
Leveraging Hardware-Assisted Virtualization
for Deterministic Replay on Commodity

Multi-Core Processors
Shiru Ren , Le Tan, Chunqi Li, Zhen Xiao, Senior Member, IEEE, and Weijia Song

Abstract—Deterministic replay, which provides the ability to travel backward in time and reconstruct the past execution flow of a

multiprocessor system, has many prominent applications. Prior research in this area can be classified into two categories:

hardware-only schemes and software-only schemes. While hardware-only schemes deliver high performance, they require significant

modifications to the existing hardware. In contrast, software-only schemes work on commodity hardware, but suffer from excessive

performance overhead and huge logs. In this article, we present the design and implementation of a novel system, Samsara, which

uses the hardware-assisted virtualization (HAV) extensions to achieve efficient deterministic replay without requiring any hardware

modification. Unlike prior software schemes which trace every single memory access to record interleaving, Samsara leverages HAV

on commodity processors to track the read-set and write-set for implementing a chunk-based recording scheme in software. By doing

so, we avoid all memory access detections, which is a major source of overhead in prior works. Evaluation results show that compared

with prior software-only schemes, Samsara significantly reduces the log file size to 1/70th on average, and further reduces the

recording overhead from about 10�, reported by state-of-the-art works, to 2:1� on average.

Index Terms—Deterministic replay, virtualization, multi-core

Ç

1 INTRODUCTION

MODERN multiprocessor architectures are inherently
non-deterministic: they cannot be expected to repro-

duce the past execution flow exactly, even when supplied
with the same inputs. The lack of reproducibility complicates
software debugging, security analysis, and fault-tolerance. It
greatly restricts the development of parallel programming.

Deterministic replay helps reconstruct non-deterministic
processor executions. It has been extensively used in a wide
range of applications. For software debugging, it is the most
effective way to reproduce bugs, which helps the program-
mer understand the causes of the bug [1], [2]. For security
analysis, it can help the system administrator analyze the
intrusions and investigate whether a specific vulnerability
was exploited in a previous execution [3], [4], [5], [6]. For
fault-tolerance, it provides the ability to replicate the com-
putation on processors for building the hot-standby system
or data recovery [7], [8], [9].

In the multiprocessor environment, memory accesses
from multiple processors to a shared memory object may
interleave in any arbitrary order, which become a significant

source of non-determinism and pose a formidable challenge
to deterministic replay. To address this problem, most of
the existing research focuses on how to record and replay
the memory access interleaving using either a pure hard-
ware scheme or a pure software scheme.

Hardware-only schemes record memory access interleav-
ing efficiently by embedding special hardware components
into the processors and redesigning the cache coherence pro-
tocol to identify the coherence messages among process-
ors [10], [11], [12], [13], [14], [15], [16]. The advantage of such
a scheme is that it allows efficient recording ofmemory access
interleaving in a multiprocessor environment. On the down
side, it requires extensive modifications to the existing hard-
ware, which significantly increases the complexity of the cir-
cuits andmakes them largely impractical in real systems.

In contrast, software-only schemes achieve deterministic
replay on the existing hardware by modifying the operating
system, the compiler, the runtime libraries or the virtual
machine manager (VMM) [2], [17], [18], [19], [20]. Among
them, virtualization-based deterministic replay is one of the
most promising approaches which provides full-system
level replay by leveraging the concurrent-read, exclusive-
write (CREW) protocol to serialize and log the total order of
the memory access interleaving [18], [19], [21]. While these
schemes are flexible, extensible, and user-friendly, they suf-
fer serious performance overhead (about 10� compared to
the native execution with two processors) and generate huge
logs (approximately 1 MB/s on a four core processor after
compression). The poor performance can be ascribed to the
numerous page fault VM exits led by tracing every single
memory access in the software layer. Further experiment

� S. Ren, L. Tan, C. Li, and Z. Xiao are with the Department of Computer
Science, Peking University, Beijing 100871, China.
E-mail: {rsr, tanle, lcq, xiaozhen}@net.pku.edu.cn.

� W. Song is with the Department of Computer Science, Cornell University,
Ithaca, NY 14853. E-mail: ws393@cornell.edu.

Manuscript received 28 Oct. 2016; revised 30 June 2017; accepted 5 July 2017.
Date of publication 16 July 2017; date of current version 19 Dec. 2017.
(Corresponding author: Zhen Xiao.)
Recommended for acceptance by G. Heiser.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2727492

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018 45

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
https://orcid.org/0000-0002-2430-2009
mailto:
mailto:

reveals that approximately 60 percent of the whole execution
time is spent on handling page fault VM exits. By contrast, it
takes only less than 0.1 percent in original VMM.

To summarize, it is inherently difficult to record memory
access interleaving efficiently by software alone without
proper hardware support. Although there is no commodity
processor with dedicated hardware-based record and
replay capability, some advanced hardware features in
these processors are available to boost the performance of
the software-based deterministic replay systems. Therefore,
we argue that the software scheme can be a viable approach
in the foreseeable future if it can take advantage of
advanced hardware features.

In this article, the main goal is to implement a software
approach that can take full advantage of the latest hardware
features in commodity processors to record and replay
memory access interleaving efficiently without introducing
any hardware modifications. The emergence of hardware-
assisted virtualization (HAV) provides the possibility to
meet our requirements. Although HAV cannot be used for
tracing memory access interleaving directly, we have found
a novel use of it to track the read-set and write-set, and
bypass the time-consuming process in traditional software
schemes. Specifically, we abandon the inefficient CREW
protocol that records the dependence between individual
instructions, and instead use a chunk-based strategy that
records processors’ execution as a series of chunks. By
doing so, we avoid all memory access detections, and
instead obtain each chunk’s read-set and write-set by
retrieving the accessed and the dirty flags of the extended
page table (EPT). These read and write sets are used to
determine whether a chunk could be committed, and the
determinism is ensured by recording the chunk size and the
commit order. Therefore, in our design, what we need to
record are just the chunk sizes and commit orders which
are practically negligible compared with other non-
deterministic events.

Moreover, HAV provides a transparent and more effi-
cient full-system virtualization platform after years of
improvement. With deterministic replay extension, this
platform is promising to be the most practical solution for
applications like cyclic debugging, malware analysis, and
intrusion detection. This poses a new opportunity to exten-
sively expand the applicability and practicability of deter-
ministic replay.

To further improve the system performance, we propose
a decentralized three-phase commit protocol, which signifi-
cantly reduces the performance overhead by allowing
chunk commits in parallel while still ensuring serializabil-
ity. Through moving most time-consuming operations out
of the synchronized block, we reduce the lock contention
and improve scalability and performance. We also present a
formal proof on how our decentralized three-phase commit
protocol ensures serializability.

We implement our prototype, Samsara, which, to the best
of our knowledge, is the first software-based deterministic
replay system that can record and replay memory access
interleaving efficiently by leveraging the HAV extensions
on commodity processors. Experimental results show that
compared with prior software schemes based on the CREW
protocol, Samsara reduces the log file size to 1/70th on

average (from 0.22 MB/core/second to 0.003 MB/core/sec-
ond) and reduces the recording overhead from about 10� to
2:1� compared to the native execution.

Our main contributions are as follows:

� We present a software-based deterministic replay
system that can record and replay memory access
interleaving efficiently by leveraging the HAV exten-
sions. It improves the recording performance dra-
matically with a log size much smaller than all prior
approaches.

� We design a decentralized three-phase commit pro-
tocol, which further improves the performance by
enabling the chunk commit in parallel while ensur-
ing serializability.

� We build and evaluate our system in KVM on Intel
Haswell processor. We also introduce several opti-
mizations for our chunk-based strategy to improve
the performance.

The rest of the article is organized as follows. Section 2
describes the general architecture and shows how Samsara
achieves deterministic replay. Section 3 illustrates how to
record and replay the memory access interleaving. Sections 4
and 5 discuss several implementation issues as well as some
optimizations critical to performance but not covered in
previous works. We evaluate Samsara in Section 6. Section 7
reviews related work and Section 8 concludes the article.

