
Samsara: Efficient Deterministic Replay
with Hardware Virtualization Extensions

Shiru Ren, Chunqi Li, Le Tan, and Zhen Xiao ∗

School of Electronics Engineering and Computer Science, Peking University
{rsr, lcq, tanle, xiaozhen}@net.pku.edu.cn

Abstract
Deterministic replay, which provides the ability to travel
backward in time and reconstructs the past execution flow
of a multi-processor system, has many prominent applica-
tions including cyclic debugging, intrusion detection, mal-
ware analysis, and fault tolerance. Previous software-only
schemes cannot take advantage of modern hardware support
for replay and suffer from excessive performance overhead.
They also produce huge log sizes due to the inherent draw-
backs of the point-to-point logging approach used. In this
paper, we propose a novel approach, called Samsara, which
uses hardware-assisted virtualization (HAV) extensions to
achieve an efficient software-based replay system. Unlike
previous software-only schemes that record dependences be-
tween individual instructions, we record processors’ execu-
tion as a series of chunks. By leveraging HAV extensions, we
avoid the large number of memory access detections which
are a major source of overhead in the previous work and in-
stead perform a single extended page table (EPT) traversal
at the end of each chunk. We have implemented and eval-
uated our system on KVM with Intel’s Haswell processor.
Evaluation results show that our system incurs less than 3X
overhead when compared to native execution with two pro-
cessors while the overhead in other state-of-the-art work is
much more than 10X. Our system improves recording per-
formance dramatically with a log size even smaller than that
in hardware-based scheme.

∗ The contact author is Zhen Xiao.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APSys 2015, July 27–28, 2015, Tokyo, Japan.
Copyright c© 2015 ACM 978-1-4503-3554-6/15/07. . . $15.00.
http://dx.doi.org/10.1145/2797022.2797028

1. Introduction
Current multi-processor architectures are non-deterministic.
When supplied with the same inputs, they cannot be ex-
pected to reproduce the past execution flow exactly. The lack
of repeatability on a multi-processor system complicates de-
bugging, security analysis, and fault tolerance. It greatly re-
stricts the development of parallel programming and some
security applications.

Deterministic replay helps to reconstruct non-deterministic
multi-processor executions. It is extensively used in several
different applications. For program debugging, it can repro-
duce bugs and allow a programmer to inspect the program
state. For security analysis, it can facilitate a quick analysis
of an attack. For fault tolerance, it provides the ability to re-
cover whole system states, which can be used in hot-standby
system [18, 19] or data recovery.

Current research on deterministic replay for single pro-
cessor is relatively mature with some commercial prod-
ucts available [4, 17]. However, the emergence of multi-
processor systems poses a new challenge to deterministic
replay. Since memory accesses from multiple processors to
a shared memory object may interleave in some arbitrary
order, it has become a major source of non-deterministic
events, which may affect the processor’s execution.

Existing researches on deterministic replay for multi-
processor can be divided into two categories: software-only
schemes and hardware-based schemes. Research in the first
category achieves deterministic replay by modifying the OS,
the compiler, the runtime libraries or the virtual machine
manager (VMM) [3, 5, 11, 14, 15]. Some of them work at
the application-level and cannot handle non-deterministic
and I/O events in the OS [1, 8, 11, 12, 15]. To achieve full-
system level replay, virtualization-based approaches were
proposed in [3, 5, 13] which leverage the CREW protocol to
serialize and log the total order of the memory access inter-
leaving [7]. Each memory access operation must be checked
for logging before execution which results in serious perfor-
mance degradation and huge log sizes.

To reduce the recording overhead, research in the second
category add special hardware components into the proces-
sor to detect and record memory interleaving [9, 10, 16].

Typically, they redesign the cache coherence protocol to
identify and record coherence messages between proces-
sors [6]. These schemes require modifications to the exist-
ing hardware, which increases the complexity of the circuits.
Thus, most of them have been modeled only using software
simulations and are largely impractical for use in real sys-
tems.

Hence, we believe software-only schemes will be the
main viable approach in the foreseeable future. Although
there is no commercial processor with dedicated hardware-
based record and replay features, some modern hardware
characteristics in these processors are available to boost per-
formance of the software-based deterministic replay systems
significantly. The main motivation of our work is to take ad-
vantage of these characteristics to achieve efficient record
and replay in commodity hardware.

