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Abstract—MapReduce is a widely used parallel computing framework for large scale data processing. The two major performance
metrics in MapReduce are job execution time and cluster throughput. They can be seriously impacted by straggler machines – machines
on which tasks take an unusually long time to finish. Speculative execution is a common approach for dealing with the straggler problem
by simply backing up those slow running tasks on alternative machines. Multiple speculative execution strategies have been proposed,
but they have some pitfalls: i) Use average progress rate to identify slow tasks while in reality the progress rate can be unstable and
misleading, ii) Cannot appropriately handle the situation when there exists data skew among the tasks, iii) Do not consider whether
backup tasks can finish earlier when choosing backup worker nodes. In this paper, we first present a detailed analysis of scenarios
where existing strategies cannot work well. Then we develop a new strategy, MCP (Maximum Cost Performance), which improves the
effectiveness of speculative execution significantly. To accurately and promptly identify stragglers, we provide the following methods
in MCP: i) Use both the progress rate and the process bandwidth within a phase to select slow tasks, ii) Use EWMA (Exponentially
Weighted Moving Average) to predict process speed and calculate a task’s remaining time, iii) Determine which task to backup based
on the load of a cluster using a cost-benefit model. To choose proper worker nodes for backup tasks, we take both data locality and
data skew into consideration. We evaluate MCP in a cluster of 101 virtual machines running a variety of applications on 30 physical
servers. Experiment results show that MCP can run jobs up to 39% faster and improve the cluster throughput by up to 44% compared
to Hadoop-0.21.

Index Terms—MapReduce, straggler, speculative execution, cluster thoughput, cost performance.
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1 INTRODUCTION

M APREDUCE [1] is proposed by Google in 2004 and
has become a popular parallel computing framework for

large-scale data processing since then. In a typical MapReduce
job, the master divides the input files into multiple map tasks,
and then schedules both map tasks and reduce tasks to worker
nodes in a cluster to achieve parallel processing. When a
machine takes an unusually long time to complete a task (the
so-called straggler machine), it will delay the job execution
time (the time from job initialized to job retired) and degrade
the cluster throughput (the number of jobs completed per
second in the cluster) significantly. This problem is handled
via speculative execution – slow task is backed up on an
alternative machine with the hope that the backup one can
finish faster. Google simply backs up the last few running map
or reduce tasks and has observed that speculative execution
can decrease the job execution time by 44% [1]. Due to the
significant performance gains, speculative execution is also
implemented in Hadoop [2] and Microsoft Dryad [3] to deal
with the straggler problem.

Hadoop is a widely used open-source implementation of
MapReduce. The original speculative execution strategy used
in Hadoop-0.20 (we call it Hadoop-Original) simply identifies
a task as a straggler when the task’s progress falls behind
the average progress of all tasks by a fixed gap. Previous
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work [4] found that this can be misleading in heterogeneous
environments and consequently proposed a new strategy called
LATE [4], which is implemented in Hadoop-0.21 with some
modifications (we call it Hadoop-LATE). Hadoop-LATE keeps
the progress rate (progress / time) of tasks and estimates their
remaining time (progress left / progress rate). When a job
has only a few map or reduce tasks left in its computation,
Hadoop-LATE will select the slow task with the longest
remaining time to backup.

Microsoft Dryad is another parallel computing framework
which supports MapReduce. Its original speculative execution
strategy is similar to that in Google MapReduce [1]. Later,
Mantri [5] proposes a new speculative execution strategy
for Dryad. The main difference between LATE and Mantri
is that Mantri uses the task’s process bandwidth (processed
data / time) to calculate the task’s remaining time (data left
/ process bandwidth). In addition, Mantri considers saving
cluster computing resource in its strategy.

However, the strategies mentioned above have some pitfalls
in identifying slow tasks and choosing backup worker nodes.
They use the average process speed (progress rate or process
bandwidth) of a task to estimate the remaining time, which
assumes that a task makes progress at a stable rate. However,
this assumption can break down in practice for a variety of
reasons. Firstly, in MapReduce, a task is divided into multiple
phases with a fixed ratio of progress for each. However, the
actual duration ratio of those phases tend to vary in different
jobs and deploy environments (shown in Figure 2), leading to
the progress rate fluctuation across different phases. Secondly,
reduce tasks can be launched asynchronously before all map
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tasks complete. In this case, reduce tasks that start later tend
to have a higher process speed at the beginning because a
certain amount of map outputs have been ready. However,
after copying those ready map outputs, they will slow down to
wait for new map outputs, leading to the drop of the process
speed. Thirdly, in a virtualized computing environment, such
as Amazon EC2 [6], the I/O performance of worker nodes
can be impacted significantly due to resource competition by
co-hosted VMs as previously observed in [4]. As a result, the
process speed of the tasks running inside the VM can vary.
Finally, Hadoop and LATE do not consider whether backup
tasks can finish earlier when choosing backup worker nodes,
leading to some ineffective backups.

In this paper, we present a new set of speculative exe-
cution strategies called MCP (Maximum Cost Performance)
to address the above issues successfully: i) Use both the
progress rate and the process bandwidth within a phase to
select slow tasks, ii) Use EWMA (Exponentially Weighted
Moving Average) to predict process speed and calculate a
task’s remaining time, iii) Determine which task to backup
based on the load of the cluster using a cost-benefit model,
iv) Distinguish slow worker nodes by the process speed of map
tasks completed on them, and v) Optimize data locality of map
task backups. We have implemented MCP in Hadoop-0.21 (it
can also fit into Hadoop-2.0) and call it Hadoop-MCP.

Figure 1 compares the effectiveness of Hadoop-MCP with
Hadoop-LATE and Hadoop-None (with speculative execution
disabled). The experiment was conducted in a group of 100
VMs running on 30 Dell PowerEdge blade servers. We use
the Sort benchmark in the standard Hadoop distribution on
90GB of data. We start 3 sort jobs every 150s and show how
the number of running tasks varies with time in the first job.
The figure shows that our algorithm (the bottom) can improve
the job execution time by 25% over that of Hadoop-LATE
(the middle) and by 51% over that of Hadoop-None (the top).
More detailed evaluation can be found later in the paper.

In summary, we make the following contributions. Firstly,
we provide a detailed analysis of the pitfalls in the current
speculative execution strategies. Secondly, we develop a new
strategy named MCP on the basis of the analysis. Finally,
we conduct an experiment on MCP and compare it with the
current strategies. Experiment results show that MCP can run
jobs up to 39% faster and improve the cluster throughput by
up to 44% compared to Hadoop-0.21.