2 SYSTEM OVERVIEW

In this section, we present the system overview of Samsara.
We first outline the overall architecture of Samsara. Then,
we briefly discuss how it records and replays all non-
deterministic events.

2.1 System Architecture

Samsara implements the deterministic replay in original
VMM,which has access to the entire virtual machine and can
take full advantage of the HAV extensions, as illustrated in
Fig. 1. The architecture of Samsara consists of four principal
components, namely, the Controller, the record and replay
component, the Direct Memory Access (DMA) recorder, and

Fig. 1. Architecture overview.

46 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

the log record daemon as shown in orange boxes in the figure.
The controller is in charge of all policy enforcement. It pro-
vides a control interface to users, manages the record and
replay component in KVM, and is in charge of the log trans-
fer. The record and replay component acts as a part of VMM
working in the kernel space being responsible for recording
and replaying all non-deterministic events, especially the
memory access interleaving. The DMA recorder records the
contents of DMA events as part of QEMU. Finally, we opti-
mize the performance of logging by utilizing a user-space log
record daemon. It runs as a background process that sup-
ports loading and storing log files.

Samsara implements deterministic replay by first logging
all non-deterministic events during the recording phase and
then reproducing these events during the replay phase.
Before recording, the controller initializes a snapshot of the
whole VM states. Then all non-deterministic events and the
exact points in the instruction stream where these events
occurred will be logged by the record and replay compo-
nent during recording. Meanwhile, it transfers these log
data to the userspace log record daemon, which is responsi-
ble for the persistent storage and the management of the
logs. The replay phase is initialized by loading the snapshot
to restore all VM states. During replay, the execution of the
virtual processors is controlled by the record and replay
component which ignores all external events. Instead each
recorded event will be injected at the exact same point as in
the recorded execution.

2.2 Record and Replay Non-Deterministic Events

Non-deterministic events fall into three categories: synchro-
nous, asynchronous, and compound. The following illus-
trates what events will be recorded and how recording and
replaying is done in our system.

Synchronous Events. These events are handled immedi-
ately by the VM when they occur. They always take place at
the exact same point where they appear in the instruction
stream, such as I/O events and RDTSC instructions. The
key observation is that they will be triggered by the associ-
ated instructions at the fixed point if all previous events are
properly injected. Therefore, we just need to record the con-
tents of these events. During replay, we merely inject logged
data to where the I/O (or RDTSC) instruction is trapped
into the VMM.

Asynchronous Events. These events are triggered by exter-
nal devices, such as external interrupts, so they may appear
at any arbitrary time from the point of view of the VM. Their
impact to the state of the system is deterministic, but the
timing of their occurrences is not. To replay them, all such
events must be identified with a three-tuple timestamp
(including program counter, branch counter, and the value
of ECX) like the approach in ReVirt [22]. The first two are
used to uniquely identify the instruction where the event
appears in the instruction stream. However, the x86 archi-
tecture introduces the REP prefixes to repeat a string
instruction the number of times specified in the ECX. There-
fore, we also need to log the value of ECX which stores how
many iterations remain at the time of this event takes
place [22]. During replay, we leverage a hardware perfor-
mance counter to guarantee that the VM stops at the
recorded timestamp to inject them.

Compound Events. These events are non-deterministic in
both their timing and their impact on the system. DMA is
an example of such events: the completion of a DMA opera-
tion is notified by an interrupt which is asynchronous, and
the data copy process is initialized by a series of I/O
instructions which are synchronous. Hence, it is necessary
to record both the completion time and the content of a
DMA event. During replay we need to guarantee the DMA
transfer is done prior to the interrupt injection. Moreover,
the order of memory accesses from the DMA devices and
the virtual processors may interleave non-deterministically
during replay. Hence, we treat a DMA device as a virtual
processor with the highest priority.

Memory Access Interleaving. In the multiprocessor envi-
ronment, memory accesses from multiple processors to a
shared memory object may interleave in any arbitrary order,
which become a significant source of non-determinism.
More specifically, if two instructions both access the same
memory object and at least one of them is write, then the
access order of these two instructions should be recorded
during the recording phase. Unfortunately, the number of
such events is orders of magnitude larger than all the other
non-deterministic events combined. Therefore, how to
record and replay these events is the most challenging prob-
lem in a replay system.

3 RECORD AND REPLAY MEMORY ACCESS

INTERLEAVING WITH HAV EXTENSIONS

How to record and replay memory access interleaving effi-
ciently is the most significant challenge we face during the
design and implementation of Samsara. In this section, we
describe how Samsara uses HAV extensions to overcome
this challenge.

3.1 Chunk-Based Strategy

Previous software-only schemes leverage CREW protocol to
serialize and log the total order of the memory access inter-
leaving [17], which produces huge log size and excessive
performance overhead because every single memory access
needs to be checked for logging before execution. Therefore,
chunk-based approach has been proposed on the hardware-
based replay system to reduce the log size [12]. In this
approach, each processor executes instructions grouped
into chunks. Thus, it just needs to record the total order of
chunks. However, this approach is not directly applicable to
a software-only replay system, because tracing every single
memory access to obtain the read-set and write-set during
chunk execution in software will still be as time-consuming
as directly logging the memory access interleaving itself. To
eliminate this performance overhead, we find HAV exten-
sion extremely useful. Instead of tracing every single mem-
ory access, HAV offers a fast shortcut to track the read-set
and write-set, which can be used to implement the chunk-
based approach in software layer.

To implement a chunk-based recording scheme, we need
to divide the execution of virtual processors into a series of
chunks. In our system, a chunk is defined as a finite
sequence of machine instructions. As with the database
transaction, chunk execution must satisfy the atomicity and
serializability requirements. Atomicity requires that the

REN ET AL.: LEVERAGING HARDWARE-ASSISTED VIRTUALIZATION FOR DETERMINISTIC REPLAY ON COMMODITY MULTI-CORE... 47

execution of each chunk must be “all or nothing”, therefore,
prevents partial occurrence of updates. Serializability
requires that the concurrent execution of chunks have to
result in the same system state as if these chunks were exe-
cuted serially. Namely, we must guarantee that all virtual
processors will observe the same chunk commit order
simultaneously, and the effects of an incomplete chunk
might not even be visible to other chunks. Serializability is
the highest level of isolation, and the major correctness crite-
rion for chunk execution [23]. Under these requirements,
chunk appears to the system as a single memory access
because the interleaving between memory accesses of the
different processors occurs only at chunk boundaries [12].
Therefore, executing chunk atomically and in serializable
isolation level in a deterministic total order can properly
reconstruct the memory access interleaving.

To enforce serializability, first, we must guarantee no
update within a chunk is visible to other chunks until it
commits. Thus, on the first write to each memory page
within a chunk, we create a local copy on which to perform
the modification by leveraging copy-on-write (COW) strat-
egy. When a chunk completes execution, it either gets com-
mitted, copying all local data back to the shared memory, or
gets squashed, discarding all local copies. Moreover, an effi-
cient conflict detection strategy is necessary to enforce seri-
alizability. Particularly, an executing chunk must be
squashed and re-executed when its accessed memory pages
have been modified by a newly committed chunk. To opti-
mize recording performance, we leverage lazy conflict
detection. Namely, we defer detection until chunk comple-
tion. When a chunk completes, we obtain the read-set and
write-set (R&W-set) of this chunk. We intersect all write-
sets of other concurrent chunks with this R&W-set after-
wards. If the intersection is not empty, which means there
are collisions, then this chunk must be squashed and re-
executed. Note that the write-write conflict must be

detected even if there is no read in these chunks. Specifi-
cally, the conflict detection is implemented at the page-level
granularity, therefore any attempts to make the write-con-
flicting chunks serial may overwrite uncommitted data and
cause a lost update. Finally, there are certain instructions
that may violate atomicity because they lead to externally
observable behaviors (e.g., I/O instructions may modify
device status and control activities on a device). Once any of
such instructions has been executed in a chunk, this chunk
could no longer be rolled back. Therefore, we truncate a
chunk when any of such instructions is encountered. Then
the execution of such instructions must be deferred until
this chunk can be committed.