The emergence of hardware-assisted virtualization (HAV)
provides the possibility to meet the above requirements.
Take Intel Virtualization Technology as an example. Intel’s
recent Haswell microarchitecture introduces accessed and
dirty flags for EPT that provides hardware support to detect
which memory pages have been accessed or updated during
past execution. By leveraging this characteristic, we avoid
the large number of memory access detections in previous
approaches and instead obtain working set by a single EPT
traversal. Moreover, HAV provides a more efficient full-
system virtualization platform after years of development.
Therefore, it is the most promising platform that can be used
to implement an efficient replay system.

To the best of our knowledge, our prototype, Samsara,
is the first software-based deterministic replay system im-
plemented on the HAV platform, which support record and
replay in the multi-processor environment on commodity
hardware. By leveraging the chunk-based recording strategy
on the HAV platform, we obtain significant improvements in
performance and log size reduction compared to the previ-
ous software schemes.

The rest of the paper is organized as follows. Section
2 describes the general architecture of our system and
gives a brief description of how to record and replay non-
deterministic events. Section 3 illustrates the specific im-
plementation on recording and replaying the memory inter-
leaving with HAV extensions. Then, we evaluate the space
overhead and performance slowdown of our prototype in
Section 4. Finally, Section 5 concludes the paper.

2. Design Overview
As a software-only approach, Samsara is implemented in-
side the virtual machine manager (VMM), which has access
to the entire virtual machine and can take full advantage of
HAV extensions. Unlike application-level approaches, Sam-
sara is designed to support record and replay the execution of
the whole virtual machine. This design extensively expands
the application range of deterministic replay.

x86 with Hardware-assisted Virtualiza�on

Log Record

Daemon

Windows

WindowsWindows

Applica�ons

QEMU

Controller
DMA

Recorder

Linux

WindowsLinux

Applica�ons

QEMU

Controller
DMA

Recorder

Virtual Machine

Linux

Applica�ons

KVM

Linux

Virtual Machine

R&R Component

Memory Interleaving Recorder

Figure 1. Architecture overview.

In this section, we first illustrate the general architecture
of our system. Then, we discuss how to record and replay all
non-deterministic events.

2.1 System Architecture
Samsara implements the deterministic replay as an exten-
sion to VMM, as illustrated in Figure 1. The architecture of
Samsara consists of four principal components, namely, the
Controller, the DMA recorder, the R&R (record and replay)
component, and the log record daemon. The controller is in
charge of all policy enforcement. It provides a control inter-
face to users, manages R&R component in KVM, and is in
charge of log transfer. The R&R component acts as a part
of VMM working in the kernel space being responsible for
recording and replaying all non-deterministic events, espe-
cially the memory interleaving. The DMA recorder records
the contents of DMA events as part of QEMU. Finally, we
optimize the performance of logging by utilizing a user-
space log record daemon. It runs as a background process
that supports loading and storing different log files for mul-
tiple VMs’ recording and replaying simultaneously.

Before recording, controller initializes a snapshot of the
whole VM states. Then all non-deterministic events and the
exact point in the instruction stream where these events oc-
curred will be logged by the R&R component during record-
ing. Meanwhile, it transfers these log data to the userspace
log record daemon, which is responsible for the persistent
storage and management of the logs.

The replay phase is initialized by loading the snapshot
to restore all VM states. During replay, virtual processors’
execution is controlled by the R&R component, therefore all
external events will be ignored, and each recorded event will
be injected at the exact same point.

2.2 Record and Replay Non-deterministic Events
Non-deterministic events fall into three categories: syn-
chronous, asynchronous, and compound. The following il-

lustrates what events will be recorded and how recording
and replaying is done in our system.

Synchronous Events. These events are handled immedi-
ately by the VM when they occur. They take place on the
exact point in the instruction stream, such as I/O events and
RDTSC instructions. The key observation is that they will be
triggered by the associated instructions at the fixed point if
all previous events are properly injected. Therefore, we just
record the contents of these events. During replay, we merely
need to inject logged data to where the I/O (or RDTSC) in-
struction is trapped into the VMM.