The rest of the paper is organized as follows. Section 2
provides a background on the causes of stragglers and the
existing speculative execution strategies. Section 3 analyzes
the pitfalls of these strategies. Section 4 describes the details
of our new algorithm. Section 5 evaluates its performance.
Related work is described in Section 6. Section 7 concludes.

2 BACKGROUND

In this section, we provide a description of MapReduce, give
an overview of the causes of stragglers, and then describe the
inner mechanisms of some widely used speculative execution
strategies.
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Fig. 1. Straggler phenomenon in different strategies

2.1 MapReduce Mechanisms
In a MapReduce cluster, after a job is submitted, a master
divides the input files into multiple map tasks, and then sched-
ules both the map tasks and the reduce tasks to worker nodes.
A worker node runs tasks on its task slots and keeps updating
the tasks’ progress to the master by periodic heartbeat. Map
tasks extract key-value pairs from the input, transfer them to
some user defined map function and combine function, and
finally generate the intermediate map outputs. After that, the
reduce tasks copy their input pieces from each map task, merge
these pieces to a single ordered (key, value list) pair stream by
a merge sort, transfer the stream to some user defined reduce
function, and finally generate the result for the job.

In general, a map task is divided into map and combine
phases, while a reduce task is divided into copy, sort and
reduce phases. Since Hadoop-0.20, reduce tasks can start when
only some map tasks complete, which allows reduce tasks to
copy map outputs earlier as they become available and hence
mitigates network congestion. However, no reduce task can
step into the sort phase until all map tasks complete. This is
because each reduce task must finish copying outputs from all
the map tasks to prepare the input for the sort phase.

2.2 Causes of Stragglers
We can categorize the causes for stragglers into internal and
external reasons as shown in table 1. Internal reasons can
be solved by the MapReduce service provider, while external
reasons cannot. For example, MapReduce clusters in the real
world may be over-committed with multiple tasks running on
the same worker node. This creates resource competition and
may lead to heterogeneous performance. We can avoid this
“internal reason” by limiting each worker node to run at most
one task simultaneously or by only allowing tasks with differ-
ent resource usage intensity to share the same worker node.
However, we cannot avoid the resource competition due to co-
hosted applications since we have no control over other users’
VMs. Among these causes, the resource capacity heterogeneity
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of worker nodes is usually stable and foreseeable, while others
are not. For most of these factors, speculative execution is an
effective way to solve the straggler problem. However, input
data skew – some tasks have to process a different amount of
data from others, cannot be solved by simply duplicating the
task on another worker node.

TABLE 1
Causes of Straggler

Internal factors External factors

• heterogenous resource ca-
pacity of worker nodes
• resource competition due
to other MapReduce tasks
running on the same worker
node

• resource competition due to co-hosted
applications
• input data skew
• remote input or output source being
too slow
• faulty hardware

2.3 Previous Work

Several speculative execution strategies have been proposed
in the literature, including MapReduce in Google [1], Hadoop
[2], LATE [4], Dryad in Microsoft [3] and Mantri [5].

The original MapReduce implementation in Google and
Dryad use the same speculative execution mechanism. They
begin speculative execution only when the map or the reduce
stage is close to completion. Then they select an arbitrary set
of the remaining tasks to back up as long as slots are available,
and mark a task as completed as soon as one of the task
attempts completes. This strategy is very simple and intuitive.
However, they do not consider the following questions: i) Are
those remaining tasks really slow, or do they just have more
data to process? ii) Whether the worker node chosen to run a
backup task is fast or not? iii) Could the backup task complete
before the original one?

Hadoop-Original improves this mechanism by using the
progress of a task and starts the speculative execution when
a job has no new map or reduce task to assign. It simply
identifies a task as a straggler when the task’s progress falls
behind the average progress of all tasks by a fixed gap (i.e.,
0.2). However, LATE finds that Hadoop-Original can be mis-
leading in heterogeneous environments and thus makes some
improvements. It keeps the progress rate of tasks and estimates
their remaining time. Tasks with their progress rate below
slowTaskThreshold are chosen as backup candidates, among
whom the one with the longest remaining time is given the
highest priority to be backed up. In addition, LATE considers
a worker node to be slow if its performance score (the total
progress or the average progress rate of all the succeeded
and running tasks on it) is below the slowNodeThreshold. It
will never launch any speculative task on these slow worker
nodes. Moreover, LATE limits the number of backup tasks
by speculativeCap. Compared with Hadoop-Original, it deals
with the problems in question i) and ii), but still has some
problems as we will discuss in section 3. Hadoop-LATE is
an implementation of the LATE strategy in Hadoop-0.21. It
replace the slowTaskThreshold and slowNodeThreshold with
the std (standard deviation) of all tasks’ progress rate. The

rationale is to let the std adjust the thresholds automatically.
However, this may still cause misjudgment as we will see later.

The speculative execution strategy used in Mantri focuses
more on saving cluster computing resource, i.e., task slots. It
starts to back up outliers (e.g. abnormal tasks running slowly)
when they show up instead of when all tasks have been
assigned, which is much earlier than the other strategies. If a
backup task has a high probability to complete earlier, Mantri
will kill the original one when the cluster is busy (the so-
called kill-restart scheme). On the other hand, it will simply
duplicate the original one when the cluster is idle. Besides,
Mantri estimates a task’s remaining time based on the process
bandwidth instead of the progress rate, which can avoid the
unnecessary backups caused by input data skew. However,
the kill-restart scheme is too radical as the new task is not
guaranteed to complete earlier than the original one. Moreover,
Mantri cares more about saving the cluster computing resource
and less about reducing the job execution time for users.
In addition, using the average process bandwidth can be
misleading because some tasks do not always make progress
at a stable rate as analyzed in the section 1.

3 PITFALLS IN THE PREVIOUS WORK

In this section, we analyze the pitfalls in existing speculative
execution strategies.

3.1 Pitfalls in Selecting Backup Candidates
Hadoop-LATE and LATE use the average progress rate to
select slow tasks and estimate their remaining time. They are
based on the following assumptions:

• Tasks of the same type (map or reduce) process roughly
the same amount of input data

• Progress rate must either be stable or accelerate during a
task’s lifetime

In the following, we present some scenarios where those
assumptions break down.