Fig. 2 illustrates the execution flow of our chunk-based
approach. First, we make a micro-checkpoint of the status of
a virtual processor at the beginning of each chunk. During
chunk execution, the first write to each memory page will
trigger a COWoperation that creates a local copy. All the fol-
lowing modifications to this page will be performed on this
copy until chunk completion. A currently running chunk
will be truncated when an I/O operation occurs or if the
number of instructions executed within this chunk reaches
the size limit. When a chunk completes, we obtain its R&W-
set. Then the conflict detection is done by intersecting its
own R&W-set with all W-sets of other chunks which just
committed during this chunk execution. If the intersection is
empty (as C1 or C2 in Fig. 2), this chunk can be committed.
Finally, we record the chunk size and the commit order
which together are used to ensure that this chunk will be
properly reconstructed during replay. Otherwise (as C3 in
Fig. 2), all local copies will be discarded and we rollback the
status of the virtual processor with the micro-checkpoint we
made at the beginning and re-execute this chunk.

In our design, there are two major challenges: 1) how to
obtain the R&W-set (Section 3.2); 2) how to commit the
chunks in parallel while ensuring serializability (Section 3.3).

3.2 Obtain R&W-Set Efficiently via HAV

The biggest challenge in the implementation of our chunk-
based scheme in software is how to obtain the R&W-set effi-
ciently. Hardware-based schemes achieve this by tracing
each cache coherence protocol message. However, doing so
in software-only schemes will result in serious performance
degradation.

Fortunately, the emergence of HAV provides the possi-
bility to reduce this overhead dramatically. HAV extensions
enable efficient full-system virtualization utilizing the help
from hardware capabilities. Take Intel Virtualization Tech-
nology (Intel VT) as an example. It provides hardware sup-
port for simplifying x86 processor virtualization. The EPT
that provided in HAV is a hardware-assisted address trans-
lation technology, which can be used to avoid the overhead
associated with software managed shadow page tables [24].
Intel Haswell microarchitecture also introduces the accessed
and dirty flags for EPT, which enables hardware to detect
which page has been accessed or updated during execution.
More specifically, whenever the processor uses an EPT
entry as part of the address translation, it sets the accessed
flag in that entry. In addition, whenever there is a write to a
guest-physical address, the dirty flag in the corresponding
entry will be set.

Fig. 2. The execution flow of our chunk-based approach.

48 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

Therefore, by utilizing these hardware features, we can
obtain the R&W-set by simply gathering all leaf entries
where the accessed or the dirty flag is set, which can be
archived by an EPT traversal. Specifically, we maintain a
dedicated EPT alone with an access bitmap and a dirty bit-
map for each virtual processor, so that intermediate state of
a chunk is invisible to other chunks. When a chunk com-
pletes execution, the corresponding virtual processor will
first traverse its own EPT until it finds all entries where the
accessed or the dirty flag is set, and then updates its access
bitmap and dirty bitmap accordingly. This design avoids
detecting all memory accesses, which is the primary over-
head in prior works, and instead obtains each chunk’s read-
set and write-set by retrieving the accessed and the dirty
flags of the EPT.

Moreover, the tree-based design of EPT makes it possible
to further improve performance. EPT uses a hierarchical,
tree-based design which allows the subtrees corresponding
to some unused part of the memory to be absent. A similar
feature is also present for the accessed and the dirty flags. For
instance, if the accessed flag of one internal entry is 0, then
the accessed flags of all page entries in its subtrees are defi-
nitely 0. An example is given in Fig. 3. In the first level of the
EPT, there is only one table entry whose accessed flag is set to
1. Therefore, we just traverse the subtree pointed by this
entry. Thanks to locality, the access locations of most chunks
are adjacent, which means the 1 bits are often clustered
together, while most of the rest bits are 0. In most cases, we
only traverse a tiny part of the EPTwith negligible overhead.

3.3 A Decentralized Three-Phase Commit Protocol

Apart from obtaining the R&W-set, chunk commit is
another time-consuming process. In this section, we discuss
how to optimize this part using a decentralized three-phase
commit protocol.

Some hardware-based solutions add a centralized arbiter
module to processors to ensure that one chunk gets commit-
ted at a time, without overlapping [12]. However, when it
comes to software-only schemes, an arbiter will be slow.
Thus, we propose a decentralized commit protocol to per-
form chunk commit efficiently.

The chunk commit process includes at least three steps in
our design: 1) conflict detection that determines whether
this chunk can be committed, 2) update broadcast that noti-
fies other processors which memory pages are modified, 3)
update write-back that copies all updates back to shared
memory. A na€ıve design of the decentralized commit proto-
col is shown in Fig. 4a. Without a centralized arbiter, we
leverage a system-wide lock to enforce serializability. Each
virtual processor maintains three bitmaps: an access bitmap,
a dirty bitmap, and a conflict bitmap. The first two bitmaps
help mark which memory pages were accessed or updated
during the chunk execution (same as the R&W-set). Each bit
in the conflict bitmap indicates whether its corresponding
memory page was updated by other committing chunks. To
detect conflict, we just need to intersect the first two bitmaps
with the last one. If the intersection is empty which means
this chunk can be committed, this virtual processor broad-
casts its W-set to notify others which memory pages have
been modified by performing a bitwise-OR operation
between the other virtual processors’ conflict bitmaps and
its own dirty bitmap. Then it copies its local data back to the
shared memory. Finally, it clears its three bitmaps before
the succeeding chunk starts. This whole commit process is
performed while holding this lock.

However, lock contention turns out to cause significant
performance overhead. In our experiments, it contributes to
nearly 40 percent of the time spent on committing the
chunks. To address this issue, we redesign the commit pro-
cess to reduce the lock granularity. We observe that the
write-back operation involves serious performance degra-
dation due to lots of page copies, and all these pages
committed concurrently by different chunks have no inter-
section, which is already guaranteed by conflict detection.
Based on this observation, we move this operation out of
the synchronized block to reduce the lock granularity, as
shown in Fig. 4b. This not only reduces the cost of the lock-
ing operation substantially, but also increases parallelism
because multiple chunks can now commit concurrently.

Fig. 3. The partial traversal of EPT.
Fig. 4. General design of decentralized three-phase commit protocol: a)
chunk timeline of a na€ıve design, b) moving update write-back operation
out of the synchronized block, and c) a design of decentralized three-
phase commit protocol.

REN ET AL.: LEVERAGING HARDWARE-ASSISTED VIRTUALIZATION FOR DETERMINISTIC REPLAY ON COMMODITY MULTI-CORE... 49

However, one side effect of this design is that chunks
may get committed out-of-order, thereby violating serializ-
ability. One example is shown in Fig. 5. C1 writes A, then
finishes its execution first and starts to commit. Then, C2
starts committing as well and finishes before C1. Meanwhile
C3 starts to execute and happens to read A immediately.
Unfortunately, C1 may not accomplish its commit process
in such a short period, thus C3 fetches the obsolete value of
A. Suppose C3 reads A again and gets a new value after C1
completes its commit. Then C3 gets two different values of
the same memory object, which violates serializability. To
maintain serializability, we need to guarantee that before
starting C3, P1 waits until all the other chunks which start
committing prior to the commit point of C2 (e.g., C1 and
C4) complete their commit.

We develop a decentralized three-phase commit protocol
to support parallel commit while ensuring serializability.
To eradicate out-of-order commits, we introduce a global
linked list, commit_order_list, which maintains the order and
information of each current committing chunk. Each node
of this list contains a commit flag field to indicate whether
the corresponding chunk has completed its commit process.
Moreover, this list is kept sorted by the commit order of its
corresponding chunk. A lock is used to prevent multiple
chunks from updating this list concurrently. This protocol
consists of three phases as shown in Fig. 4c:

1) The pre-commit phase: In this phase, each processor
must register its commit information by inserting an
info node at the end of the commit_order_list. The
commit flag of this info node will be initialized to 0,
which means this chunk is about to be committed.

