
Optimizing Communication in Deep Reinforcement Learning
with XingTian

Lichen Pan§
Peking University
Beijing, China

plch368@pku.edu.cn

Jun Qian§,‡
Noah’s Ark Lab, Huawei

Beijing, China
jack.qian@huawei.com

Wei Xia
Noah’s Ark Lab, Huawei

Beijing, China

Hangyu Mao
Noah’s Ark Lab, Huawei

Beijing, China

Jun Yao
Noah’s Ark Lab, Huawei

Beijing, China

Pengze Li
Peking University
Beijing, China

Zhen Xiao‡
Peking University
Beijing, China

xiaozhen@pku.edu.cn

ABSTRACT
Deep Reinforcement Learning (DRL) achieves great success in
various domains. Communication in today’s DRL algorithms takes
non-negligible time compared to the computation. However, prior
DRL frameworks usually focus on computation management while
paying little attention to communication optimization, and fail
to utilize the opportunity of the communication-computation
overlap that hides the communication from the critical path of
DRL algorithms. Consequently, communication can take more
time than the computation in prior DRL frameworks. In this
paper, we present XingTian, a novel DRL framework that co-
designs the management of communication and computation in
DRL algorithms. XingTian organizes the computation in DRL
algorithms in a decentralized way and provides an asynchronous
communication channel. XingTian makes the communication
execute asynchronously and aggressively and takes advantage of
the communication-computation overlapping opportunity from
DRL algorithms. Experimental results show that XingTian improves
data transmission efficiency and can transmit at least twice as
much data per second as the state-of-the-art DRL framework
RLLib. DRL algorithms based on XingTian achieve up to 70.71%
more throughput than RLLib-based ones with better or similar
convergent performance. XingTian maintains high communication
efficiency under different scale deployments and the XingTian-
based DRL algorithm achieves 91.12% higher throughput than the
RLLib-based one when deployed in four machines. XingTian is
§Equal Contribution. ‡Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9340-9/22/11. . . $15.00
https://doi.org/10.1145/3528535.3565249

open-sourced and publicly available at https://github.com/huawei-
noah/xingtian.

CCS CONCEPTS
• Computer systems organization → Special purpose systems; •
Computing methodologies→ Artificial intelligence.

KEYWORDS
Deep Reinforcement Learning, Asynchronous Communication, De-
centralized Computation, Communication-Computation Overlap
ACM Reference Format:
Lichen Pan§, Jun Qian§,‡, Wei Xia, Hangyu Mao, Jun Yao, Pengze Li,
and Zhen Xiao‡. 2022. Optimizing Communication in Deep Reinforcement
Learning with XingTian. In 23rd ACM/IFIP International Middleware Con-
ference (Middleware ’22), November 7–11, 2022, Quebec, QC, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3528535.3565249

1 INTRODUCTION
Reinforcement learning (RL) [55] is an artificial intelligence method
that focuses on training intelligent agents to take a sequence of
actions to maximize the return, i.e., cumulative rewards they receive
from interactive environments. Deep Reinforcement Learning (DRL),
which combines the concepts of RL and deep learning (DL), has
become one of the most active areas of artificial intelligence. Most
of today’s DRL algorithms focus on solving the optimal policies
for agents with the help of deep neural networks (DNNs). DRL
has achieved great success in various domains, including gaming
[19, 50, 52], robotics [2, 33], system optimization [35, 36, 60], protein
structure prediction [24], and other imaginative fields.

Today’s widely used DRL algorithms rely on massive direct
interaction with the environment to collect data used to train
the DNNs, since the internal state transition dynamics of the
environments cannot be precisely expressed in advance in most
cases. In DRL algorithms, the collected training data are usually
called rollouts, which comprise a series of rollout steps. A rollout
step is a tuple of the observation of the environment, the action

https://doi.org/10.1145/3528535.3565249
https://github.com/huawei-noah/xingtian
https://github.com/huawei-noah/xingtian
https://doi.org/10.1145/3528535.3565249

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

Table 1: Time to Transmit Rollouts and to Train.

DRL
Algorithms

Rollout
Size (KB)

Trans. Time in
RLLib[30, 31]

(ms)

Trans. Time in
Launchpad[61] w/
Reverb[8] (ms)

Training
Time (ms)

PPO[49] 138,585.32 367.81 95,765.88 1,297.53

DQN[38] 1,912.96 54.13 811.47 8.00

IMPALA[13] 13,855.20 301.34 12,567.10 32.07

taken by the agent, the reward and the next observation after the
action is applied, as well as other useful information. Rollout steps
from the continuous agent–environment interaction are usually
grouped by subsequences referred to as episodes.