3.1.1 Input Data Skew
As analyzed by Kwon et al. [7], tasks do not always process
the same amount of data and may experience several types of
data skew in MapReduce. When the input data has some big
records that cannot be divided, the map tasks that process those
records will process more data. Partitioning the intermediate
data generated by the map tasks unevenly will also lead to
the partition skew among the reduce tasks, typically when the
distribution of keys in the input data set is skewed. Therefore,
the first assumption can break down easily. This has also been
analyzed in Mantri [5].

3.1.2 Phase Percentage Not Matching Corresponding
Duration Ratio
The second assumption is made by LATE to simplify the
calculation of a task’s remaining time, but it may fail to hold
in practice. For example, Hadoop allocates a fixed percentage
of progress to each phase of a task, with 66.7% of map and
33.3% of combine for a map task, and 33.3% for each of
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the three phases (copy, sort, and reduce) in a reduce task.
Such fixed settings make it easy to monitor a task’s progress,
but the progress rate calculated by progress/time may be
unstable. To demonstrate this, we analyze the time duration
of all the phases defined in Hadoop for typical jobs, such as
Grep, WordCount, and Sort, in our local cluster and show
the results in Figure 2. As we can see from the figure, the
time duration ratio of phases varies a lot in different types
of jobs and environments. In the three jobs, the sort phase
consumes the shortest time and has the fastest progress rate in
the reduce tasks. As a result, the progress rate of reduce tasks
in those jobs will speed up from the copy to the sort phase and
slow down from the sort to the reduce phase, which breaks
the second assumption. In another experiment, we run grep
on 6 GB of synthetic data and tune the regular expression so
that its output sizes vary from 10% to 100%. We found that
the ratio of the time duration of the three phases (copy, sort,
reduce) in reduce tasks can vary substantially. Such fluctuation
of progress rate will affect the estimation of a task’s remaining
time and mislead the judgement of straggler tasks.
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Fig. 3. A speed up situation where LATE will make a
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Moreover, even if the progress rate always speeds up, LATE
may still make mistakes. Take WordCount as an example
(Figure 3). Suppose we have two tasks running concurrently.
One of them is a normal task (task 2), running in the map phase
at 1% per second with 40% of the total task progress left, and
the other is a slow task (task 1) running in the combine phase
at 1% per second with 30% progress left. The remaining times
of the normal and the slow tasks calculated by LATE will be
40%/(1%/s) = 40s and 30%/(1%/s) = 30s, respectively.
In this case, LATE will give a higher priority to backup the
normal task because it seems to have a longer remaining time.
However, as the progress rate of the combine phase is three
times that of the map phase in WordCount, the normal task
(task 2) will be running at 3% per second once it enters the
combine phase. In fact, the remaining time of the normal task
(task 2) is (40% − 33%)/(1%/s) + 33%/(3%/s) = 18s due
to the progress rate acceleration from the map phase to the
combine phase.
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Fig. 4. Reduce tasks start in different groups

3.1.3 Reduce Tasks Starting Asynchronously before All
Map Tasks Complete
The second assumption may also fail to hold when the
reduce tasks are launched asynchronously before all map tasks
complete due to insufficient free slots in the cluster (shown in
Figure 4). In some jobs (e.g., Sort), the speed of the reduce
tasks copying map outputs is much faster than the speed of
the map tasks generating those outputs. In this case, if some
reduce tasks are launched after a fraction of the map tasks
complete, they will copy the generated map outputs at a high
speed initially. But after that they will have to wait for the
map tasks to generate new outputs. This causes a slow down
in the process speed of the copy phase and breaks the second
assumption.

3.1.4 Using Std as SlowTaskThreshold
Hadoop-LATE uses std as the slowTaskThreshold, which is not
appropriate: sometimes it will misjudge too many stragglers,
while other times it cannot identify any straggler at all. As an
example, suppose that the reduce tasks are launched in two
groups: g1 and g2, the number of the reduce tasks in g2 is
a times that of g1, and the progress rate of reduce tasks in
g2 is b times that of g1 (b > 1 for reduce tasks starting later
will have a larger average progress rate). We can calculate the
average progress rate of all running reduce tasks as follows:

progressRateavg =
1 + ab

1 + a
(1)

Then the std of all reduce tasks can be calculated as:

std =

√√√√(
1− 1+ab

1+a

)2

+ a
(
b− 1+ab

1+a

)2

1 + a
=

√
a(b− 1)

1 + a
(2)

In Hadoop-LATE, a task is considered as a straggler when
the following condition is satisfied:

progressRateavg − progressRatetask > std (3)

Hence, we can calculate the difference between the average
progress rate of all tasks and the progress rate of tasks in g1
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Fig. 2. Phases have different time duration ratios

as follows:

progressRateavg − progressRateg1 =
1 + ab

1 + a
− 1

=
a(b− 1)

1 + a
(4)

In this case, when a > 1, progressRateavg −
progressRateg1 > std is always true. As a result, when the
number of reduce tasks assigned in g2 is larger than that in
g1, all the tasks in g1 will be taken as stragglers even though
they are running normally.

We can also calculate the difference between std and the
average progress rate of all tasks as follows:

std− progressRateavg =
1

1 + a

[√
a(b− 1)− (1 + ab)

]
=

−ba+ (b− 1)
√
a− 1

1 + a
(5)

In this case, std − progressRateavg > 0 is always true
when b = 6 and 1

9 < a < 1
4 . Then progressRateavg −

progressRateg1 is always less than std which means that
stragglers can never be identified.

This phenomenon shows up whenever tasks can be grouped
into a fast set and a slow set, for example, data-local versus
non-local map tasks (as explained in the Section 3.2.2) or small
versus large tasks (i.e., tasks with different amount of data to
process).

3.1.5 Long Time to Identify Stragglers
Since most of the MapReduce clusters are shared by users, the
performance of worker nodes may degrade just because other
users have launched some applications. This can cause some
tasks to slow down dramatically. Unfortunately, it will take a
long time for them to be identified as stragglers by using the
average process speed. For example, suppose a task is running
at the speed of a% per second for b seconds when suddenly
the speed falls to a

5% per second due to resource competition

(shown in Figure 5). The average process speed will fall down
to a

2% per second only after 5
3b seconds. As a result, the

remaining time estimated according to the average process
speed will be much shorter than the actual value. Therefore,
using the average progress speed cannot identify the straggler
tasks in time and can even lead to some misjudgments.
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3.2 Pitfalls in Selecting Backup Worker Nodes

3.2.1 Identifying Slow Worker Nodes Improperly
LATE and Hadoop-LATE use a threshold (e.g. slowNode-
Threshold) to identity the straggler nodes. LATE uses the
sum of progress of all the completed and running tasks on
a worker node to represent the performance score of the node,
while Hadoop-LATE uses the average progress rate of all the
completed tasks on the node. They both consider a worker
node as slow when the performance score of the node is less
than the average performance score of all nodes by a threshold,
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and will never launch any speculative task on this slow node.
However, some worker nodes may do more time-consuming
tasks and get lower performance score unfairly. For example,
they may do more tasks with a larger amount of data to process
or they may do more non-local map tasks. As a result, such
worker nodes are considered to be slow by mistake.

