less significant.
Empirically, the average performance increase is 4.61%
when recording computation intensive applications on
four cores. For I/O intensive applications, the improve-
ment is 7.43%.

The improvement of the adaptive chunk size opti-
mization is constrained by the frequent chunk trunca-
tions caused by I/O requests, thus is heavily application-
specific. Among all the applications we experiment with,
only a small subset of the computation intensive ap-
plications (e.g., raytrace from PARSEC, radiosity from
SPLASH-2) is shown to have statistically significant
benefit from this optimization.

6 Related Work

Deterministic Replay in Virtualization Environ-
ment: The idea of achieving deterministic replay based
on virtualization environment was first proposed by
Bressoud, et al. [6]. Similarly, ReVirt [12] can replay
entire OSes deterministically and efficiently by record-
ing all non-deterministic events within the VMM. Re-
Trace [40] is a trace collection tool based on the deter-
ministic replay of the VMware hypervisor. However,
both of them only work for uniprocessors and cannot be
applied to multiprocessor environment. SMP-Revirt [13]
is the first deterministic replay system that records and
replays a multiprocessor VM on commodity hardware
by leveraging CREW protocol. ReEmu [8] refines the
CREW protocol with a seqlock-like design to achieve
scalable deterministic replay in a parallel full-system
emulator. While these virtualization-based schemes are
flexible, extensible, and user-friendly, they suffer serious
performance degradation and generate huge logs. In con-
trast, Samsara can leverage the latest HAV extensions in
commodity multiprocessors to achieve efficient and prac-
tical deterministic replay. A preliminary description of
this work was in [31].

Hardware-based Deterministic Replay: Hardware-
based deterministic replay uses special hardware sup-
port for recording memory access interleaving. These
schemes require modifications to the existing hardware,
which increases the complexity of the circuits. FDR [38]
records interleaving between pairs of instructions, and
it improves the performance by implementing the Net-
zer’s Transitive Reduction optimization [24] on hard-
ware. RTR [39] extended FDR by only recording the
logical time orders between memory access instructions.
However, they still generate huge space overhead, which
limits the duration of the recording. Strata [22] redesigns
the recording strategy and records a stratum when a de-
pendence occurs. Each stratum contains many memory
operations issued by the corresponding processor since

the last stratum is logged. Delorean [21] goes even fur-
ther on this idea. Rather than logging individual depen-
dence, it records memory access interleaving as series of
chunks. By doing so, it allows out-of-order execution
of instructions. IMMR [28] designs a chunk-based strat-
egy for memory race recording in modern chip multipro-
cessors. Rerun [16] introduces an intermediate approach
where it traces each data access but does not record this
dependence. Instead, it records the number of instruc-
tions between two dependences. However, Rerun does
not scale well during replay. To improve replay per-
formance, Karma [3] is proposed as a chunk-based ap-
proach that aims to increase replay parallelism. Com-
pared to chunk-based strategies in hardware schemes,
Samsara improves the recording performance in VMM
without requiring any hardware modification. Firstly, by
leveraging HAV extensions, we avoid tracing every sin-
gle memory access, instead perform a EPT traversal to
obtain the read and write set. Secondly, we remove the
centralized arbiter in Delorean, and propose a decentral-
ized three-phase commit protocol to perform chunk com-
mit efficiently.

7 Conclusion

In this paper, we have made the first attempt to lever-
age HAV extensions to achieve an efficient and practi-
cal software-based deterministic replay system on com-
modity multiprocessors. Unlike prior software schemes
that trace every single memory access to record interleav-
ing, we leverage the HAV extensions to track the read
and write-set, and implement a chunk-based recording
scheme in software. By doing so, we avoid all memory
access detections, which are a major source of overhead
in the prior work. In addition, we propose a decentralized
three-phase commit protocol which significantly reduces
the performance overhead by allowing chunk commits in
parallel while still ensuring serializability. By evaluating
our system on real systems, we demonstrate that Samsara
can reduce the recording overhead from 10× to 2.3× and
reduce the log file size to 1/70th on average.

Acknowledgments

The authors would like to thank Jon Howell, our shep-
herd Andreas Haeberlen, and the anonymous review-
ers for their insightful comments. We also thank Yunqi
Zhang for his valuable feedback on the earlier drafts of
this paper. This work was supported by the National Nat-
ural Science Foundation of China (Grant No. 61170056),
the National Grand Fundamental Research 973 Program
of China (Grant No. 2014CB340405).

12

USENIX Association 2016 USENIX Annual Technical Conference 563

References
[1] AGRAWAL, H., DE MILLO, R., AND SPAFFORD, E. An

execution-backtracking approach to debugging. Software, IEEE
8, 3 (1991), 21–26.