Parallel sampling is a widely adopted approach that improves
the convergent performance of DRL algorithms by diversifying the
collectively-encountered state spaces of the environment [13, 37],
and reduces the turnaround execution time. To apply parallel
sampling, the agent in DRL algorithms is usually split into multiple
explorers and a learner for interacting with the environment and
optimizing DNN parameters, respectively. During execution, the
parallel explorers send rollouts to the learner, and the learner sends
updated DNN parameters back to the explorers. The explorers
and the learner usually run in different processes for better
parallelism. Consequently, most of today’s DRL algorithms rely
on the orchestration of two primary heterogeneous computational
workloads in separate processes, namely the interaction with the
environment and the training of the DNNs, between which high-
frequency communication is required.

We observe that the communication latency is non-negligible
compared to computation time in today’s DRL algorithms. There
is an optimization opportunity of overlapping communication and
computation to hide the communication from the critical path of
DRL algorithms. However, few prior DRL frameworks consider
optimizing communication in DRL algorithms or taking advantage
of the communication-computation overlapping opportunity. Prior
DRL frameworks [7, 14, 20, 30, 31, 39, 46, 58] usually organize the
computational components of DRL algorithms into task graphs,
and use the centralized control logic to specify the components’
execution order. In prior DRL frameworks, the communication does
not start until the receiving component is allowed to run by the
centralized control logic and then asks for data, even though the
data may have been ready for a long time. In such a programming
model, the communication between components has no chance
to execute simultaneously with the computation. Consequently,
complex operations associated with data transmission across
processes or machines get in the way of the critical computations
for DRL algorithms, i.e., the interaction with the environment
and updating DNN parameters, which results in compromised
performance. Table 1 illustrates that the communication can take
more time than the computation in prior DRL frameworks.

In this paper, we present XingTian, a novel DRL framework that
co-designs the management of communication and computation in
DRL algorithms. XingTian gets rid of the centralized control logic
and makes the explorers and the learner execute in a decentralized
way. Based on the decentralized organization, XingTian provides
an asynchronous communication channel between the explorers
and the learner to push data to the desired destination as soon as

the data are generated. The communication can thus be initiated
by the sender once the data are ready without caring about the
recipient. This way, XingTian makes the communication execute
asynchronously and aggressively and utilizes the optimization
opportunity of the communication-computation overlap from DRL
algorithms. We also make sure that XingTian does not introduce the
risk of unnecessary data transmission nor significant extra memory
overheads compared to prior DRL frameworks.

We implement XingTian and make it expose researcher-friendly
interfaces to construct DRL algorithms.We provide a DRL algorithm
zoo based on XingTian and algorithms from the DRL algorithm
zoo are applied in production projects of Huawei. Population-
based training (PBT) is a widely-used algorithm to search for the
optimal combination of hyperparameters for DRL algorithms. We
can naturally extend XingTian to support PBT.

We evaluate the data transmission efficiency of XingTian and
other DRL frameworks with a dummy DRL algorithm that keeps
DRL algorithms’ communication mode. Results show that XingTian
is able to transmit at least twice as much data per second as RLLib
[30, 31], and can transmit at least one order of magnitude more data
per second than Acme [20] with Launchpad [61] and Reverb [8].
The improvement of the data transmission efficiency of XingTian
is mostly attributed to its asynchronous aggressive communication
model. The throughput of DRL algorithms is defined as the number
of rollout steps consumed for DNN training per second, and
reflects the speed at which DRL algorithms consume rollouts and
optimize policies. Experimental results show that XingTian-based
DRL algorithms achieve higher throughput than those implemented
in the state-of-the-art DRL framework RLLib by up to 70.71% with
better or similar convergent performance due to the utilization of
the communication-computation overlapping chance. Moreover,
XingTian maintains high communication efficiency under different
scale deployments and the XingTian-based DRL algorithm achieves
91.12% higher throughput than the RLLib-based one when deployed
in four machines.

This paper makes the following contributions.
• We analyze the communication characteristics of DRL al-

gorithms and figure out the optimization opportunity of the
communication-computation overlap from DRL algorithms.

• We propose the design principles of co-designing communi-
cation and computation for DRL frameworks to take advantage of
the opportunity of overlapping communication and computation
and present the design of XingTian.

• We implement and evaluate XingTian. Results indicate that
XingTian has better data transmission efficiency and XingTian-
based DRL algorithms achieve higher throughput than those
based on the state-of-the-art DRL framework RLLib with better
or similar convergent performance. Moreover, XingTian maintains
high communication efficiency under different scale deployments.

2 BACKGROUND AND MOTIVATION
In this section, we first briefly sort out the development of DRL
algorithms to figure out their communication characteristics and
the optimization opportunity, and then discuss the shortcomings
of existing DRL frameworks in communication management1.

1The more detailed review of related work is in Section 6.