3.2.2 Choosing Backup Worker Nodes Improperly
Neither LATE nor Hadoop-LATE uses data locality to check
whether backup tasks can finish earlier when choosing backup
nodes. They assume that network utilization is sufficiently low
during the map stage because most map tasks are data-local.
As a result, they assume that non-local map tasks can run as
fast as data-local map tasks. However, this assumption can
break down easily: i) In a MapReduce cluster where multiple
jobs are running simultaneously, the network bandwidth may
be fully utilized because other jobs are busy copying map
outputs to reduce tasks or writing the final outputs of reduce
tasks to some stable file system, ii) Reduce tasks will copy map
outputs concurrently along with the execution of map tasks,
leading to bandwidth competition. In fact, we have observed
that the execution time of a data-local map task can be over
three times faster than that of a non-local map task, motivating
us to consider data locality in our solution.

3.3 Summary
In this section, we have analyzed the speculative execution
strategies proposed by previous work in detail and pointed
out their pitfalls. These pitfalls may lead to misjudgement of
straggler tasks, which wastes the cluster computing resources
and degrades the efficiency of speculative execution. In fact,
Yahoo! disabled speculative execution for some jobs due to
the performance degradation. Facebook also disabled their
speculative execution for reduce tasks [4]. The challenge here
is how to back up only the right tasks on the right worker
nodes at the right time. The next section presents our solution
to this challenge.

4 OUR DESIGN

We propose a new speculative execution strategy named MCP
for Maximum Cost Performance. We consider the cost to
be the computing resources occupied by tasks, while the
performance to be the shortening of job execution time and
the increase of the cluster throughput. MCP aims at selecting
straggler tasks accurately and promptly and backing them
up on proper worker nodes. To ensure fairness, we assign
task slots in the order the jobs are submitted. Just like other
speculative execution strategies, MCP gives new tasks a higher
priority than backup tasks. In other words, MCP will not
start backing up straggler map/reduce tasks until all new
map/reduce tasks of this job have been assigned. MCP chooses
backup candidates based on a prompt prediction of the tasks’
process speed and an accurate estimation of their remaining
time. Then, these backup candidates will be selectively backed
up on proper worker nodes to achieve max cost performance
according to the cluster load. In this section, we will present
the implementation of MCP in detail.
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4.1 Selecting Backup Candidates
4.1.1 Using EWMA to Predict Process Speed
In MCP, we predict tasks’ process speed in the near future
instead of simply using the past average rate. There are many
prediction algorithms in the literature, such as EWMA (Ex-
ponentially Weighted Moving Average) and CUSUM [8]. In
MCP, we choose the EWMA scheme which can be expressed
as follows:

Z(t) = α ∗ Y (t) + (1− α) ∗ Z(t− 1), 0 < α ≤ 1 (6)

where Z(t) and Y(t) are the estimated and the observed process
speed at time t, respectively. α reflects a tradeoff between
stability and responsiveness. In our implementation, we set
α to be 0.2 according to the evaluation result in section
5. To assure the accuracy of prediction, we will not start
calculating tasks’ process speed until it has executed for a
certain amount of time (we call this period a speculative
lag). To show how effective EWMA can be in predicting the
process speed and the remaining time of a task, we run a
Sort job in our cluster and then suddenly launch some I/O
and CPU intensive workloads on one of the worker nodes.
Figure 6 shows the instantaneous speed and the remaining
time of the reduce task running on this straggler node. We
compare the EWMA scheme and the average scheme to the
observed value. Results show that using EWMA scheme can
predict the process speed and the remaining time of a task
more accurately when a sudden speed drop occurs. EWMA is
also effective in smoothing out speed oscillations when there
is no sudden fluctuation in speed.

4.1.2 Identifying Slow Tasks Using Per-Phase Process
Speed
LATE identifies a task as slow when its progress rate is lower
than the average progress rate by a fixed threshold. However,
using the progress rate alone is insufficient to identify slow
tasks. For example, large tasks which have more data to
process may have a lower progress rate even though their
processing bandwidth is normal. Using the process bandwidth
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alone is not sufficient either. Small tasks which have less data
to process will be misjudged by the process bandwidth alone
due to the impact of the constant task start up time. When we
use both the progress rate and the process bandwidth together,
we can avoid these misjudgments and achieve better precision.

Moreover, in section 3.1.2, we have analyzed that a task’s
progress rate may vary greatly across different phases. There-
fore, using the average rate may lead to misjudgement of slow
tasks when the tasks are running in different phases. In our
solution, we compare a task’s process speed (both the process
bandwidth and the progress rate) and estimate its remaining
time in a smaller granularity. As said before, a map task is
divided into map and combine phases, while a reduce task
is divided into copy, sort and reduce phases. Therefore, we
predict the process speed of each phase in a task by using
the EWMA scheme, and use this per-phase process speed to
identify slow tasks. Meanwhile, we estimate the remaining
time of each phase in a task by using the process speed and
the remaining data to process, and sum up the remaining time
of all these phases to get the task’s total remaining time.

4.1.3 Estimating Task Remaining Time and Backup
Time
In MCP, a task that has the longest remaining time can get
the highest priority to be backed up. As said before, a task’s
remaining time is estimated by the sum of the remaining time
left in each phase. When a task is running in some phase
cp (i.e., the current phase), the remaining time left in cp is
estimated by the factors of the remain data and the process
bandwidth in cp. However, the remaining time of the following
phases fp is difficult to calculate since the task has not entered
those phases yet. Therefore, we use the phase average process
speed to estimate the remaining time of a phase est timep.
The phase average process speed is the average process speed
of tasks that have entered the phase. For those phases that no
task has entered, we do not calculate their remaining time,
which is fair to all tasks. Since tasks may process different
amount of data, we adjust est timep by factord, which
represents the ratio of the input size of this task to the average
input size of all tasks. Now we can estimate the remaining time
of tasks as follows:

rem time = rem timecp + rem timefp

=
rem datacp
bandwidthcp

+
∑

p in fp

est timep ∗ factord (7)

factord =
datainput
dataavg

(8)

To estimate the backup time of a slow task, we use the sum
of est timep for each phase in this task as an estimation.
Therefore, we can calculate the backup time as follows:

backup time =
∑
p

est timep ∗ factord (9)

As we have analyzed in 3.1.3, when reduce tasks that start
later are running in the copy phase, their process speed can be
fast at the beginning and drop later. This will cause process
speed fluctuation and impact the precision of time estimate.