2) The commit phase: In this phase, the memory pages
updated by this chunk will be committed (i.e., writ-
ten back to shared memory). Then the processor
must set the commit flag of its info node to 1 at the
end of this phase, which means it has completed its
commit process. Chunks can commit in parallel in
this phase, because pages committed by different
chunks have no intersection.

3) The synchronization phase: In this phase, this virtual
processor is blocked until all the other chunks which

start committing prior to the commit point of its pre-
ceding chunk have completed their commit. To
enforce this, it needs to check all commit flags of
those chunk info nodes which are ahead of its own
node. If at least one flag is 0, then this processor
must be blocked. Otherwise, the processor removes
its own info node from the commit_order_list and
begins executing the next chunk. In practice, this
blocking almost never happens, because a virtual
processor tends to exit to QEMU to emulate device
operations before executing the next chunk, which
happens to provide sufficient time for other chunks
to complete their commit.

This design noticeably improves performance via reduc-
ing the lock granularity. In brief, only the conflict detection
and the update broadcast operation are protected by a
system-wide lock. Furthermore, It also reduces the time
spent on waiting for the lock, because the shorter the time a
chunk holds a lock, the lower the probability that other
chunks requesting it have to wait is. The most important
characteristic is that this protocol can satisfy the serializabil-
ity requirement because it strictly guarantees that the pro-
cessor starting to commit a chunk first will execute the
subsequent chunk preferentially. The following of this sec-
tion presents a formal proof on how our decentralized
three-phase commit protocol ensures serializability.

Assume for the sake of contradiction that this design
does not guarantee serializability. Then there exists a set of
chunks C0, C1 . . . Cn�1 which obey our three-phase commit
protocol and produce a non-serializable schedule. In order
to know whether this chunk schedule is serializable or not,
we can draw a precedence graph. This is a graph in which
the vertices are the committed chunks and the edges are the
dependencies between these committed chunks. A depen-
dence Ci ! Cj exists only if one of the following is true: 1)
Ci executes StoreðXÞ before Cj executes LoadðXÞ; 2) Ci exe-
cutes LoadðXÞ before Cj executes StoreðXÞ; 3) Ci executes
StoreðXÞ before Cj executes StoreðXÞ.

A non-serializable chunk schedule implies a cycle in this
graph, and we will prove that our commit protocol cannot
produce such a cycle. Assume that a cycle exists in the pre-
cedence graph like this: C0 ! C1 ! C2 ! � � � ! Cn�1 ! C0,
for each chunk Ci, we define Ti to be the time when Ci has
been committed, and the corresponding processor begins
executing its next chunk Ciþ1. Then for chunks such that Ci

! Cj, Ti < Tj. This is because the commit_order_list main-
tains the total order of these current committing chunks on
all processors, and the three-phase commit protocol guaran-
tees that all chunks will be processed in FIFO order. Specifi-
cally, The pre-commit phase guarantees that the chunk will
be inserted in the commit_order_list in execution order, and
the synchronization phase guarantees that the chunk will be
blocked until all the other chunks which start committing
prior to it have completed their commits. Moreover, the con-
flict detection ensures that an executing chunk will be
squashed and re-executed later when there are collisions
between it and a newly committed chunk, therefore, will
not affect the commit order. Then for this cycle, we have:
T0 < T1 < T2 < � � � < Tn�1 < T0, which is a manifest con-
tradiction. Hence, our three-phase commit protocol can
ensure serializability.

Fig. 5. An example of out-of-order commit.

50 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

3.4 Replay Memory Access Interleaving

It is relatively simple and efficient to replay memory access
interleaving under a chunk-base strategy. Unlike the CREW
protocol which must restrict every single memory access to
reconstruct the recorded memory access interleaving, we
just need to make sure that all chunks will be re-built prop-
erly and executed in the original order. In other words, our
replay strategy is more coarse-grained.

When we design the replay mechanism of Samsara, a
design goal is to maintain the same parallelism as the recod-
ing phase. Since the atomicity and the serializability have
already been guaranteed in recording phase, both the con-
flict detection and the update broadcast operations are no
longer required during replay. We just need to ensure that
all the preceding chunks have been committed successfully
before the current chunk starts. More specifically, during
replay, the processors generate chunks according to the
order established by the chunk commit log. Then they use
the chunk size in that log to determine when they need to
truncate these chunks. Here, we use the same approach as
above to confirm that a chunk can be truncated at the
recorded timestamp. During chunk execution, the COW
operation is also required to guarantee that the other con-
currently executing chunks will not access the latest data
updated by this chunk. To ensure chunk commit in the orig-
inal order, we will block the commit of a chunk until all the
preceding chunks have been committed successfully.

4 IMPLEMENTATION

This section describes the implementation details of our
chunk-based strategy as well as several performance-critical
design choices.

4.1 Accelerating Bitmap Operations

Recall that each virtual processor maintains three bitmaps
to mark the R&W-set and perform the conflict detection. We
observe that these bitmaps are overly sparse and exhibit sig-
nificant spatial locality, which means the 1 bits are often
clustered together, while most of the rest bits are 0. There-
fore, the bitmap operations that involve a traversal of the

whole bitmap (e.g., bitmap_or, bitmap_clear, and bitmap_inter-
sects) are expensive.

The above observation provides the insight to use an
auxiliary data structure to accelerate these operations. In
our revised design, we combine each bitmap with a linked
list. Each node of the linked list represents a 1 bit in its asso-
ciated bitmap, and contains the same Guest Frame Number
(GFN) of the memory page which this bit represents. This
simplifies most bitmap operations as shown in Table 1. In
general, the linked list is used to traverse all 1 bits effi-
ciently, while the bitmap is useful for retrieving a bit.

This optimization is essentially trading space for time,
which can significantly reduce the time consumed by bit-
map operations while only increasing space slightly.
Although there are other data structures such as segment
tree which also match the access patterns we observed,
using both a bitmap and a linked list is probably the sim-
plest and most efficient solution, since we do not need to
support arbitrary deletion.

4.2 Starvation Avoidance

As with the other systems which execute instructions
grouped into chunks [25], Samsara also suffers from starva-
tion. In some special scenarios, a virtual processor may be
unable to make progress when a chunk is being repeatedly
squashed. Suppose a chunk C1 reads an array in loop. At
the same time, this array is being written by all other execut-
ing chunks simultaneously. The read-set of C1 includes all
elements of this array, but each write-set of other chunks
only includes a subset of this array. Hence, if any of the
other chunks gets committed (which is a high probability
event), C1 must be squashed and the corresponding virtual
processor rollbacks repeatedly without making progress.

Samsara introduces two mechanisms to avoid starvation.
When rollback is detected, the virtual processor decreases
its chunk size by a multiplicative factor, therefore, signifi-
cantly increasing the probability of committing success. We
call this mechanism multiplicative-decrease, because the
idea is similar to the feedback control algorithm in TCP con-
gestion avoidance [26]. However, we restore the chunk size
immediately once a chunk commits. Otherwise, if the chunk
size is too small, the execution time will not be long enough
to amortize the cost of a chunk commit.

Although the multiplicative-decrease design reduces
rollbacks, it does not guarantee a chunk to be committed. If
a virtual processor cannot make progress after several itera-
tions of multiplicative-decrease, Samsara makes it switch to
another execution mode, which we call protected-commit.
As illustrated in Fig. 6, P0 switches into protected-commit
mode for chunk C5, it first broadcasts the R&W-set of its
last squashed chunk C1 to other concurrently executing
chunks. The reason for broadcasting the previous R&W-set
is that the re-executed chunk will follow a same instruction
flow in most instances, which means that the R&W-set of
re-executed chunk C5 is the same as that of C1. Therefore,
any of the other executing chunks which is in conflict with
C5 (as C6 and C7 in this figure) will wait until C5 commit,
but all of the other irrelevant chunks will not be affected (as
C4 in this figure).