Asynchronous Events. These events originate from ex-
ternal devices toward the VM at arbitrary times, such as ex-
ternal interrupt. The result of them is deterministic; but their
timing is not. Therefore, to replay them, all these events must
be identified with a three-tuple timestamp like the approach
proposed by ReVirt [4]. During replay, we leverage a hard-
ware performance counter to guarantee that the VM stops at
the recorded timestamp to inject them.

Compound Events. These events are non-deterministic
in both timing and result. DMA is an example of these
events, because DMA completion is notified by an interrupt,
which is asynchronous, and the data copy process is initial-
ized by a series of I/O instructions, which are synchronous.
Hence, it is necessary to record both the completion time and
the contents of a DMA event. In practice, the interrupt will
be properly injected during replay, so we need to guarantee
the DMA transfer is done prior to the interrupt injection. Un-
fortunately, the access orders to the DMA memory between
the emulated device and virtual processors may induce non-
deterministic inter-leavings during replay. Hence, we treat
DMA device as a virtual processor with the highest priority.

Memory interleaving. Memory interleaving is also an
asynchronous event. Moreover, the number of memory in-
terleavings is an order of magnitude larger than the sum of
all other non-deterministic events. Therefore, how to record
and replay memory interleaving is the most important chal-
lenge in a replay system.

3. Record and Replay Memory Interleaving
with HAV Extensions

As a software-only scheme, Samsara leverages some HAV
features to achieve a chunk-based memory interleaving
recording approach. The following illustrates the specific
implementation and optimizations of this scheme.

3.1 Chunk-based Strategy
Previous software-only schemes leverage CREW protocol
to serialize and log the total order of the memory access
interleaving [7], which produces huge log size and excessive
performance overhead because of each memory access must
be checked for logging before execution. Therefore, chunk-
based approach has been proposed on the hardware-based
replay system to reduce this overhead [9]. However, this

P0

Chunk StartMicro-Checkpoint

LD (A)

COW ST (A)

ST (A)

ST (B)COW

Chunk Complete

Trunca!on Reason:

I/O Instruc!on

Commit

P1

LD (A)

Squash & Rollback

LD (B)

ST (B)

Re-execu!on

LD (D)

ST (D)

Conflict

Detec!on

R-set { A }

W-set { A , B }

Trunca!on Reason:

Chunk Size Limit

R-set { D }

W-set { D }

R-set { A , B }

W-set { B }

Memory Opera!on

Chunk Name

Chunk Execu!on

Chunk Commit

Figure 2. The execution flow of our chunk-based approach.

approach is difficult to be applied to a software-only replay
system, because it still needs to trace each memory access
to obtain the working set during chunk execution which is
also a time-consuming process similar to the point-to-point
logging approach. By leveraging HAV extensions, we avoid
these detections and instead perform a single EPT traversal
at the end of each chunk.

To implement a chunk-based recoding scheme, we need
to restrict virtual processors’ execution into a series of
chunks. In our system, a chunk is defined as a finite se-
quence of machine instructions. Chunk execution must sat-
isfy the atomicity and serializability requirements. Atomic-
ity requires that the execution of each chunk must be “all
or nothing”. Serializability requires that the concurrent exe-
cution of chunks have to result in a same system state as if
these chunks were executed serially.

To enforce serializability, we must guarantee no update
within a chunk is visible to other chunks until it commits.
Thus, on the first write to each memory page within a chunk,
we create a local copy on which to perform the modification
by leveraging copy-on-write (COW) strategy. When a chunk
completes, it either commits, copying all local copies back
to shared memory instantly, or squashes, discarding all local
copies.

Moreover, an efficient conflict detection strategy is nec-
essary to enforce serializability. Particularly, an executing
chunk must be squashed and re-executed when its accessed
memory pages have been modified by a newly committed
chunk. To optimize recoding performance, we leverage lazy
conflict detection. Namely, we defer detection until chunk

completion. When a chunk completes, we obtain the read-
and write-set (R&W-set) of this chunk. Afterwards, we in-
tersect all write-sets of other concurrent chunks with this
R&W-set. If the intersection is not empty, which means there
are collisions, then this chunk must be squashed and re-
executed.