To avoid such impact, we estimate the remaining time of the
copy phase as the time to copy all the completed map task
outputs. We calculate the remaining time of the copy phase
using the following equation:

rem timecopy =
finish percentmap − finish percentcopy

process speedcopy
(10)

In the equation above, the process speedcopy is estimated
by EWMA. The equation is reasonable because the process
percentage of the copy phase in reduce tasks is limited by the
percentage of completed map tasks.

Simply backing up a task that has the longest remaining
time is not proper, as we can always get a task that has the
longest remaining time. To make sure the task is slow enough,
we consider whether backing up this task can effectively save
cluster computing resources.

4.1.4 Maximizing Cost Performance of Cluster Comput-
ing Resources
Speculative execution has not only benefits, but also costs.
In a Hadoop cluster, the cost of speculative execution is
task slots, while the benefit is the shortening of the job
execution time. We establish a cost-benefit model to analyze
the tradeoff. In this model, the cost is represented as the
time that the computing resources are occupied (represented
as slot number∗time), while the benefit is represented as the
time saved by speculative execution. Backing up a task will
occupy two slots for backup time (both the original and the
backup need to keep running until either completes) and save
one slot rem time−backup time. In contrast, not backing it
up will cost just one slot rem time and benefit nothing. The
profit of these two actions (backing it up or not) is the slot
time that can be saved. Therefore, we can define the profit of
the two actions as follows:

profitbackup = α ∗ (rem time− backup time)

−β ∗ 2 ∗ backup time (11)
profitnot backup = α ∗ 0− β ∗ rem time (12)

where rem time and backup time are described in subsec-
tion 4.1.3, and α and β are the weight of benefit and cost,
respectively.

Then we will choose the action that gains more profit. If the
profit of backing up this task outweighs that of not backing
it up, we consider this task slow enough and select it as a
backup candidate. Otherwise we will leave the task running
normally.

profitbackup > profitnot backup ⇔ rem time

backup time
>

α+ 2β

α+ β
(13)

where 1 ≤ α+2β
α+β ≤ 2. To simplify the formula above, we

replace β
α with γ. Then the formula becomes rem time

backup time >
1+2γ
1+γ . When a cluster is idle and has many free slots, the cost

for speculative execution is less a concern, because it does
not hurt other jobs’ performance. On the other hand, when the
cluster is busy and has many pending tasks of other jobs, the
cost is an important consideration because backing up a task
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will delay other jobs’ execution. We expect that γ varies with
the load of the cluster: 1+2γ

1+γ gets its lowest value 1 (γ = 0)
when the load of the cluster is low while reaches its highest
value 2 (γ = ∞) when the load of the cluster is high. That is to
say, γ should increase with the load of the cluster. Therefore,
we set γ to the load factor of the Hadoop cluster:

γ = load factor =
numberpending tasks

numberfree slots
(14)

where numberpending tasks is the number of pending tasks,
and numberfree slots is the number of free slots in the cluster.
When the cluster is idle and has many free slots, γ decreases to
0 indicating no cost for speculative execution and the backup
condition becomes rem time > backup time. When the
cluster is busy and has many pending tasks of other jobs, γ
increases and 1+2γ

1+γ converges to 2 gradually. Then the backup
condition becomes rem time > 2∗backup time. As a result,
fewer tasks will be backed up. Therefore, using load factor
as γ fits our demand perfectly.

After iterating through all the running tasks, we will get a
set of backup candidates. The candidate that has the longest
remaining time will be backed up finally.

4.2 Selecting Proper Backup Worker Nodes
In order to achieve better performance, we should assign
backup tasks to fast worker nodes. This requires an appro-
priate metric to measure the performance of worker nodes
which varies a lot from time to time. For example, Microsoft
witnessed that slow worker nodes vary over weeks due to
changing data popularity [5]. As we have illustrated in Section
3.2.1, LATE and Hadoop-LATE do not evaluate the perfor-
mance of worker nodes accurately. To tackle this problem,
we use the moving average process bandwidth of data-local
map tasks completed on a worker node to represent the node’s
performance.

In addition, we consider the data-locality of map tasks when
making the backup decisions. As mentioned in section 3.2.2,
the process speed of data-local map tasks can be three times
that of non-local map tasks. As a result, if we do not consider
data-locality, backing up a map task may gain no benefit. For
example, suppose the time of running a data-local, rack-local,
and non-local map task is t, 2t, and 3t, respectively. Now we
have a map task with 2t time left which needs to be backed up.
If we back it up on a non-local worker node, it will take 3t. In
this case, the backup task will not complete before the original
one. To solve this problem, we keep the process speed statistics
of data-local, rack-local, and non-local map tasks for each
worker node. For worker nodes that do not process any map
task on a specific locality level, we use the average process
speed of all worker nodes on this level as an estimate. When
we select a map task to backup in MCP, we estimate how
long it will take on the candidate worker node according to
the locality level. We will assign the backup task to the node
only if it is estimated to finish there faster.

4.3 Summary
In summary, a task will be backed up when it meets the
following conditions:

• it has executed for a certain amount of time (i.e., the
speculative lag)

• both the progress rate and the process bandwidth in the
current phase of the task are sufficiently low

• the profit of doing the backup outweighs that of not doing
it

• its estimated remaining time is longer than the predicted
time to finish on a backup node

• it has the longest remaining time among all the tasks
satisfying the conditions above

5 EVALUATION

In this section, we evaluate the performance of our MCP
strategy under both heterogeneous and homogeneous envi-
ronments. We set up two scales of Hadoop clusters to show
the scalability of MCP. To ensure the stable performance of
MCP under various kinds of environments, we also analyze
the sensitivity of the parameters used in MCP.

Our cluster consists of 30 physical machines. Each machine
has dual-Processors (2.4GHz Intel(R) Xeon(R) E5620 proces-
sor with 16 logic core), 24GB of RAM and two 150GB disks.
These physical machines are organized in three racks con-
nected by 1Gbps Ethernet and managed by Open Stack Scal-
able Cloud Operating System [9] using KVM virtualization
software [10]. Each virtual machine provided by OpenStack
is in medium size with 2 virtual core, 4GB RAM and 40GB
of disk space. We use such virtual machines to construct our
experimental environment in two scales: small scale with 30
virtual machines on 15 physical machines, large scale with
100 virtual machines on 30 physical machines.