The practice indicates that these two mechanisms allow
chunks to commit successfully in most cases while still

TABLE 1
The Optimized Bitmap Operations in Our Revised Design

Bitmap operations Descriptions

bitmap_clear () Traverses all nodes through the linked
list and uses them to quickly locate and
clear all bits in the bitmap.

bitmap_or (dst, src) Traverses all nodes through the linked
list of src and uses them to perform the
bitwise OR operation with the bitmap of
des. Then inserts these nodes into the
corresponding linked list of des.

bitmap_intersects
(src1, src2)

Traverses all nodes through the linked
list of src1 and, for each of them, checks
whether the corresponding bit in the
bitmap of src2 is set.

test_bit () Checks the bitmap to determine whether
a bit is set.

set_bit () Sets a bit in bitmap and inserts a node
into the corresponding linked list.

REN ET AL.: LEVERAGING HARDWARE-ASSISTED VIRTUALIZATION FOR DETERMINISTIC REPLAY ON COMMODITY MULTI-CORE... 51

retaining sufficient parallelism. However, in rare cases the
memory pages updated by other newly committed chunks
(as C2 or C3 in Fig. 6) may affect the instruction flow of re-
executed chunk C5 and result in a conflict between C5 and
other chunks. If the protected-commit cannot guarantee for-
ward progress, Samsara will prohibit other chunks from
committing until this chunk commit.

4.3 Early Rollback

Samsara leverages the lazy conflict detection which defers
the detection until chunk completion to provide better
throughput. Lazy conflict detection can expose more con-
currency than the eager detection which resolves conflicts at
the access time [27]. Moreover, the delayed conflict detec-
tion decreases the probability of a livelock [27]. However,
postponing the conflict detection until commit-time may
lead to wasted work by conflicting chunks, since a chunk
may continue running even though other virtual processors
have committed conflicting updates. In practice, once a con-
flicting update is committed, the affected chunks are
doomed to abort and will be wasting not only its work per-
formed so far but also the work which will be done until
commit. This insight suggests we should abort a chunk as
early as possible to avoid further waste.

We implement an early chunk rollback strategy as an
additional mechanism to alleviate the risks of wasted work
associated with the lazy conflict detection. During chunk
execution, if a write operation triggers a VM exit and traps
to VMM, we check whether the corresponding bit of this
page in the conflict bitmap is set. If the result is positive,
which means this chunk modifies a page which has already
been updated by other committed chunks, thus, is doomed
to abort. In this case, instead of waiting until the rollback
occurs, we rollback this chunk immediately. By allowing
chunks to perform early rollback, we significantly reduce
the extent of rollback, and therefore, uncover more
parallelism.

4.4 Chunk Truncation

In our chunk-based strategy, we need to guarantee that a
chunk will be truncated if the number of instructions

executed within it reaches the size limit. Otherwise, if the
chunk size is too large, the corresponding processor may
experience repeated rollbacks due to the increased risk of
collision. In order to further take advantage of the latest
hardware features, we use the VMX-preemption timer that
provided in the Intel VT to automatically truncate a chunk.
The VMX-preemption timer provide a generic mechanism
for VMM to preempt VM execution after a specified amount
of time [24]. Specifically, we program the initial chunk size
limit into the timer. Then, it will count down in the VMX
non-root operation according to a ratio of TSC and CPU will
save the timer value on each successive VM exit. When the
timer counts down to zero, a VM exit will be triggered and
captured by us to truncate this chunk.

Although the VMX-preemption timer does not always
guarantee instruction-level precision, we do not need to
guarantee a chunk will be properly truncated at an exact
point in the instruction stream during recording. The VMX-
preemption timer, therefore, appears opportune to truncate
a chunk during recording.

5 OPTIMIZATIONS

This section describes two more optimizations for our
chunk-based strategy to further improve the performance.

5.1 Caching Local Copies

During recording, a COW operation will be triggered to cre-
ate a local copy on the first write to each memory page. In
our original design, these local copies will be destroyed at
the end of this chunk. However, we find that these COW
operations can cause a significant amount of performance
overhead.

By analyzing the memory access patterns, we observe
that the write accesses of successive chunks exhibit great
temporal locality with a history-similar pattern, which
means they incline to access roughly the same set of pages.
Particularly, when a rollback occurs, the re-executed chunk
will follow a similar instruction flow and access the exact
same set of pages in most instances.

Based on this observation, we decide to retain local cop-
ies at the end of each chunk and use them as a cache of hot
pages. By doing so, when a processor modifies a page which
already has a copy in the local cache, it acts just like it does
in the unmodified VM with hardware acceleration, and no
other operations will be necessary.

However, this design may cause chunks to read outdated
data. One example is shown in Fig. 7: chunk C4 reads z from
its local cache, and meanwhile this page is modified to z’ by
another committed chunk C2 and copied back to the shared
memory. This does not cause any collision, but unfortu-
nately, chunk C4 reads the outdated data z.

These outdated copies can be simply detected by check-
ing the corresponding bit in the conflict bitmap for each
local copy. However, the crucial issue remains as how to
deal with these outdated copies. We can either update local
copies with the latest data in the shared memory or simply
discard these outdated copies which have been modified by
other committed chunks. These two strategies both have
their own advantages and shortcomings: the former reduces
the number of COW operations but leads to relatively high

Fig. 6. The protected-commit execution mode.

52 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

overhead due to frequent memory copy operations, while
the latter avoids this overhead but still retains some COW
operations. We combine the merits of these two strategies as
follows: we update outdated copies when a rollback occurs,
and discard them when a chunk is committed.

This optimization is essentially equivalent to adding a
local cache to buffer the hot pages which are modified by
successive chunks. Though caching local copies can avoid
repeatedly triggering COW operations, it requires extra
work like traversing through the local cache to find and
update the outdated copies. Therefore, in the current imple-
mentation, we limit this cache to a fixed size (0.1 percent of
the main memory size) with a modified Least Recently
Used (LRU) replacement policy.

5.2 Double Buffering

In our decentralized commit protocol, the bitmap clearing
operation and the update broadcast operation are both
protected by a system-wide lock to enforce the serializa-
tion requirement. Since the conflict bitmap will be modi-
fied by other chunks due to the update broadcast
operation, while being read by its own chunk for the bit-
map clearing operation, both these operations must be
done with the lock held.

Double buffering mitigates this problem and can further
increase parallelism. Instead of using a single bitmap, we
use two bitmaps simultaneously to implement double buff-
ering. One of them serves as a public bitmap and the other
as the private bitmap. By doing so, we avoid locking the bit-
map while clearing it and therefore make it possible to clear
and update the bitmap at the same time. More specifically,
one virtual processor can clear its private bitmap without
the lock held when other chunks are free to set the public
bitmap simultaneously. We switch these two bitmaps right
after the virtual processor broadcasts its update and still
holds the lock. Therefore, the correctness is guaranteed
since this switch operation is protected by the lock and the
old private bitmap becomes the new public bitmap when
the corresponding virtual processor is ready to receive the
updates.

6 EVALUATION

This section discusses our evaluation of Samsara. We first
illustrate the experimental setup and our workloads. Then
we evaluate different aspects of Samsara and compare it
with a CREW approach.

6.1 Experimental Setup

All the experiments are conducted on a Dell Precision T1700
Workstation with a 4-core Intel Core i7-4790 processor (run-
ning at 3.6 GHz, with 256 KB L1, 1MB private L2 and 8 MB
shared L3 cache) running Ubuntu 12.04 with Linux kernel
version 3.11.0 and QEMU-1.2.2. The host machine has
12 GB memory. The Guest OS is an Ubuntu 14.04 with
Linux kernel version 3.13.1.

6.2 Workloads

To evaluate our system on a wide range of applications, we
choose two sets of benchmarks that represent very different
characteristics, including both computation intensive and
I/O intensive applications.