Optimizing Communication in Deep Reinforcement Learning with XingTian Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Explorer Learner Explorer

Explorer

Explorer

(a) PPO (actor-critic-based, on-
policy)

Explorer

Replay
Buffer

Learner

(b) DQN (value-based, off-policy)

Explorer Learner Explorer

Explorer

Explorer

Explorer Learner Explorer

Explorer

Explorer

(c) IMPALA (actor-critic-based, off-policy)

Figure 1: Execution of ThreeRepresentativeDRLAlgorithms.

2.1 Communication Characteristics of DRL
Algorithms

DRL algorithms deal with sequential decision-making problems
that can be formalized as a Markov decision process (MDP) [55].
An MDP is defined by a four-tuple (S,A,𝑇 , 𝑅), where S is the state
space of the environment;A is the action space of the agent;𝑇 is the
transition function and 𝑇 (𝑠, 𝑎, 𝑠 ′) is the probability that the action
𝑎 in state 𝑠 will lead to next state 𝑠 ′; 𝑅 is the reward function and
𝑅(𝑠, 𝑎, 𝑠 ′) gives the immediate reward 𝑟 after the transition from
state 𝑠 to 𝑠 ′ when the agent takes action 𝑎. Policy 𝜋 is a mapping
from states to the probabilities of selecting each possible action. If
the agent is following policy 𝜋 at time 𝑡 , 𝜋 (𝑎 |𝑠) is the probability
that 𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠 . Ideally, if the transition function 𝑇 and
reward function 𝑅 are known, we can find the optimal policy 𝜋∗

that maximizes the total return through dynamic programming
methods such as policy iteration and value iteration [4, 5, 55].
However, this is an almost impossible condition in practice, and
most DRL algorithms today rely on massive direct interaction with
the environment by trial and error to sample state transitions.

Model-based DRL algorithms try to learn a model of the
transition dynamics of a particular environment and work well for
problems relying on lookahead search [25, 48, 50–52]. In contrast,
model-free DRL algorithms treat the model as a black box and have
the agent interact with the environment to observe state transitions
and rewards, which are more widely used as most problems are
challenging to produce precise models [34]. There are three main
families of model-free DRL algorithms: policy-based algorithms
[32, 56, 59] maintain and optimize a policy explicitly; value-based
algorithms [19, 38, 45] learn the value function or action-value
function (Q function) and extract the target policy accordingly; and
actor-critic-based [27, 49] algorithms combine the former two types
of algorithmswhere the policy-based actor learns the optimal policy
directly, and the value-based critic evaluates the actions taken by
the actor.

DNNs play different roles in different kinds of DRL algorithms,
including building the environment’s state transition model, ex-
pressing the policy directly, or evaluating the expected total return
of the current state of the environment. The rollouts used to

optimize parameters of those DNNs are collected on-the-fly. On-
policy DRL algorithms evaluate and optimize the same policy that
is used to interact with the environment, which means rollouts
generated with a specific version of DNN parameters can only be
used to optimize the DNN parameters of the same version. Off-
policy DRL algorithms can evaluate and optimize a policy different
from the one used for rollout generation, which means the DNN
parameters can be optimized utilizing older rollouts.

Parallel sampling is a widely adopted approach that improves
the convergent performance of DRL algorithms by diversifying
the collectively-encountered state spaces of the environment, and
reduces the turnaround execution time. To apply parallel sampling
in value-based DRL algorithms, multiple explorers interact with the
environment simultaneously and put the rollout steps in a replay
buffer [47], while the learner samples experiences from the replay
buffer asynchronously, trains the DNN, and broadcasts weights to
explorers [21, 26, 40]. Classical policy-based and actor-critic-based
DRL algorithms are usually on-policy. Some solutions make all
the explorers and the learner work synchronously in a lock-step
manner [10, 17, 18], others tolerate a certain degree of policy lag and
instability due to asynchronization for higher throughput [3, 37].
Importance Weighted Actor-Learner Architecture (IMPALA) [13]
and subsequent algorithms [12, 29, 42] utilize V-trace, which brings
the off-policy feature to actor-critic-based DRL algorithms.

We further illustrate the communication characteristics for DRL
algorithms of different types with three popular representative
algorithms in Fig. 1: Proximal Policy Optimization [49] (PPO, actor-
critic-based & on-policy), Deep Q-Learning [38] (DQN, value-based
& off-policy), and IMPALA [13] (actor-critic-based & off-policy).

PPO. Fig. 1(a) shows the execution of PPO. Due to PPO’s on-
policy constraint, the learner and the explorers run synchronously:
the learner waits to collect rollouts from all the explorers for
training, and all the explorers then wait for DNN parameters of the
latest version from the learner before they can interact with the
environment.