[2] ALTEKAR, G., AND STOICA, I. Odr: Output-deterministic
replay for multicore debugging. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles
(2009), pp. 193–206.

[3] BASU, A., BOBBA, J., AND HILL, M. D. Karma: Scalable
deterministic record-replay. In Proceedings of the International
Conference on Supercomputing (2011), ICS ’11, pp. 359–368.

[4] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A.,
MURRAY, R., DRINIĆ, M., MIHOČKA, D., AND CHAU, J.
Framework for instruction-level tracing and analysis of program
executions. In Proceedings of the 2Nd International Conference
on Virtual Execution Environments (2006), VEE ’06, pp. 154–
163.

[5] BIENIA, C. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[6] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-based
fault tolerance. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (1995), SOSP ’95, pp. 1–11.

[7] CHEN, A., MOORE, W. B., XIAO, H., HAEBERLEN, A., PHAN,
L. T. X., SHERR, M., AND ZHOU, W. Detecting covert timing
channels with time-deterministic replay. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
14) (Broomfield, CO, Oct. 2014), pp. 541–554.

[8] CHEN, Y., AND CHEN, H. Scalable deterministic replay in a
parallel full-system emulator. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (2013), pp. 207–218.

[9] CHEN, Y., HU, W., CHEN, T., AND WU, R. Lreplay: A pending
period based deterministic replay scheme. In Proceedings of the
37th Annual International Symposium on Computer Architecture
(2010), ISCA ’10, pp. 187–197.

[10] DAH-MING, C., AND RAJ, J. Analysis of the increase and
decrease algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN systems 17, 1 (1989), 1–
14.

[11] DEVECSERY, D., CHOW, M., DOU, X., FLINN, J., AND CHEN,
P. M. Eidetic systems. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (Broomfield, CO,
Oct. 2014), pp. 525–540.

[12] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND
CHEN, P. M. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the 2002 Sympo-
sium on Operating Systems Design and Implementation (2002),
pp. 211–224.

[13] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A.,
AND CHEN, P. M. Execution replay of multiprocessor virtual
machines. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments
(2008), pp. 121–130.

[14] HONARMAND, N., DAUTENHAHN, N., TORRELLAS, J., KING,
S. T., POKAM, G., AND PEREIRA, C. Cyrus: Unintrusive
application-level record-replay for replay parallelism. In Pro-
ceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (2013), ASPLOS ’13, pp. 193–206.

[15] HONARMAND, N., AND TORRELLAS, J. Relaxreplay: Record
and replay for relaxed-consistency multiprocessors. In Proceed-
ings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (2014),
pp. 223–238.

[16] HOWER, D. R., AND HILL, M. D. Rerun: Exploiting episodes
for lightweight memory race recording. In Proceedings of the
35th Annual International Symposium on Computer Architecture
(2008), ISCA ’08, pp. 265–276.

[17] JOSHI, A., KING, S. T., DUNLAP, G. W., AND CHEN,
P. M. Detecting past and present intrusions through vulnerability-
specific predicates. In Proceedings of the Twentieth ACM Sympo-
sium on Operating Systems Principles (2005), SOSP ’05, pp. 91–
104.

[18] KING, S. T., AND CHEN, P. M. Backtracking intrusions. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles (2003), SOSP ’03, pp. 223–236.

[19] LEBLANC, T., AND MELLOR-CRUMMEY, J. Debugging paral-
lel programs with instant replay. Computers, IEEE Transactions
on C-36, 4 (April 1987), 471–482.

[20] LEE, D., WESTER, B., VEERARAGHAVAN, K.,
NARAYANASAMY, S., CHEN, P. M., AND FLINN, J. Re-
spec: Efficient online multiprocessor replayvia speculation and
external determinism. In Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages
and Operating Systems (2010), pp. 77–90.

[21] MONTESINOS, P., CEZE, L., AND TORRELLAS, J. Delorean:
Recording and deterministically replaying shared-memory mul-
tiprocessor execution efficiently. In Proceedings of the Inter-
national Symposium on Computer Architecture (2008), pp. 289–
300.

[22] NARAYANASAMY, S., PEREIRA, C., AND CALDER, B. Record-
ing shared memory dependencies using strata. In Proceedings of
the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2006), pp. 229–
240.

[23] NARAYANASAMY, S., POKAM, G., AND CALDER, B. Bugnet:
Continuously recording program execution for deterministic re-
play debugging. In Proceedings of the 32Nd Annual Interna-
tional Symposium on Computer Architecture (2005), ISCA ’05,
pp. 284–295.

[24] NETZER, R. H., AND XU, J. Adaptive message logging for in-
cremental program replay. IEEE Concurrency 1, 4 (1993), 32–39.