The first set includes eight computation intensive applica-
tions chosen from PARSEC and SPLASH-2 benchmark suites
(four from each): blackscholes, bodytrack, raytrace, and
swaptions form PARSEC [28]; radiosity, water_nsquared,
water_spatial, and barnes from SPLASH-2 [29]. In our evalu-
ation, all workloads are tested with simlarge or native input
setswhich contain biggerworking sets andmore parallelism.
We choose both PARSEC and SPLASH-2 suites because each
of them has its ownmerits, and no single benchmark can rep-
resent the characteristics of all types of applications. PAR-
SEC is a well-studied benchmark suite composed of
emerging multithreaded programs from a broad range of
application domains. In contrast, SPLASH-2 is composed
mainly of high-performance computing programs which are
commonly used for scientific computation on distributed
shared-address-space multiprocessors. These eight applica-
tions come from different areas of computing and are chosen
because they exhibit diverse characteristics and represent
the different worst-case applications due to the burdensome
sharedmemory accesses.

Although there are applications in the first set that per-
form certain amount of I/O operations, most of them are
disk read only. In the other set of benchmarks, we select
two more I/O intensive applications (kernel-build and
pbzip2) to further evaluate how well Samsara handle I/O
operations. Kernel-build is a parallel build of the Linux ker-
nel version 3.13.1 with the default configuration. In order to
achieve maximum degree of parallelism we use the -j option
of make. Usually, make -j n+1 produces a relatively high per-
formance on a VM with n virtual processors. This is because
the extra process makes it possible to fully utilize the pro-
cessors during network delays and general I/O accesses
such as loading and saving files to disk [18]. Pbzip2 is a par-
allel file compressor which uses pthreads. We use pbzip2 to
decompress a 111 MB Linux-kernel source file.

6.3 Log Size

Log size is an important consideration of the replay sys-
tems. Usually, recording non-deterministic events will gen-
erate huge space overhead which limits the duration of the

Fig. 7. An example of reading outdated data from local copies.

REN ET AL.: LEVERAGING HARDWARE-ASSISTED VIRTUALIZATION FOR DETERMINISTIC REPLAY ON COMMODITY MULTI-CORE... 53

recording. The log size of some prior works is approxi-
mately 2 MB/1 GHz-processor/s [10]. Some can support
only a few seconds’ recording which is difficult to satisfy
long-term recording needs [10].

Experiment results show that Samsara produces a much
smaller log sizewhich is orders ofmagnitude smaller than the
ones reported by prior work in software-based schemes, and
even smaller than some reported in hardware-based schemes.
Fig. 8 shows the compressed log sizes generated by each core
for all the applications. The experiments indicate that Samsara
generates logs at an average rate of 0.0027 and 0.0032 MB/
core/s for recording two and four cores, respectively. For
comparison, the average log size with a single core, which
does not need to recordmemory interleaving, is 0.0025MB/s.

To compare the log size of Samsara and the previous
software or hardware approaches, this experiment was
designed to be as similar as possible to the ones in the previ-
ous papers. SMP-ReVirt generates logs at an average rate of
0.18 MB/core/s when recording the workloads in SPLASH-
2 and kernel-build on two dual-core Xeons [18]. DeLorean
generates logs at an average rate of 0.03 MB/core/s when
recording the workloads in SPLASH-2 on eight simulated
processors [12].

We achieve a significant reduction in the log size because
the size of the chunk commit log is practically negligible
compared with other non-deterministic events. Fig. 9 illus-
trates the proportions of each type of non-deterministic
events in each log file. In most workloads, the interleaving
log represents a small fraction of the whole log (approxi-
mately 8.89 percent with 2 cores and 18.47 percent with
4 cores). For the I/O intensive applications, this proportion
is higher, because the large number of concurrent I/O
requests leads to more chunk truncations.

Another reason is we avoid recording all disk reads. In
Samsara, we use QEMU’s qcow2 (QEMU Copy On Write)
disk format to create a write protected base image and an
overlay image on top of it to perform disk modifications
during recording and replay. By doing so, we can present
the same disk view for replay without logging any disk
reads or creating another copy of the whole disk image.

In summary, the use of chunk-based strategy makes it
possible to significantly reduces the log file size by

98.6 percent compared to the previous software-only
schemes. The log size in our system is even smaller than the
ones reported in hardware-based solutions, since we can
further reduce the log size via increasing the chunk size
which is impossible in hardware-based approaches due to
the risk of cache overflow [12].

6.4 Performance Overhead Compared to Native
Execution

The performance overhead of a system can be evaluated in
different ways. One way is to measure the overhead of the
system relative to the base platform (e.g., KVM) it runs on.
The problem with this approach is that the performance of
different platforms can vary significantly and hence the
overhead measured in this manner does not reflect the
actual execution time of the system in real life. Conse-
quently, we decide to compare the performance of our sys-
tem to native execution, as shown in Fig. 10.

The average performance overhead introduced by Sam-
sara is 2:1� for recording computation intensive applica-
tions on two cores, and 4:1� on four cores. For I/O
intensive applications, the overhead is 3:4� on two cores
and 5:9� on four cores. This overhead is much smaller than
the ones reported by prior works in software-only schemes,
which cause about 16� or even 80� overhead when

Fig. 8. Log size produced by Samsara during recording (compressed
with gzip). Fig. 9. The proportion of each type of non-deterministic events in a log

file (without compression).

Fig. 10. Recording overhead compared to the native execution.

54 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

recording similar workloads on two or four cores [19], [21].
Samsara improves the recording performance dramatically
because we avoid all memory access detections which are a
major source of the overhead. Further experiment reveals
that only 0.83 percent of the whole execution time is spent
on handling page fault VM exits in Samsara, while prior
CREW approaches suffer from more than 60 percent execu-
tion time spent on handling page fault VM exits.

Among the computation intensive workloads, barnes has
a relatively high overhead (about 2:8� on two cores), while
retrace has a negligible overhead (about 0:2� on two cores).
After analyzing the shared memory access pattern of these
two workloads, we find that retrace contains many more
read operations than write. Since Samsara does not trace
any read accesses, these read operations do not cause any
performance overhead. In contrast, barnes contains a lot of
shared memory writes, and the unstructured communica-
tion pattern negates the effects of our hot page cache. More-
over, our page-level conflict detection may cause false
conflicts (i.e., false sharing in SMP-ReVirt [18]), which may
lead to unnecessary rollback and increase performance
overhead, and our page-level COW approach may cause
write-amplification, which may lead to cache pollution and
also increases memory traffic and therefore decreases the
performance. When compared to computation intensive
workloads, I/O intensive workloads incur relatively high
overhead. This is also caused by the large number of con-
current I/O requests, which keep the chunk size quite small.

Therefore, the execution time is not long enough to amortize
the cost of the chunk commits in these workloads.

6.5 A Comparison with Prior Software Approaches

To further evaluate our chunk-based strategy in Samsara
against prior software-only approaches, we implement the
original CREW protocol [18] in our testbed.

Log Size. Fig. 11 shows the comparison against CREW
protocol in log file size, in which Samsara reduces the log
file size by 98.6 percent (i.e., from 0.22 to 0.003 MB/core/s).
To understand the improvement that Samsara achieves, we
measure the proportions of each type of non-deterministic
events in the log file. In this measurement, we find that
nearly 98 percent of the events are memory access interleav-
ing in CREW protocol, while only 8.9 percent of the events
in Samsara are chunk commit orders (on two cores).

Performance Overhead. We also compare the performance
overhead of Samsara and the CREW protocol. The results in
Fig. 12 illustrate that with four cores Samara reduces the
overhead by up to 81.0 percent and the average perfor-
mance improvement is 62.2 percent compared to the native
execution.

Time Consumed on Handling Page Fault VMExits. To under-
stand why Samsara improves the recording performance so
dramatically, we evaluate the time consumed on handling
page fault VM exits in both approaches, since it is one of the
primary contributors to the performance overhead. Fig. 13
shows that 65.6 percent of the whole execution time is spent
on handling page fault VM exits in the CREW protocol. In
contrast, this proportion is only 1.1 percent in Samsara due
to theHAV and chunk-based strategywe used.

6.6 Benefits of Innovations and Optimizations

The next evaluation focuses on quantifying the performance
improvement due to each of Samsara’s innovations and
optimizations.