Finally, there are some instructions that may violate
atomicity because they lead to externally observable behav-
iors (such as I/O instructions that may modify device status
and control activities on a device). Once these instructions
are executed in a chunk, this chunk could not be squashed
and re-executed. Therefore, we truncate a chunk when one
of these instructions is encountered. Then its execution must
be deferred until this chunk can be committed.

Figure 2 illustrates the execution flow of our chunk-based
approach. First, we make a micro-checkpoint of virtual pro-
cessor’s status at the beginning of each chunk. During chunk
execution, the first write to each memory page will trigger a
COW operation that creates a local copy. All the following
modification to this page will be per-formed on this copy
until chunk completion. A currently running chunk will be
truncated when an I/O operation occurs or if the number
of instructions executed within this chunk reaches the size
limit. When chunk completion, we obtains the R&W-set of
this chunk. Then, the conflict detection is done by intersect-
ing its own R&W-set with all W-sets of other chunks which
just committed during this chunk execution. If the intersec-
tion is empty (as C1 or C2 in Figure 2), this chunk can be
committed. Finally, we record the chunk size and the commit
order which together are used to ensure that this chunk will
be properly reconstructed during replay. Otherwise (as C3 in
Figure 2), all local copies will be discarded instantaneously,
and then we rollback the virtual processor status with the
micro-checkpoint we made at beginning and re-execute this
chunk.

3.2 Obtain R&W-set Efficiently via HAV
The most serious challenge in the implementation of chunk-
based scheme is how to obtain R&W-set efficiently. Hardware-
based schemes achieve this by tracing each cache coher-
ence protocol message. However, tracing each memory ac-
cess will result in serious performance degradation in the
software-only scheme.

Like the accessed and dirty flags in ordinary paging-
structure entries, processors with Intel VT also support cor-
responding flags in EPT entries. Whenever the processor
uses an EPT entry as part of address translation, it sets the
accessed flag in that entry. In addition, whenever there is a
write to a guest-physical address, the dirty flag will be set.
Therefore, we can obtain the R&W-set by gathering all leaf
entries which the accessed or dirty flag is set.

Moreover, the tree-based design of EPT makes it possi-
ble to further improve performance. EPT uses a hierarchical,
tree-based design which allows the subtrees corresponding
to some unused parts of memory to be absent. Similar fea-

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Update

Write-back
Update

(a)

Subsequent
Chunk

Lock

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Update

Write-back
Update

(b)

Subsequent
Chunk

Lock

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Update

Write-back
Update

(c)

Subsequent
Chunk

Lock

Insert Info Node

Update Chunk
Info

Synchroniza"on

Obtain
R&W-set

Obtain
R&W-set

Obtain
R&W-set

Figure 3. General design of decentralized three-phase com-
mit protocol: a) chunk timeline of a naı̈ve design, b) moving
update write-back operation out of the synchronized block,
and c) a design of decentralized three-phase commit proto-
col.

ture is also present for the accessed and dirty flags. For in-
stance, if the accessed flag of one internal entry is 0, then the
accessed flags of all page entries in its subtrees are definitely
0. Hence, it is not necessary to traverse these subtrees. In
practice, due to locality of reference, the access locations of
most chunks are adjacent. Thus, we usually just need to tra-
verse a tiny part of EPT, which brings practically negligible
overhead.

3.3 A Decentralized Three-Phase Commit Protocol
Apart from obtaining R&W-set, chunk commit is another
time-consuming process. In this subsection, we will discuss
how to optimize this part for a better performance by utiliz-
ing a decentralized three-phase commit protocol.

Some hardware-based solutions add a centralized arbiter
module to processors to ensure that chunks commit one
at a time, without overlap [9]. However, when it comes
to software-only schemes, an arbiter may occupy plenty
of processing resources as a long-running process. Thus,
we propose a decentralized three-phase commit protocol to
perform chunk commit efficiently.