[25] OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. Kendo:
Efficient deterministic multithreading in software. In Proceed-
ings of the 14th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (2009),
pp. 97–108.

[26] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R.,
LEE, K. H., AND LU, S. Pres: Probabilistic replay with ex-
ecution sketching on multiprocessors. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Princi-
ples (2009), pp. 177–192.

[27] PATIL, H., PEREIRA, C., STALLCUP, M., LUECK, G., AND
COWNIE, J. Pinplay: A framework for deterministic replay and
reproducible analysis of parallel programs. In Proceedings of the
8th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization (2010), pp. 2–11.

[28] POKAM, G., PEREIRA, C., DANNE, K., KASSA, R., AND
ADL-TABATABAI, A.-R. Architecting a chunk-based memory
race recorder in modern cmps. In Proceedings of the 42Nd An-
nual IEEE/ACM International Symposium on Microarchitecture
(2009), MICRO 42, pp. 576–585.

[29] QIAN, X., HUANG, H., SAHELICES, B., AND QIAN, D. Rain-
bow: Efficient memory dependence recording with high replay
parallelism for relaxed memory model. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th Interna-
tional Symposium on (Feb 2013), pp. 554–565.

13

564 2016 USENIX Annual Technical Conference USENIX Association

[30] QIAN, X., SAHELICES, B., AND QIAN, D. Pacifier: Record and
replay for relaxed-consistency multiprocessors with distributed
directory protocol. In Proceeding of the 41st Annual Interna-
tional Symposium on Computer Architecuture (2014), ISCA ’14,
pp. 433–444.

[31] REN, S., LI, C., TAN, L., AND XIAO, Z. Samsara: Efficient
deterministic replay with hardware virtualization extensions. In
Proceedings of the 6th Asia-Pacific Workshop on Systems (2015),
APSys ’15, pp. 9:1–9:7.

[32] SCALES, D. J., NELSON, M., AND VENKITACHALAM, G. The
design of a practical system for fault-tolerant virtual machines.
SIGOPS Oper. Syst. Rev. 44, 4 (Dec. 2010), 30–39.

[33] SRINIVASAN, S. M., KANDULA, S., ANDREWS, C. R., AND
ZHOU, Y. Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In USENIX Annual
Technical Conference, General Track (2004), pp. 29–44.

[34] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG, J.,
CHEN, P. M., FLINN, J., AND NARAYANASAMY, S. Double-
play: Parallelizing sequential logging and replay. ACM Trans.
Comput. Syst. 30, 1 (Feb. 2012), 3:1–3:24.

[35] VOSKUILEN, G., AHMAD, F., AND VIJAYKUMAR, T. N. Time-
traveler: Exploiting acyclic races for optimizing memory race
recording. In Proceedings of the 37th Annual International Sym-
posium on Computer Architecture (2010), ISCA ’10, pp. 198–
209.

[36] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND
GUPTA, A. The splash-2 programs: Characterization and
methodological considerations. In Proceedings of the 22Nd An-
nual International Symposium on Computer Architecture (1995),
ISCA ’95, pp. 24–36.

[37] WU, X., AND MUELLER, F. Elastic and scalable tracing and
accurate replay of non-deterministic events. In Proceedings of the
27th International ACM Conference on International Conference
on Supercomputing (2013), ICS ’13, pp. 59–68.

[38] XU, M., BODIK, R., AND HILL, M. A ”flight data recorder”
for enabling full-system multiprocessor deterministic replay. In
Proceedings of the International Symposium on Computer Archi-
tecture (2003), pp. 122–133.

[39] XU, M., HILL, M. D., AND BODIK, R. A regulated transitive
reduction (rtr) for longer memory race recording. In Proceed-
ings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (2006),
ASPLOS XII, pp. 49–60.

[40] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM,
G., AND WEISSMAN, B. Retrace: Collecting execution trace
with virtual machine deterministic replay. In Proceedings of the
Third Annual Workshop on Modeling, Benchmarking and Simu-
lation (2007).

[41] YANG, Z., YANG, M., XU, L., CHEN, H., AND ZANG, B. Or-
der: Object centric deterministic replay for java. In USENIX An-
nual Technical Conference (2011).

[42] ZHU, J., JIANG, Z., AND XIAO, Z. Twinkle: A fast resource
provisioning mechanism for internet services. In Proceedings of
the IEEE INFOCOM (2011), pp. 802–810.

[43] ZHU, J., JIANG, Z., XIAO, Z., AND LI, X. Optimizing the per-
formance of virtual machine synchronization for fault tolerance.
IEEE Transactions on Computers 60, 12 (Dec 2011), 1718–1729.

14