Obtaining R&W-Set via HAV.We first evaluate the perfor-
mance improvement of using the accessed and the dirty
flags of HAV. The results in Fig. 14 illustrate that with four
cores Samara significantly reduces the overhead from 13:2�
to 4:5� on average by leveraging HAV. This improvement
results from avoiding the read and the write page faults.
Further experiment reveals that compared with the

Fig. 11. A comparison of the log file size between Samsara and CREW
(4 cores, compressed with gzip).

Fig. 12. A comparison of recording overhead between Samsara and
CREW (4 cores).

Fig. 13. Proportion of the execution time consumed on handling page
fault VM exits (4 cores).

REN ET AL.: LEVERAGING HARDWARE-ASSISTED VIRTUALIZATION FOR DETERMINISTIC REPLAY ON COMMODITY MULTI-CORE... 55

approach that obtaining R&W-set via tracing memory
accesses, Samsara significantly reduces the read page faults
by 98.3 percent, and further reduces the write faults by
78.7 percent.

Decentralized Three-Phase Commit Protocol. Fig. 14 illustrates
that the average performance benefits contributed by the
decentralized three-phase commit protocol are 26.9 percent
for recording computation intensive applications on four
cores. For I/O intensive applications, the benefits decrease to
20.6 percent. This improvement results from improving par-
allelism via reducing the lock granularity. Further experi-
ment shows that the average time spent on waiting for the
commit lock is reduced by 96.6 percent on average.

Caching Local Copies. Fig. 15a shows that the average per-
formance benefits contributed by caching local copies are
12.4 percent for recording computation intensive applica-
tions on four cores. For I/O intensive applications, the bene-
fits increase to 26.9 percent. The effect of this optimization is
highly dependent on the amount of temporal locality the
local cache can exploit and the frequency of write opera-
tions. This explains why applications, like water_nsquared
and water_spatial, which exhibit poor temporal locality,
benefit less from this optimization. In contrast, since I/O
intensive applications contain much more write operations
and usually exhibit strong locality, they can benefit
markedly from this optimization.

Double Buffering. As illustrated in Fig. 15b, the perfor-
mance benefits contributed by double buffering are less sig-
nificant. Empirically, the average performance improvement
is 4.2 percent when recording computation intensive appli-
cations on four cores. For I/O intensive applications, the
improvement is 9.9 percent. The effect of this optimization is
variable depending on the number of chunk commit. This
explains why I/O intensive applications, which contain a lot
of chunk commits due to the frequent chunk truncations
caused by the large number of concurrent I/O requests,
experience significant improvement from this optimization.

7 RELATED WORK

The idea of achieving deterministic replay based on virtuali-
zation environment was first proposed by Bressoud,
et al. [7]. Similarly, ReVirt [22] can replay entire operating
systems by recording all non-deterministic events within
the VMM. ReTrace [30] is a trace collection tool based on the
deterministic replay of the VMware hypervisor. However,
both of them only work for uniprocessors and cannot be

applied to multiprocessor environment. SMP-Revirt [18] is
the first deterministic replay system that records and
replays a multiprocessor VM on commodity hardware by
leveraging CREW protocol. ReEmu [19] refines the CREW
protocol with a seqlock-like design to achieve scalable
deterministic replay in a parallel full-system emulator.
While these virtualization-based schemes are flexible, exten-
sible, and user-friendly, they suffer serious performance
degradation and generate huge logs. In contrast, Samsara
can leverage the latest HAV extensions in commodity multi-
processors to achieve efficient and practical deterministic
replay. The preliminary descriptions of this work were
in [31], [32].

To further reduce recording overhead, some efficient
approaches log only synchronization operations and there-
fore is unable to replay programs that contain data races,
such as RecPlay [33], Arnold [5], and Castor [34]. Compared
to these approaches, Samsara is designed to support record
and replay the execution of the whole VM at the instruc-
tion-level granularity and therefore can correctly replay
operating systems, device drivers and all applications that
contain data races.

Hardware-based deterministic replay uses special hard-
ware support for recording memory access interleaving.
FDR [10] records interleaving between pairs of instructions,
and it improves the performance by implementing the
Netzer’s Transitive Reduction optimization [35] on hard-
ware. RTR [36] extended FDR by only recording the logical
time orders between memory access instructions. However,
they still generate huge space overhead, which limits the
duration of the recording. Strata [11] redesigns the record-
ing strategy and records a stratum when a dependence
occurs. Each stratum contains many memory operations
issued by the corresponding processor since the last stratum
is logged. Delorean [12] goes even further on this idea.
Rather than logging individual dependence, it records
memory access interleaving as series of chunks. By doing
so, it allows out-of-order execution of instructions.
IMMR [37] designs a chunk-based strategy for memory race
recording in modern chip multiprocessors. To improve
replay performance, Karma [38] is proposed as a chunk-
based approach that aims to increase replay parallelism.
Compared to chunk-based strategies in hardware schemes,
Samsara improves the recording performance in VMM
without requiring any hardware modification.

Moreover, we believe that many other works can poten-
tially benefit from the innovations introduced in Samsara.
For example, an important design choice in software

Fig. 14. The performance improvement due to Samsara’s two innova-
tions (4 cores).

Fig. 15. Benefits of the performance optimizations (4 cores).

56 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

transactional memory systems is how to address the conflict
detection problem [39]. Prior works provide several meth-
ods, like using locks [40], Bloom filters [41], and word-based
implementations [39], [40]. The idea of tracking read/write
set by leveraging the HAV extensions may provide a new
feasible method for the conflict detection.

8 CONCLUSION

In this article, we have made the first attempt to leverage
HAV extensions to achieve an efficient and practical
software-based deterministic replay system on commodity
multiprocessors. Unlike prior software schemes that trace
every single memory access to record interleaving, we
leverage the HAV extensions to track the read and write-
set, and implement a chunk-based recording scheme in soft-
ware. By doing so, we avoid all memory access detections,
which are a major source of overhead in the prior work. In
addition, we propose a decentralized three-phase commit
protocol which significantly reduces the performance over-
head by allowing chunk commits in parallel while still
ensuring serializability. We also discuss several implemen-
tation issues as well as some optimizations critical to perfor-
mance but not covered in previous works. By evaluating
our system on real systems, we demonstrate that Samsara
can reduce the recording overhead from 10� to 2:1� and
reduce the log file size to 1/70th on average.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grant No. 61572044 and Grant No.
61170056). The contact author is Zhen Xiao.

REFERENCES

[1] H. Agrawal, R. De Millo, and E. Spafford, “An execution-
backtracking approach to debugging,” IEEE Softw., vol. 8, no. 3,
pp. 21–26, May 1991.

[2] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou,
“Flashback: A lightweight extension for rollback and determin-
istic replay for software debugging,” in Proc. USENIX Annu. Tech.
Conf., 2004, pp. 29–44.

[3] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proc. 19th
ACM Symp. Operating Syst. Principles, 2003, pp. 223–236.

[4] A. Chen, et al., “Detecting covert timing channels with time-
deterministic replay,” in Proc. 11th USENIX Symp. Operating Syst.
Des. Implementation, Oct. 2014, pp. 541–554.

[5] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic
systems,” in Proc. 11th USENIX Symp. Operating Syst. Des. Imple-
mentation, Oct. 2014, pp. 525–540.

[6] X. Wu and F. Mueller, “Elastic and scalable tracing and accurate
replay of non-deterministic events,” in Proc. 27th Int. ACM Conf.
Int. Conf. Supercomputing, 2013, pp. 59–68.

[7] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault toler-
ance,” in Proc. 15th ACM Symp. Operating Syst. Principles, 1995,
pp. 1–11.

[8] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the performance
of virtual machine synchronization for fault tolerance,” IEEE
Trans. Comput., vol. 60, no. 12, pp. 1718–1729, Dec. 2011.

[9] J. Zhu, Z. Jiang, and Z. Xiao, “Twinkle: A fast resource provision-
ing mechanism for internet services,” in Proc. IEEE INFOCOM,
2011, pp. 802–810.

[10] M. Xu, R. Bodik, and M. Hill, “A “flight data recorder” for
enabling full-system multiprocessor deterministic replay,” in
Proc. Int. Symp. Comput. Architecture, 2003, pp. 122–133.