DQN. As shown in 1(b), DQN maintains a replay buffer for
experience replay. During execution, the explorer keeps putting
rollout steps into the replay buffer. After the number of rollout steps
in the replay buffer exceeds the configured threshold, each time
the explorer inserts a certain number of rollout steps, the learner
performs a training session with a batch of rollout steps sampled
from the replay buffer. The learner sends out DNN parameters
every a few training sessions, and the explorer then applies the
latest version of the DNN parameters before it continues generating
subsequent rollout steps. In DQN, the explorer and the learner can
run asynchronously, and communication is quite busy among the
explorer, the learner, and the replay buffer.

IMPALA. As shown in Fig. 1(c), explorers and the learner in
IMPALA communicate with each other directly. The learner can
start training when it only collects rollouts from a portion of
explorers and then sends updated DNN parameters exactly to
the explorers it gets rollouts from. Because IMPALA is off-policy,
the learner can utilize rollouts generated with the relatively older
version of DNN parameters from other explorers in later training.
This way, the learner in IMPALA updates the DNN parameters
more frequently. The communication between the asynchronous
learner and explorers is more frequent, too.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

From the brief overview above, we can conclude that most of
today’s DRL algorithms rely on the orchestration of two primary
heterogeneous computational workloads, namely interaction with
the environment and training of the DNNs, between which high-
frequency communication is required. Besides, there is an optimiza-
tion opportunity of the communication-computation overlap
to hide the communication from the critical path of DRL algorithms.
For example, there is no strong dependency between the learner
and the explorers in off-policy DRL algorithms, and they can run
asynchronously. More specifically, some explorers can produce and
send out rollouts for the learner to use later while the learner is
training. As a result, the learner can continue working without
spending too much time waiting for rollout transmission. However,
few existing DRL frameworks utilize such an optimization chance.

2.2 Shortcomings of Prior DRL Frameworks
Existing codebases providing reference implementations of DRL
algorithms [9, 11, 15, 16, 28, 43, 44] serve as helpful tools to
get started with DRL algorithms, which describe different DRL
algorithms by separate overall control sequences. To improve
flexibility and modularity, studies for DRL frameworks [7, 14, 20,
30, 31, 39, 46, 58] focus on abstracting out reusable computational
components for DRL algorithms. Most existing DRL frameworks
follow the programming model that organizes the computational
components into a task graph and then specify their execution
order with centralized control logic. In such a programming model,
the communication is usually initiated by the receiving component
and has no chance to execute simultaneously with the computation.

Several DRL frameworks [7, 14, 20] always insert a data manage-
ment buffer between the explorers and the learner, and make them
always communicate indirectly through the buffer. For example,
Acme [20] is a single-thread DRL framework, and can be deployed
in a distributed manner with the help of Reverb [8] and Launchpad
[61]. Reverb implements the data buffer, and Launchpad is a
distributed computing framework that builds the task graph. In such
a DRL framework, the central control logic defines the execution
sequence of the the explorers the learner, i.e., the explorers ask
for the DNN parameters of the latest version, interact with the
environment, and put rollouts into the data buffer, and then the
learner retrieves the rollouts from the buffer before updating DNN
parameters.

RLLib [30, 31] is a DRL framework based on Ray [39], which
builds a task graph to organize computational components and
uses a global control store, an in-memory distributed object store,
and wrapped RPCs to manage communication. RLLib can make the
explorers and the learner communicate with each other directly
when the DRL algorithm itself does not need a replay buffer, and
relies on the central logic to define the execution sequence of the
explorers and the learner. Communication in RLLib cannot start
until the learner or explorer is scheduled to run and asks for data.

Therefore, despite the opportunity of overlapping the commu-
nication and computation in DRL algorithms, communication and
computation in existing DRL frameworks have to be performed
serially. Consequently, operations related to data transmission
such as memory copy, serialization & deserialization, compression
& decompression, and NIC-bandwidth-bounded transfer across

machines get in the way of the critical computations, i.e., interaction
with the environment and updating DNN parameters. Table 1
illustrates the size of rollouts used for a training iteration from
PPO, DQN, and IMPALA, the measured transmission time in RLLib
and Launchpad (with a Reverb buffer), respectively, as well as the
corresponding training time2. We can tell from Table 1 that the
communication latency is no longer negligible compared to the
computation time. Besides, the communication can spend more
time than computation in existing DRL frameworks, which we
believe is unacceptable.

2.3 Summary
In this section, we make it clear that today’s DRL algorithms rely
on the orchestration of two computational workloads with high-
frequency communication requirement, and show that most exist-
ing DRL frameworks fail to utilize the communication-computation
overlapping opportunity, which compromises the performance of
DRL algorithms. As a result, it is quite important and remains an
open research question to design a DRL framework that leverages
the opportunity of overlapping communication and computation
in DRL algorithms and stops independent communication and
computation from blocking each other.