The chunk commit process should include at least three
steps, conflict detection that determines whether this chunk
can be committed, update broadcast that notifies other pro-
cessors which memory pages are modified, update write-
back that copies all updates back to shard memory. A naı̈ve
design of the decentralized commit protocol is shown in Fig-
ure 3 a). Without a centralized arbiter, we leverage a system-
wide lock to enforce serializability. The whole commit pro-
cess is performed while holding this lock.

P0

Chunk

Start

ST (1 à A)

Chunk

Complete

Commit

Complete

P1

LD (A ß 0)

LD (A ß 1)

P2

A=0 A=0 A=0

Figure 4. An example of out-of-order commit.

Unfortunately, our analysis indicates that the time con-
sumed on waiting for this lock is excessive, which takes up
nearly 40% of the whole commit time. This severely lim-
its the performance and scalability of our system. To ad-
dress this issue, the straightforward idea is to reduce the
lock granularity. We observe that the update write-back op-
eration involves serious performance degradation due to lots
of page copies, and all these pages committed con-currently
by different chunks have no intersection, which is guaran-
teed by conflict detection. Based on these observations, we
move this operation out of the synchronized block to reduce
lock granularity, as shown in Figure 3 b). This, on the one
hand noticeably reduces expensive lock operations, and on
the other, also improves parallelism because multiple chunks
can commit concurrently.

Unfortunately, this design may result in chunk commit-
ting out-of-order, thus violates serializability. One example
is shown in Figure 4. C1 writes A, then finishes its execution
first and starts to commit. Afterwards, C2 starts committing
as well and finishes before C1. Meanwhile C3 starts to exe-
cute and happens to read A immediately. Unfortunately, C1
may not accomplish its commit process in such a short pe-
riod, thus C3 fetches the obsolete value of A. Suppose C3
reads A again and gets a new value after C1 completed its
commit, C3 gets two different values of a same memory ob-
ject, which violates serializability obviously. To avoid this
problem, we need to guarantee that before starting C3, P2
waits until all the other chunks which start committing prior
to the commit point of C2 (e.g., C1) complete their commit.

To avoid this potential issue induced by out-of-order com-
mit, we propose a decentralized three-phase commit proto-
col to support parallel commit while ensuring serializabil-
ity. To eradicate out-of-order commit, we introduce a global
linked-list which maintains the order and information of
each current committing chunk. Each node of this list con-
tains a commit flag field to indicate whether the correspond-

ing chunk has completed its commit process. Moreover, this
list is kept sorted by the commit order of its corresponding
chunk. To avoid multiple chunk update this list concurrently,
operations on it are responsible for acquiring a lock. This
protocol consists of three phases as shown in Figure 3 c).

1) The pre-commit phase, in which this processor must
register its commit information by inserting an info node at
the end of this linked-list. The commit flag of this info node
will be initialized with 0, which means this chunk is about
to be committed.

2) The commit phase, in which memory pages updated
by this chunk will be committed (i.e., written back to shared
memory). Then the processor must set the commit flag of
its info node to 1 at the end of this phase, which means it
has completed its commit process. Chunks can commit in
parallel at this phase, because pages committed by different
chunks certainly have no intersection.

3) The synchronization phase, in which this virtual pro-
cessor is blocked until all the other chunks which start com-
mitting prior to the commit point of its preceding chunk have
completed their commit. To enforce this, it needs to check all
commit flags of those chunk info nodes which are ahead of
its own node. If there is at least one flag is 0, then this pro-
cessor must be blocked. Otherwise, the processor removes
its own info node from the linked-list and begins to execute
next chunk. In practice, this blocking almost never happens,
because a virtual processor tends to exit to QEMU to emu-
late some device operations before executing the next chunk,
which happens to provide sufficient time for other chunks to
complete their commit. This protocol can satisfy the serial-
izability requirement because it strictly guarantees that the
processor which first begins to commit this chunk will exe-
cute the subsequent chunk preferentially.

This design noticeably improves performance via reduc-
ing lock granularity. It also reduces the time spent on wait-
ing for lock, because the shorter the time a chunk holds a
lock, the lower the probability that other chunks will request
it while the first chunk is holding it.