In our experiments, we keep the default configuration for
HDFS, while configure each TaskTracker with four map slots
and four reduce slots, as the capacity of our virtual machine is
almost twice that of tiny virtual machine in EC2. We mainly
use Hadoop Sort, WordCount, Grep, and Gridmix benchmark
as our workloads because these benchmarks represent many
different kinds of data-intensive and cpu-intensive jobs. For
each test case, we run it at least five times. To reduce the
influence of the variable environment, we demonstrate the
performance of the average, the worst, and the best cases in
our results. We compare MCP with Hadoop-LATE (Hadoop
default configuration) and Hadoop-None to show our perfor-
mance improvement and use the job execution time and the
cluster throughput as our primary metrics. The improvement
represented by the speedup of the job execution and the
increase of the cluster throughput is calculated as follows:

Improvement =
MCP −OtherStrategy

OtherStrategy
(15)

Our results are summarized as follows:
• In a heterogenous cluster with about 30 nodes, MCP

outperforms Hadoop-LATE on the job execution speed
by 10%, 19%, 39%, and 13% and cluster throughput by
5%, 15%, 38% and 15% when processing WordCount,
Sort, Grep, and Gridmix benchmarks respectively.

• When data skew exists among the map or the reduce tasks
in Sort jobs, MCP performs much better compared to
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Hadoop-LATE. The job execution speed and the cluster
throughput are improved by 37% and 44% when map
skew exists, and by 17% and 19% when reduce skew
exists, respectively.

• When competing with other applications in Sort jobs,
MCP handles slow tasks and slow nodes much better than
Hadoop-LATE. MCP improves the job execution speed
by 36% and the cluster throughput by 34% on average.

• The performance of MCP is demonstrated to be scalable.
In a heterogenous cluster with about 101 nodes, MCP
still improves Hadoop-LATE by 21% on the job execution
speed and 16% on the cluster throughput when processing
Sort jobs.

• In homogeneous environments with no straggler node,
Hadoop-LATE may perform worse than Hadoop-None,
while our MCP can still do better than Hadoop-None,
indicating that MCP can also fit homogeneous environ-
ments very well.

• The overhead of MCP is very small: on average about
0.54 ms to handle a speculative request, in contrast to
0.74 ms for Hadoop-LATE.

5.1 Scheduling in Heterogeneous Environments

In heterogeneous environments, we run our experiments in a
small scale cluster first. The distribution of virtual machines
on physical servers in the small cluster is listed in Table 2.
Under such an environment, the performance of the VMs can
vary significantly due to the workloads from the co-hosted
VMs. We run our experiments in two settings: without and
with straggler nodes. Straggler nodes are created by running
some I/O intensive applications on the physical machines. We
show that MCP performs efficiently in both settings.

TABLE 2
Load of each host in heterogeneous environments

Load Hosts VMs
1VMs/host 3 3
2VMs/host 11 22
5VMs/host 1 5

Total 15 30

5.1.1 Working With Different Workloads
We run the WordCount benchmark first. The output of Word-
Count is the number of occurrence of words in the input
files. The input files of WordCount in this experiment is
about 8GB with four map tasks per worker node. We submit
three WordCount jobs one by one every 30s. Figure 7 (a)
shows the performance comparison of the three strategies. On
average, MCP finishes jobs 10% faster than Hadoop-LATE
and 10% faster than Hadoop-None. Moreover, MCP improves
the throughput of the cluster by 5% compared with Hadoop-
LATE and 6% compared with Hadoop-None. To understand
why WordCount does not gain significant improvement, we
take a closer look at the features of this workload. Due to the
nature of most language files, the intermediate data and the
final output of WordCount tend to be very small. Therefore,

WordCount mostly executes in the map stage parsing text
files, which is cpu-intensive. Once the map stage completes,
the reduce stage is very short. Hence, the performance of
WordCount is dominated by the execution of the map tasks.
Since the average execution time for map tasks in WordCount
is about 70s (including the task setup time), the difference
between running on a fast node and running on a slow node
is small, leaving little room for improvement.

To explain why MCP outperforms Hadoop-LATE, we com-
pare the precision, recall, and average find time of identify-
ing straggler tasks in these two approaches. We run several
WordCount jobs and gather their runtime statistics. After these
jobs complete, we locate the occurrence of straggler tasks
and calculate the precision, recall and average find time of
identifying them. In this analysis, tasks that execute 1.5x
slower than the average will be considered as stragglers. Table
3 gives the main result of this analysis. It shows that MCP
identifies straggler tasks more accurately and promptly than
Hadoop-LATE. In particular, MCP can improve the precision
in identifying stragglers in reduce tasks by over 90% compared
to Hadoop-LATE. To understand why Hadoop-LATE has such
a low precision in identifying stragglers in reduce tasks,
we categorize its mistakes according to our analysis in the
previous section: due to data skew (described in section 3.1.1),
due to speed fluctuation across phases (described in section
3.1.2), and due to normal slow down in the copy phase
(described in section 3.1.3). We find that they contribute to
19%, 39%, and 42% of the mistakes, respectively.

Sort is quite different from WordCount in that Sort writes
a large amount of intermediate data and final output through
the network and to the disks. Therefore, it is an I/O intensive
application. We run sort jobs on a data set of 30GB. Each
sort job has 110 reduce tasks. We submit three sort jobs one
by one every 150s. Figure 7 (b) shows the job execution
time and the cluster throughput of the three strategies. On
average, MCP finishes jobs 19% faster than Hadoop-LATE
and 37% faster than Hadoop-None. Moreover, MCP improves
the throughput of the cluster by 15% over Hadoop-LATE and
32% over Hadoop-None. To explain why we can achieve a
much bigger improvement for Sort than for WordCount, we
give a further analysis. Since the reduce tasks in Sort jobs
do much more work than its map tasks, the map stage makes
up a very small part of the total execution time. As a result,
in both the map and the reduce stages, MCP can have more
opportunity to do effective speculative execution, leading to
higher improvement.