3 DESIGN
In this section, we first illustrate the design principles of a DRL
framework that can overcome the limitations of prior work in
managing communication. We then present the architecture of
XingTian, a novel DRL framework that co-designs the manage-
ment of communication and computation in DRL algorithms and
takes advantage of the communication-computation overlapping
opportunity.

3.1 Design Principles
As discussed in Section 2, although there are various kinds of
DRL algorithms and parallel sampling is widely adopted, most
DRL algorithms rely on the orchestration of two computational
workloads with high-frequency communication requirements,
namely the interaction with the environment and the training
of the DNNs. Compared to traditional distributed computing
jobs, the dependency between the computational workloads in
DRL algorithms is relatively simpler and we argue that existing
DRL frameworks overuse the abstraction of task graphs. Besides,
having the communication initiated by the receiver makes the
communication and computation block each other despite the
overlapping opportunity. Making the receiver pull data avoids
unnecessary data transmission. However, in most DRL algorithms,
rollouts generated by explorers are always used by the learner, and
the DNN parameters updated by the learner are always applied by
explorers, so transmitting datamore aggressively in DRL algorithms
will not introduce the risk of unnecessary data transmission.

To overcome the limitations of existing DRL frameworks, we
need to fully exploit the overlapping opportunity by enabling the
communication and computation to cooperate with each other
based on the characteristics of DRL algorithms.

2Setups for measurement are the same as those used in Section 5.

Optimizing Communication in Deep Reinforcement Learning with XingTian Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Explorer Learner

TrainerRollout
Worker

Broker

Algorithm-agnostic Router

Rx. Sender Sender

Send Buf. Send Buf.

Rx. Buf. Rx. Buf.

Share-mem
Communicator

ID Queue ID Queue

Rx.

Brokers in Other Machines

(a) Decentralized Computation and Asynchronous Communication.

Learner

Broker

Controller

Machine 1

Broker

Controller

Broker

Controller

Broker

Controller

......

ExplorerExplorer

Explorer Explorer

Machine 2

Machine nMachine 3

(b) A Distributed Deployment Demonstration of XingTian.

Figure 2: Architecture of XingTian. In both sub-figures, dashed arrows denote the transmission of lightweight message headers
or control commands, while the bold arrows denote data block transmission. More precisely, orange bold arrows denote the
transmission of rollouts and blue bold arrows denote the transmission of DNN parameters.

Computation Management. We get rid of the task graph and the
centralized control logic, and make the explorers and the learner
execute in a decentralized way instead. In the decentralized model,
computational workloads are driven by the arrival of the data
awaited, and can send out produced data immediately.

Communication Management We provide an asynchronous
communication channel between the explorers and the learner
to push data to the desired destinations aggressively as soon as
they are generated. The communication can thus be initiated
by the sender once the data are ready without caring about
the recipient. We can utilize the optimization opportunity of
overlapping communication from DRL algorithms and computation
by making the communication start aggressively. Besides, the
communication channel is algorithm agnostic and can be applied
in various DRL algorithms. Consequently, we can encapsulate
complicated operations associated with communication across
processes or machines within the framework’s communication
channel, and leave only simple local buffer reads and writes for the
computational workloads to deal with.

As shown in Section 5, not only in off-policy algorithms, but even
in on-policy algorithms like PPO, the DRL framework that follows
these design principles can exploit the optimization opportunity of
the communication-computation overlap and achieve performance
gain.

3.2 Architecture of XingTian
To realize these design principles, we design XingTian as illustrated
in Fig. 2. Fig. 2(a) illustrates the decentralized computation and
asynchronous communication of XingTian, and Fig. 2(b) demon-
strates that XingTian is scalable and how XingTian is deployed
across several machines.

3.2.1 Decentralized Computation and Asynchronous Communica-
tion

As illustrated in Fig. 2(a), XingTian organizes DRL algorithms
with three kinds of processes. The explorer process manages
interaction with the environment, the learner process manages

DNN training, and the broker process manages communication
between the explorer and the learner processes.

The rollout worker thread of the explorer process is theworkhorse
performing rollout generation. Typically several explorer processes
execute simultaneously for parallel sampling. The generated rollout
steps are packaged in messages, each comprising a message body
and a message header that is generated by XingTian. The send buffer
and receive buffer are designed for intra-process data transmission
and staging. The message headers are put in the header queue of
the buffer, while the message bodies are inserted into the data list
of the buffer.

The learner process has an almost symmetrical structure to the
explorer process. The trainer thread of the learner process is the
workhorse for generating the DNN parameters of the latest version.
The updated DNN parameters are encapsulated into the message
body, and XingTian generates the corresponding message header.
The learner process also maintains a send buffer and a receive
buffer.