3.4 Replay Memory Interleaving
Replay memory interleaving is relatively simple under chunk-
base strategy. To enable practical replay, we merely need to
guarantee all chunks will be properly re-built and executed
in the original order. Therefore, a hardware performance
counter is required to confirm that a chunk can be truncated
at the recorded timestamp. Besides, we also need to ensure
that all preceding chunks have been committed successfully
before the subsequent chunk starts.

Compared with some previously-proposed schemes that
are not designed for parallel replay, Samsara greatly boosts
replay performance via allowing processors execute concur-
rently in replay. Moreover, unlike fine-grained approaches
which perform too much constraint that will hurt replay ef-
ficiency, we avoid these restrictions by leveraging chunk-
based strategy to replay interleaving in coarse-grain.

0

0.1

0.2

0.3

0.4

0.5

blackscholes bodytrack raytrace swap ons freqmine x264

Lo
g

 S
iz

e
 (

M
B

/s
)

1 processor

2 processors

4 processors

Figure 5. Log size produced by Samsara during recording
(2GB memory, compressed with gzip).

0

1

2

3

4

5

6

7

8

9

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Blackscholes Bodytrack Raytrace swap ons freqmine x264

Lo
g

 S
iz

e
 (

M
B

/s
)

chunk commit order

Synchronous Events & Compound Events

Asynchronous

Figure 6. The relative proportions of each type of non-
deterministic events in a log file (2 GB memory, compressed
with gzip).

4. Evaluation
This section discusses our evaluation of Samsara. We first
illustrate our experimental setup and the workloads we
choose. Then, we assess two different aspects of our sys-
tem.

4.1 Experimental Setup and Workloads
All the experiments are based on a Dell Precision T1700
Workstation, with a 4-core Intel Core i7-4790 processor
running Ubuntu 12.04 with Linux kernel version 3.11.0 and
QEMU-1.2.2. The host machine has 12GB memory.

To evaluate how well traditional chip-multiprocessors
workloads run under our system, we ran PARSEC [2] bench-
mark suite on our testbed. This is a well-studied benchmark
composed of multithreaded programs. We choose six work-
loads from PARSEC: blackscholes, bodytrack, raytrace,
swaptions, freqmine, and x264. We choose these because
they exhibit diverse characteristics that represent the differ-
ent worst-case applications.

4.2 Log Size
Log size is an important consideration of the replay sys-
tems. Usually, recoding non-deterministic events will gen-
erate huge space overhead that limits the duration of the
recording interval. Some previous approaches produce ap-
proximately 1-2 MB log/1GHz-processor/second after com-

0

2

4

6

8

10

12

blackscholes bodytrack raytrace swap ons freqmine x264

N
o

rm
a

li
ze

d
 R

u
n

m

e

logging, 1 processor

logging, 2 processors

logging, 4 processors

Figure 7. Record overhead compared to Native Execution.

pression. Some can support only a few seconds’ recording
[16], which is difficult to satisfy long-term recording needs.

Experiments show that Samsara produces a much smaller
log size than previous approaches. Figure 5 shows the log
sizes for all the benchmarks applications. The experiment
indicates that the log size generated by recoding does not in-
crease commensurately with the number of processors. Sam-
sara generates log at an average rate of 0.127 MB/s and 0.151
MB/s for recoding two and four processors, respectively. For
comparison, the average log size generated by a single pro-
cessor recoding (which does not need to record memory in-
terleaving) is 0.131 MB/s.

We achieved a significant reduction in log size because
the size of the chunk commit log is practically negligible
compared with other non-deterministic events. Figure 6
illustrates the relative proportions of each type of non-
deterministic events in the log file. In most workloads, the
chunk commit log represents a tiny fraction (2.33% with 2
processors and 7.37% with 4 processors on average).

The log size in our system is even smaller than hardware-
based schemes, since we can further reduce it via increasing
the chunk size which is impossible in hardware due to the
risk of cache overflow [9].

4.3 Performance Overhead Compared to Native
Execution

The performance overhead of a system can be evaluated in
different ways. One way is to measure the overhead of the
system relative to the base platform it runs on. The problem
with this approach is that the performance of different plat-
forms can vary significantly and hence the overhead mea-
sured in this manner does not reflect the actual execution
time of the system in real life. Consequently, we decide to
compare the performance of our system to native execution,
as shown in Figure 7.