The Grep benchmark searches a regular expression through
input files and outputs the lines which contain strings matching
the expression. Its behavior depends on how frequently the
expression appears in the input file. When the expression
appears frequently, it is I/O intensive just like Sort. When
the expression appears rarely, it is CPU intensive just like
WordCount. We launch Grep jobs to search the keyword ’the’
in the data sets from Wikipedia, which is about 23GB. We
submit three Grep jobs one by one every 150s. Figure 7 (c)
shows the performance comparison of the three strategies. On
average, MCP finishes jobs 39% faster than Hadoop-LATE and
53% faster than Hadoop-None. Moreover, MCP improves the
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Fig. 7. Small scale cases without data skew

TABLE 3
WordCount Analysis

Strategy Precision Recall Average Find Time
map reduce map reduce map reduce

Hadoop-LATE 37.6% 3% 100% 100% 70s 66s
Hadoop-MCP 45.2% 93.3% 87.1% 100% 56s 32s

throughput of the cluster by 38% over Hadoop-LATE and 42%
over Hadoop-None. Since map tasks in Grep do more work
(e.g. pattern matching) than in Sort, their average execution
time is about 1.3x longer in Grep than in Sort. Therefore,
speculative execution can be more effective for map tasks in
Grep than in Sort, leading to bigger improvement.

To show the significance that each part of the MCP is, we
give a deep analysis of the performance improvement achieved
by each part of the MCP. We run three Grep jobs one by one
the same as before. The results show that: i) only with the
accurate straggler prediction, it finishes jobs 27% faster than
Hadoop-LATE and improves the cluster throughput by 29%
over Hadoop-LATE, ii) when adding cost performance model,
it finishes jobs 31% faster and improves the cluster throughput
by 32%, iii) when all parts are added (including the backup
node selection), it finishes jobs 39% faster and improves the
cluster throughput by 38%. From the result, we can find that
accurate straggler prediction plays the most important role in
the improvement of the MCP.

For a more complex and mixed workload, we run the
Hadoop gridmix benchmark. This benchmark contains many
kinds of jobs, such as streamSort, combiner, javaSort, mon-
sterQuery, webdataScan, and webdataSort. We run it on a data
set of 40GB compressed and 10GB uncompressed data and
configure it with each kind of job running 3 small ones and

3 large ones. We set the number of reduce tasks to 20 for
the small jobs and 110 for the large jobs. The job execution
time of these jobs varies from 100s to 5000s. Figure 8 shows
the performance of the three strategies. On average, MCP
finishes jobs 13% faster than Hadoop-LATE and 16% faster
than Hadoop-None. Moreover, MCP improves the throughput
of the cluster by 15% over Hadoop-LATE and 12% over
Hadoop-None. From the result, we can also find that even
though Hadoop-LATE can improve the average job execution
time by launching more speculative execution, it decreases the
cluster throughput due to too many wasted slots.

5.1.2 Handling Data Skew
To demonstrate that MCP can handle data skew effectively,
we set up two environments with different kinds of data skew.

First, we set up an environment that exhibits data skew
among map tasks. We create a data set of 30GB with the
size of each input file about 100MB. According to the split
strategy in Hadoop, those input files will be divided into two
parts: one is 64MB and the other is 36MB, which results in
data skew among map tasks. We submit three sort jobs one by
one every 150s. Figure 9 (a) shows that MCP performs much
better than Hadoop-LATE and Hadoop-None. On average
MCP increases the job execution speed by 37% over Hadoop-
LATE and 58% over Hadoop-None. Meanwhile, it improves
the throughput of the cluster by 44% over Hadoop-LATE and
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Fig. 8. Small scale Gridmix benchmark

57% over Hadoop-None. MCP can achieve a much bigger
improvement than Hadoop-LATE because Hadoop-LATE may
conduct many unnecessary backups for the map tasks which
occupies the precious slots for other jobs. As a result, the
average delay of all jobs in Hadoop-LATE is much longer
than that in MCP.

Reduce skew is likely to happen when the distribution of
keys in the input dataset is skewed and the map output is
partitioned by some hash function. This kind of skew is also
known as partition skew. Since many kinds of real world data
set follow the Zipf distribution with σ parameter almost equals
1.0, such as word frequency in natural languages and web-site
popularity, we create a data set of 30GB which follows the Zipf
distribution with σ equals 1.0 (σ is used to control the degree
of the skew). We again run three sort jobs one by one every
150s. Figure 9 (b) shows that on average MCP increases the
job execution speed by 17% over Hadoop-LATE and by 53%
over Hadoop-None. Meanwhile, it improves the throughput
of the cluster by 19% over Hadoop-LATE and by 53% over
Hadoop-None. MCP achieves less improvement over Hadoop-
LATE for reduce skew than for map skew because unnecessary
reduce backups do not affect the execution of map tasks from
other jobs. It only delays the reduce tasks of other jobs. As
we explained before, reduce tasks cannot enter the sort phase
when there are still some map tasks running. Instead, they must
wait for all map tasks to complete their outputs. Therefore,
a small delay in launching reduce tasks will not affect the
performance of other jobs significantly when those other jobs
are still in the map stage.

5.1.3 Competing With Other Applications
To evaluate how MCP handles the competition of other ap-
plications, we run some I/O intensive processes (dd process
which creates large files in a loop to write random data)

on some of the physical machines to simulate the load of
other applications. On straggler nodes, we start dd process at
different time with various durations. Just like previous tests,
we submit three sort jobs one by one every 150s. Figure 10
shows that on average, MCP can run 36% faster than Hadoop-
LATE and 46% than Hadoop-None. MCP can also increase the
throughput of the cluster by 34% over Hadoop-LATE and 41%
over Hadoop-None.

5.1.4 Scalability

To evaluate the scalability of MCP, we run our experiment in a
large cluster. The distribution of virtual machines on physical
machines is listed in Table 4. We run Sort jobs on a data set
of 90GB. Each sort job has 340 reduce tasks. Each test case
has three Sort jobs which are submitted one by one. Figure 11
shows the job execution time and the cluster throughput. On
average, MCP finishes jobs 21% faster than Hadoop-LATE and
26% faster than Hadoop-None. Moreover, MCP can improve
the throughput of the cluster by 16% over Hadoop-LATE
and by 22% over Hadoop-None. We notice that in the 100
node cluster, the improvement of MCP over Hadoop-None
is smaller than that in the 30 node cluster. This is because
we construct the 30 node cluster on 15 physical machines
while the 101 node cluster on 30 physical machines as shown
in Table 2 and 4. The 101 node cluster is obviously less
heterogeneous than the 30 node cluster, leading to smaller
probability of stragglers. Overall, the scalability of MCP is
good due to its low scheduling cost.