Inter-process communication relies on the shared memory
communicator created by the broker process. The shared memory
communicator holds message headers in the header queue and
keeps message bodies inside the object store implemented via
shared memory for zero-copy communication among processes.
The ID queue is used to pass object IDs of message bodies in the
object store with other metadata inside the message header across
processes. The broker maintains a separate ID queue for each
explorer/learner process.

As soon as a message is produced by the workhorse thread
(rollout worker thread or trainer thread), it is stored in the send
buffer maintained in the corresponding process. The sender thread
that monitors the send buffer’s header queue then finds the new
message and immediately transmits the message to the shared
memory communicator. The message header contains metadata
such as the source and destination of the message. After the
message body is inserted into the object store of the shared memory
communicator, the object ID is also attached to the message header

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

by the sender thread. The algorithm-agnostic router monitors the
header queue in the shared memory communicator. Once the router
notices a new message comes, it parses the header to find out
the destination of the message. The message carrying updated
DNN parameters from the learner is usually broadcast to multiple
explorers and thus the message header may contain multiple
destinations, while the message of rollouts is always sent to the
single learner. The algorithm-agnostic router then puts the message
header that contains the message body’s object ID into the ID
queues associated with all the destination processes. The receiver
thread that monitors its ID queue in each destination process then
retrieves the message body from the object store and puts the
whole message into the receive buffer immediately. At this point,
messages that have completed transmission are just waiting to be
consumed. When XingTian is deployed among multiple machines,
the algorithm-agnostic router sends the message with one or more
remote destinations out to the router in each target machine. After
receiving a message from another machine, the algorithm-agnostic
router inserts the message body into the object store, attaches the
object ID to the message header, and puts the message header in all
the target ID queues. Theworkhorse threads still consumemessages
from the local buffer and will not perceive any difference.

The workflow presented above illustrates the decentralized
computation and asynchronous communication in XingTian. Xing-
Tian does not use central logic to control the execution flow of
DRL algorithms. On the contrary, workhorse threads in different
processes are driven by the arrival of the data awaited and execute
autonomously by aggressively consuming received messages and
producing new messages. The broker process plays a key role
in creating and maintaining the asynchronous communication
channel. The broker process is totally different from the data
management buffer in any existing DRL frameworks. The broker
process only focuses on pushing data to the desired destinations as
soon as possible with the help of the shared memory communicator
and the algorithm-agnostic router inside, and does not understand
or process the data on behalf of DRL algorithms. The algorithm-
agnostic router dispatches messages to the desired destinations
by informing the corresponding receivers of object IDs, and the
receiver copies the message body to the local buffer immediately.
XingTianmakes IO operations of theworkhorse threads only related
to the local buffers, and guarantees that data transmission across
processes or machines is performed aggressively and efficiently by
the asynchronous communication channel.

Utilization of the Communication-Computation Overlap-
ping Opportunity. XingTian manages to utilize the optimization
opportunity of overlapping communication and computation in
DRL algorithms because the timing to initiate communication in
XingTian is only decided by whether the data to transmit are pre-
pared. XingTian decouples operations related to data transmission
such as memory copy, serialization & deserialization, compression
& decompression, and NIC-bandwidth-bounded transfer across
machines from the execution of the computational workloads
and makes them happen in parallel. With such a design, rollouts
produced by rollout worker threads of explorer processes are put
into the buffer within the address space of the trainer thread in the
learner process as soon as possible, even when the trainer thread

is busy updating DNN parameters with rollouts received earlier.
The updated DNN parameters are also transmitted to the explorers
immediately.

XingTian accelerates on-policy DRL algorithms because explor-
ers still execute asynchronously although the learner and explorers
run synchronously. In XingTian-based on-policy DRL algorithms,
fast explorers’ rollout transmission can overlap with slow explorers’
environment-interacting computation. Once fast explorers generate
rollouts they initiate rollout transmission immediately without
waiting for pulling requests or being held back by slow explorers.
However, in prior DRL frameworks, the transmission is not started
until the central control logic ensures all the explorers have
generated rollouts and allows the learner to ask for the data.

For DRL algorithms that require a replay buffer for experience
replay, XingTian leaves the replay buffer maintenance inside the
trainer thread in the learner process. As a result, the sampling from
the replay buffer no longer involves cross-process communication,
and can be deemed as the utilization of data already stored in
the local buffer. Such a design decision is also the utilization of
the optimization opportunity of the communication-computation
overlap in essence.

By exploiting the optimization opportunity of overlapping the
communication and computation, XingTian does not introduce
the risk of unnecessary data transmission as discussed in Section
3.1. Besides, XingTian does not bring in significant extra memory
overheads compared to prior DRL frameworks. The queues are
always filled in with lightweight metadata of message headers. The
shared memory object store is used for zero-copy communication
across processes. The send and receive buffers in the explorer &
learner processes hold data directly generated or consumed by the
workhorse threads.