We can see from this figure that the average perfor-
mance overhead introduced by Samsara are 2.6X and 5.0X
for recording these workloads on two and four processors.
This overhead is much smaller than previous software-only
schemes which may cause about 16X or even 80X overhead
when recoding similar workloads with two cores [3, 13].

Among these workloads, x264 has a relatively large over-
head (nearly 5X with two processors), while retrace has a

negligible overhead (less than 0.4X with two processors) in
contrast. By analyzing the shared memory access pattern of
these two workloads, we find that retrace contains an im-
mense amount of read operations than write. These read op-
erations will not bother our system, because we do not trace
any read access. However, x264 contains a lot of shared
memory writes, and the coarse-grained parallelism result in
some false sharing issues which may cause the performance
to suffer.

5. Conclusion
In this paper, we made the first attempt to leverage HAV ex-
tensions to achieve an efficient software-based replay sys-
tem. Unlike previous schemes that record dependences be-
tween individual instructions, we record processors’ exe-
cution as a series of chunks and avoid the large number
of memory access detections by performing a single EPT
traversal at the end of each chunk. Moreover, we propose
a decentralized three-phase commit protocol to reduce the
lock granularity of the chunk commit process, which boost
performance significantly. Evaluation shows that our system
improves recording performance dramatically with a log size
even smaller than that in hardware-based scheme.

Acknowledgments
The authors would like to thank the anonymous review-
ers for their comments. This work was supported by the
National Natural Science Foundation of China (Grant No.
61170056), the National High Technology Research and
Development Program (863 Program) of China (Grant No.
2013AA013203).

References
[1] G. Altekar and I. Stoica. Odr: Output-deterministic replay for

multicore debugging. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, 2009.

[2] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[3] Y. Chen and H. Chen. Scalable deterministic replay in a
parallel full-system emulator. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2013.

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the 2002 Sym-
posium on Operating Systems Design and Implementation,
2002.

[5] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen. Execution replay of multiprocessor virtual machines. In
Proceedings of the Fourth ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, 2008.

[6] N. Honarmand and J. Torrellas. Relaxreplay: Record and re-
play for relaxed-consistency multiprocessors. In Proceedings

of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2014.

[7] T. LeBlanc and J. Mellor-Crummey. Debugging parallel pro-
grams with instant replay. Computers, IEEE Transactions on,
C-36(4):471–482, April 1987.

[8] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient online multiprocessor re-
playvia speculation and external determinism. In Proceedings
of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, 2010.

[9] P. Montesinos, L. Ceze, and J. Torrellas. Delorean: Recording
and deterministically replaying shared-memory multiproces-
sor execution efficiently. In Proceedings of the International
Symposium on Computer Architecture, 2008.

[10] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared
memory dependencies using strata. In Proceedings of the
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2006.

[11] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
deterministic multithreading in software. In Proceedings of
the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2009.

[12] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. Pres: Probabilistic replay with execution sketching
on multiprocessors. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, 2009.

[13] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: A framework for deterministic replay and repro-
ducible analysis of parallel programs. In Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2010.

[14] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and deter-
ministic replay for software debugging. In USENIX Annual
Technical Conference, General Track, 2004.

[15] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. Doubleplay: Parallelizing
sequential logging and replay. ACM Trans. Comput. Syst., 30
(1):3:1–3:24, Feb. 2012.

[16] M. Xu, R. Bodik, and M. Hill. A ”flight data recorder”
for enabling full-system multiprocessor deterministic replay.
In Proceedings of the International Symposium on Computer
Architecture, 2003.

[17] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. Retrace: Collecting execution trace with virtual
machine deterministic replay. In Proceedings of the Third An-
nual Workshop on Modeling, Benchmarking and Simulation,
2007.

[18] J. Zhu, Z. Jiang, and Z. Xiao. Twinkle: A fast resource
provisioning mechanism for internet services. In Proceedings
of the IEEE INFOCOM, 2011.

[19] J. Zhu, Z. Jiang, Z. Xiao, and X. Li. Optimizing the per-
formance of virtual machine synchronization for fault toler-
ance. IEEE Transactions on Computers, 60(12):1718–1729,
Dec 2011.