[11] S. Narayanasamy, C. Pereira, and B. Calder, “Recording shared
memory dependencies using strata,” in Proc. Int. Conf. Archit. Sup-
port Program. Languages Operating Syst., 2006, pp. 229–240.

[12] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Recording
and deterministically replaying shared-memory multiprocessor
execution efficiently,” in Proc. Int. Symp. Comput. Archit., 2008,
pp. 289–300.

[13] N. Honarmand and J. Torrellas, “RelaxReplay: Record and replay
for relaxed-consistency multiprocessors,” in Proc. 19th Int. Conf.
Archit. Support Program. Languages Operating Syst., 2014, pp. 223–238.

[14] N. Honarmand, N. Dautenhahn, J. Torrellas, S. T. King, G. Pokam,
and C. Pereira, “Cyrus: Unintrusive application-level record-
replay for replay parallelism,” in Proc. 18th Int. Conf. Archit. Sup-
port Program. Languages Operating Syst., 2013, pp. 193–206.

[15] G. Voskuilen, F. Ahmad, and T. N. Vijaykumar, “Timetraveler:
Exploiting acyclic races for optimizing memory race recording,”
in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 198–209.

[16] X. Qian, B. Sahelices, and D. Qian, “Pacifier: Record and replay for
relaxed-consistency multiprocessors with distributed directory
protocol,” in Proc. 41st Annu. Int. Symp. Comput. Archit., 2014,
pp. 433–444.

[17] T. LeBlanc and J. Mellor-Crummey, “Debugging parallel pro-
grams with instant replay,” IEEE Trans. Comput., vol. C-36, no. 4,
pp. 471–482, Apr. 1987.

[18] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proc.
4th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ-
ments, 2008, pp. 121–130.

[19] Y. Chen and H. Chen, “Scalable deterministic replay in a parallel
full-system emulator,” in Proc. 18th ACM SIGPLAN Symp. Princi-
ples Practice Parallel Program., 2013, pp. 207–218.

[20] K. Veeraraghavan, et al., “DoublePlay: Parallelizing sequential
logging and replay,” ACM Trans. Comput. Syst., vol. 30, no. 1,
pp. 3:1–3:24, Feb. 2012.

[21] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie,
“PinPlay: A framework for deterministic replay and reproducible
analysis of parallel programs,” in Proc. 8th Annu. IEEE/ACM Int.
Symp. Code Generation Optimization, 2010, pp. 2–11.

[22] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“ReVirt: Enabling intrusion analysis through virtual-machine log-
ging and replay,” in Proc. Symp. Operating Syst. Des. Implementa-
tion, 2002, pp. 211–224.

[23] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: Deterministic
shared memory multiprocessing,” in Proc. 14th Int. Conf. Archit.
Support Program. Languages Operating Syst., 2009, pp. 85–96.

[24] Intel Corporation, Intel� 64 and IA-32 Architectures Software Devel-
oper’s Manual, Santa Clara, CA, USA, Jun. 2016, no. 325462–059US.

[25] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
enforcement of sequential consistency,” in Proc. 34th Annu. Int.
Symp. Comput. Archit., 2007, pp. 278–289.

[26] C. Dah-Ming and J. Raj,“Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,”
Comput. Netw. ISDN Syst., vol. 17, no. 1, pp. 1–14, 1989.

[27] A. Shriraman and S. Dwarkadas, “Refereeing conflicts in hard-
ware transactional memory,” in Proc. 23rd Int. Conf. Supercomput-
ing, 2009, pp. 136–146.

[28] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Dept. Comput. Sci., Princeton Univ., Princeton, NJ, USA,
Jan. 2011.

[29] S. C.Woo,M.Ohara, E. Torrie, J. P. Singh, andA.Gupta, “The splash-
2 programs: Characterization and methodological considerations,”
in Proc. 22ndAnnu. Int. Symp. Comput. Archit., 1995, pp. 24–36.

[30] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weiss-
man, “ReTrace: Collecting execution trace with virtual machine
deterministic replay,” in Proc. 3rd Annu. Workshop Model. Bench-
marking Simul., 2007.

[31] S. Ren, C. Li, L. Tan, and Z. Xiao, “Samsara: Efficient deterministic
replay with hardware virtualization extensions,” in Proc. 6th Asia-
Pacific Workshop Syst., 2015, pp. 9:1–9:7.

[32] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song, “Samsara: Efficient
deterministic replay in multiprocessor environments with hard-
ware virtualization extensions,” in Proc. USENIX Annu. Tech.
Conf., Jun. 2016, pp. 551–564.

[33] M. Ronsse and K. De Bosschere, “RecPlay: A fully integrated prac-
tical record/replay system,” ACM Trans. Comput. Syst., vol. 17,
no. 2, pp. 133–152, May 1999.

[34] A. J. Mashtizadeh, T. Garfinkel, D. Terei, D. Mazi�eres, and
M. Rosenblum, “Towards practical default-on multi-core record/
replay,” in Proc. 22nd Int. Conf. Archit. Support Program. Languages
Operating Syst., 2017, pp. 693–708.

REN ET AL.: LEVERAGING HARDWARE-ASSISTED VIRTUALIZATION FOR DETERMINISTIC REPLAY ON COMMODITY MULTI-CORE... 57

[35] R. H. Netzer and J. Xu, “Adaptive message logging for incremen-
tal program replay,” IEEE Concurrency, vol. 1, no. 4, pp. 32–39,
Nov. 1993.

[36] M. Xu, M. D. Hill, and R. Bodik, “A regulated transitive reduction
(RTR) for longer memory race recording,” in Proc. 12th Int. Conf.
Archit. Support Program. Languages Operating Syst., 2006, pp. 49–60.

[37] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R. Adl-Tabata-
bai, “Architecting a chunk-based memory race recorder in mod-
ern CMPs,” in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2009, pp. 576–585.

[38] A. Basu, J. Bobba, and M. D. Hill, “Karma: Scalable deterministic
record-replay,” in Proc. Int. Conf. Supercomputing, 2011, pp. 359–
368.

[39] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning
of word-based software transactional memory,” in Proc. 13th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2008,
pp. 237–246.

[40] D. Dice, O. Shalev, and N. Shavit, Transactional Locking II. Berlin,
Germany: Springer, 2006, pp. 194–208.

[41] M. F. Spear, M. M. Michael, and C. von Praun, “RingSTM: Scal-
able transactions with a single atomic instruction,” in Proc. 20th
Annu. Symp. Parallelism Algorithms Archit., 2008, pp. 275–284.

Shiru Ren is currently working toward the PhD
degree in the School of Electronics Engineering
and Computer Science, Peking University. His
research interests include virtualization technolo-
gies, operating system, fault tolerance, and dis-
tributed system. His recent research aims to
implement efficient deterministic replay system
on commodity multi-core processors.

Le Tan received the master’s degree from the
School of Electronics Engineering and Computer
Science, Peking University, in 2016. During his
student life, he focused on exploring system level
developing techniques, especially the operating
system and the virtualization technology. Cur-
rently, he is a software engineer working at
Microsoft.

Chunqi Li received the master’s degree from the
School of Electronics Engineering and Computer
Science, Peking University, in 2015. His research
focuses on virtualization, operating system, and
distributed system. Currently, he is a software
engineer working at Google.

Zhen Xiao is currently a professor in the Depart-
ment of Computer Science at Peking University,
Beijing, China. He received the PhD degree from
Cornell University, Ithaca, NY, in January 2001.
After that he joined as a senior technical staff
member at AT&T Labs—Research at Florham
Park, NJ, and then as a research staff member at
IBM T.J. Watson Research Center. His current
research interests include cloud computing, virtu-
alization, and various distributed systems issues.
He is a senior member of the ACM and the IEEE.

Weijia Song received the PhD degree from
Peking University, in 2014. He is a research
associate in the Computer Science Department,
Cornell University. His research is in the area of
distributed and network system, focusing on
cloud file/storage systems, cloud scheduling.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

58 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