TABLE 4
Load of each host in scalability environments

Load Hosts VMs
3VMs/host 27 81
5VMs/host 4 20

Total 31 101

5.2 Scheduling in Homogeneous Environments

In homogeneous environments, we evaluate MCP, Hadoop-
LATE, and Hadoop-None in a small scale cluster with each
host running two VMs. In this environment, the performance
of the VMs is almost the same and there are not straggler
nodes. We run sort jobs on a data set of 10GB with each input
file about 2GB. We submit three sort jobs one by one every
150s with 90, 70, and 50 reduce tasks, respectively. Figure 12
shows the execution time of the jobs and the throughput of
the cluster. In this test case, MCP finishes jobs 6% faster than
Hadoop-LATE and 2% faster than Hadoop-None on average.
Log analysis shows that Hadoop-LATE behaves worse than
Hadoop-None due to too many unnecessary reduce task back-
ups, while MCP achieves better results than Hadoop-LATE
because we improve reduce backup precision by 40%. The
reason why MCP can perform better than Hadoop-None is
that we can achieve better data locality for map tasks through
speculative execution.
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Fig. 9. Small scale cases with data skew
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Fig. 10. Competing with other
applications case
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Fig. 11. Large scale case
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Fig. 12. Homogeneous environments
case

5.3 Parameters Analysis

In section4.1.1, we propose to use EWMA to predict the
process speed of tasks in order to find slow tasks or slow
nodes in time. EWMA has a parameter α which reflects a
tradeoff between stability and responsiveness. In this section,
we evaluate the performance of various α values to see
the variance trends in our small scale cluster. We run this
experiment in heterogeneous environments with and without

straggler nodes. We submit three sort jobs one by one on a data
set of 30GB. Each job has 20 reduce tasks. We run experiments
with six α values from 0.1 to 0.6, repeating each one three
times. Figure 13 shows that we achieve best performance in
heterogenous environment with α being 0.2. This is because
when α is too low, it cannot find slow tasks and slow nodes in
time while when it is high, it will cause too many oscillations
which may lead to misjudgments.
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Fig. 13. Performance with different value of α

5.4 Scheduling Cost
The master node is a potential bottleneck in a MapReduce
cluster since it is responsible for resource allocation of all
worker nodes and job scheduling for all jobs. Speculative
execution will keep more data statistics and add additional
computation to the master, which may affect its performance.
We measure the average time that MCP and Hadoop-LATE
spend on speculative scheduling in a job with about 350 map
tasks and 110 reduce tasks. Log analysis shows that on average
MCP spends about 0.54 ms on handling a speculative request,
while Hadoop-LATE spends about 0.74 ms. This is because the
time complexity of MCP is O(n), while the time complexity
of LATE is O(nlogn) due to the sorting in its calculation. The
result demonstrates that the scheduling cost of MCP is low.

6 RELATED WORK

Following on Google’s MapReduce paradigm [1], many works
have been done to improve the performance of mapreduce.

SCOPE [11], Pig [12], and DryadLINQ [13] provide easy-
to-use language (such as SQL-like language) to simplify the
MapReduce programming. MOON [14] and [15] optimize the
MapReduce programming by selecting parameters automati-
cally. Ganesha [16] offers a black-box method for diagnosis.
MapReduce Online [17], MapReduce Merge [18] and Airavat
[19] supply new features for MapReduce, such as pipelining,
online aggregation, multi-jobs joining, security and privacy.
All of them concern on how to improve the functionality of
MapReduce to make it more convenient and available.

Towards performance improvement, there are Scarlett [20]
and BlobSeer [21] optimizing the underlying data storage, [22]
considering energy saving, [23] offering fast recovery, [24]
concerning on the dynamic customizability, Fair Scheduling
[2], Quincy [25] and Delay Scheduling [26] focusing on the

task scheduling optimization to consider fairness and data
locality, MapReduce in Google [1], Dryad in Microsoft [3],
LATE [4], Hadoop [2] and Mantri [5] working on the specu-
lative execution. Our work here also addresses on the issue
of optimizing speculative exection to improve MapReduce
performance.

Compared with current strategies [1] [3] [4] [2] and [5],
MCP pays attention to the cost performance of cluster re-
sources, and deals well with such scenarios as data skew, tasks
that start asynchronously, improper configuration of phase
percentage and abrupt resource competitions. MCP boosts the
precision of speculative execution and improves not only the
job execution time but also the cluster throughput.

Recently, the Hadoop community is developing a new
version of Hadoop – Hadoop 2.0 [27]. In this version, the
JobTracker in Hadoop 1.0 is replaced by the ResourceManager
and per-application ApplicationMaster. The ResourceManager
is responsible for computing resource allocation and the per-
application ApplicationMaster is responsible for task schedul-
ing and coordination. MCP focuses on the task scheduling in
MapReduce Job, therefore it can be easily integrated into the
ApplicationMaster of MapReduce and achieve performance
improvement.

Our work also relates to the speculative execution for high
performance computing (HPC) [28], distributed computing
[29] and multiple processors [30], [31]. However, our work
is different from them for the deploy environment is uncertain
and varies over time and there are little communications
between tasks. In multiple processors environment, it requires
to arrange task assignments in advance. In MapReduce, we
can schedule task assignments at run time according to the
current condition of the environment. [29] uses mean speed,
normalized mean, standard deviation and the ratio of waiting
tasks to pending tasks of each job to identify slow tasks. We
have demonstrated that most of these methods are not suitable
for the uncertain and changeable environment. Star-MPI [28]
dynamically adjusts the placement of tasks according to the
performance observed over time. We only consider speculative
execution at the end of a stage.

7 CONCLUSIONS
In this paper, we provide an analysis of the pitfalls of current
speculative execution strategies in MapReduce. We present
scenarios which affect the performance of those strategies: data
skew, tasks that start asynchronously, improper configuration
of phase percentage and abrupt resource competitions. Based
on the analysis, we develop a new speculative execution
strategy called MCP to handle these scenarios. MCP takes the
cost performance of cluster computing resources into account,
aiming at not only decreasing the job execution time but also
improving the cluster throughput. Our experiments show that:
MCP can achieve up to 39% improvements over Hadoop-
LATE; MCP fits well in both heterogeneous and homogeneous
environments; MCP can handle the data skew case well;
MCP is quite scalable, which performs very well in both
small clusters and large clusters; MCP has less overhead
than Hadoop-LATE and can be easily implemented into new
versions of Hadoop.
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