3.2.2 Distributed Deployment of XingTian
Fig. 2(b) shows a distributed deployment demonstration of

XingTian. Section 3.2.1 introduces XingTian’s architecture from the
view of execution and omits the controller process. The controller
is algorithm agnostic and responsible for managing the life cycle of
all the above-mentioned processes, establishing the global fabrics,
and dispatching control commands. XingTian is scalable and its
configuration file contains information such as IPs of the machines
to deploy XingTian, the machine to start the learner, and the
number of explorers in each machine. After launched in one
machine, XingTian starts a controller process locally and logs into
other machines automatically to start a controller process in each
machine. XingTian connects controllers with a fully connected
fabric to dispatch control commands. We call the controller in
the machine where XingTian is launched the center controller.
Upon initialization, XingTian broadcasts control commands to each
controller via the center controller to create brokers, the learner,
explorers, and the communication channel inside each machine. In
addition,XingTian creates another fabric among brokers in different
machines to transmit data betweenmachines. Themachine inwhich
the learner is located is always the center for data transmission. Fig.
2(b) presents active connections of the fabrics when the learner is
located in the same machine as the center controller.

The center controller also collects and visualizes statistics
from explorers and the learner. Workhorse threads put statistic

Optimizing Communication in Deep Reinforcement Learning with XingTian Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

messages to the local send buffers periodically, and the algorithm-
agnostic router sends the messages with statistics to the center
controller directly or through the algorithm-agnostic router of the
broker process in the center controller’s machine. When the center
controller realizes that the training goal has been achieved, e.g.,
the learner has consumed enough rollout steps or the explorers
have received the target return, the center controller broadcasts
commands to shutdown all processes and release resources.

4 IMPLEMENTATION AND EXTENSION OF
XINGTIAN

4.1 Implementation Details
We implement XingTian in python. The message headers in
XingTian are organized as python dicts. The message header
queue in send/receive buffer is based on queue.Queue, and the
queues used across the boundary of processes (i.e., the header
queue in the shared memory communicator and the ID queues) are
implemented via multiprocessing.Queue. Both Queue provide
a get method that blocks when empty. Therefore, the threads
that monitor these queues can make messages flow aggressively
through the asynchronous communication channel in an event-
driven manner, i.e., once a new message header is put into the
queue, the blocking Queue.get invoked in the monitoring thread
returns, and the monitoring thread starts the corresponding data
transmission immediately.

The message bodies have to be serialized before they are
inserted into the object store [57] and then deserialized when
put into the receive buffer. Compression is often applied to
reduce network traffic and memory usage. Meanwhile, compression
and decompression also introduce non-negligible computational
overheads. So we leave compression a configurable option in
XingTian, and XingTian compresses message bodies larger than 1
MB by default. When compression is enabled, XingTian uses the
LZ4 algorithm to compress message bodies when they are inserted
into the object store of the shared memory communicator, and the
message bodies are then decompressed when they are fetched to
the receive buffers.

4.2 Construct DRL Algorithms with XingTian
As discussed in Section 2, DRL algorithms rely on orchestrating
two computational workloads with high-frequency communication
requirement, i.e., rollout generation and DNN training. XingTian
handles issues about the orchestration and exposes interfaces
friendly to researchers to implement specific computational logic.

Given that XingTian takes care of the computation organization
and communication management, the remained problems related
to implementing the computational logic of a DRL algorithm are as
follows.

• With which environment is the DRL algorithm going to interact?
• What DNN structure should be adopted for the policy network /
value network / Q network / environment model?

• How to organize the rollouts and to train the DNNs with the
collected rollouts?

• How to use the DNNs to interact with the environment and
collect rollouts?

XingTian exposes interfaces encapsulated in four classes so
that researchers can implement computation logic to solve the
above four problems. The classes include Environment, Model,
Algorithm, and Agent.

• The Environment class is a wrapper for both widely-used
testbed environments and self-defined ones and exposes standard
gym-style [6] interfaces such as init, reset, and step, etc.

• The Model class holds the definition for DNNs and corre-
sponding APIs. Researchers are free to define the DNNs with any
deep learning framework, e.g., PyTorch [41], TensorFlow [1], and
MindSpore [22], a new deep learning computing framework.

• The Algorithm class is used to specify how to update the DNNs
with collected rollouts. Typically researchers need to implement
the train and prepare_data interfaces. The train interface is
used to define the computation logic for DNN training, and multi-
GPU technologies can be applied here for acceleration. Researchers
specify how to organize the received rollouts by implementing
the prepare_data interface, and the maintenance of the replay
buffer also happens here if necessary. For researchers’ convenience,
XingTian provides implementations of several kinds of replay
buffers. Besides, Algorithm contains other implemented methods,
e.g., the method for DNN inference, and the method to save the
checkpoints of the DNNs periodically to restore DNN parameters
after failure , which provides sufficient fault tolerance for DRL
algorithms without significant overheads.

• The Agent class is used to specify how to interact with
the environment for rollout generation. The Agent has a vari-
able of the Algorithm type to maintain copies of the DNNs.
Typically researchers need to implement the infer_action and
handle_env_feedback interfaces. Researchers define how to gen-
erate actions given the observation of the environment in the
infer_action interface, and specify how to sort out observations
and rewards from the environment to suit different DRL algorithms
in the handle_env_feedback interface.

The configuration file of XingTian is used to combine the im-
plemented classes together for a specific DRL algorithm. XingTian
instantiates them in the rollout worker thread and trainer thread
accordingly upon initialization.

We further provide a DRL algorithm zoo based on XingTian that
covers a wide range of DRL algorithms of different types, including
model-based algorithms (e.g., MuZero [48]) and all three types
of model-free algorithms (e.g., DQN [38], PPO [49], DDPG [32],
IMPALA [13], etc.). The DRL algorithm zoo shows that XingTian’s
design is suitable for a wide variety of DRL algorithms. Besides,
algorithms from the DRL algorithm zoo are applied in production
projects of Huawei.

4.3 Extending XingTian: Supporting
Population-Based Training

A DRL algorithm usually has many configurable hyperparameters,
which have a significant impact on the convergence of the DRL
algorithms. PBT [23] is a widely-used algorithm to search for the
optimal combination of hyperparameters. XingTian provides better
usability for researchers by supporting PBT based on its architecture
natively. We first briefly present how PBTworks and then introduce
how XingTian naturally supports PBT.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

Controller

Broker 2

Broker 1

Broker 3

Broker 0

Brokers in
Other Machines

Controllers in
Other Machines

Brokers in
Other Machines

Brokers in
Other Machines

Controllers in
Other Machines

Brokers in
Other Machines

Figure 3: A PBT Example with Four Populations in XingTian.

Table 2: Specification of the Experimental Platform.

Specification
Server FusionServer Pro 2288H V5 Rack Server

Processor Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz (72-core, 24.75MB LLC)
DRAM 1 TB @ 2666 MT/s
GPU Tesla V100 32GB * 1

Ethernet NIC Intel Corporation Ethernet Connection X722 for 1GbE

The PBT algorithm starts with multiple populations, each of
which takes a different combination of hyperparameters. A center
scheduler periodically evaluates each population’s behavior based
on specified metrics. For each evolution interval, the scheduler
eliminates the population with the worst metrics, and calculates a
new hyperparameter combination throughmutation, crossover, and
other strategies. Finally, the scheduler starts a new population to
replace the eliminated one. The PBT algorithm ends after running
for a certain number of generations or after the desired values of
the metrics are reached. For DRL algorithms, PBT usually takes
the average episode return as the metric. Besides, DNN weights of
the best population in the last generation are applied to the new
population so that it can catch up with others at the beginning.

Fig. 3 illustrates a PBT example with four populations in
XingTian. During initialization, XingTian creates one controller and
four brokers with different ranks in each machine. Then XingTian
creates the fabric among brokers with the same rank. Brokers with
different ranks do not communicate with each other. XingTian
supports separated populations via isolated broker sets with the
learner and explorers attached to each broker set. Learners from
different populations can be deployed in different machines to fully
use GPUs in each machine. The center controller in XingTian acts as
the center scheduler of PBT. For each evolution interval, the center
controller evaluates metrics from each population, decides which
population to eliminate, and calculates the new hyperparameter
combination. The center controller broadcasts commands to kill
all processes of the eliminated population and starts the new
population by starting a new broker set with the new learner
and explorers. Researchers can deploy PBT based on XingTian by
specifying the number of populations and the lists of alternative
hyperparameters in the configuration file.

5 EVALUATION
In this section, we evaluate XingTian and illustrate that ➊ XingTian
improves the data transmission efficiency in the communication
mode of DRL algorithms with its asynchronous and aggressive
communication model, ➋ DRL algorithms based on XingTian
achieve higher throughput with better or similar convergent
performance compared to those based on the state-of-the-art DRL
framework due to leveraging the optimization opportunity of the

communication-computation overlap, and ➌ XingTian maintains
high communication efficiency under different scale deployments.

There are several DRL frameworks we can compare XingTian
against, i.e., Intel Coach [7], Surreal [14], Acme [20] (with Reverb [8]
and Launchpad [61]), and RLLib [30, 31]. All these frameworks are
open-sourced. However, the repositories of Intel Coach and Surreal
are not actively maintained. Besides, there is no published paper
corresponding to Intel Coach, and there are only technical reports
but not research papers introducing Acme as well as Reverb and
Launchpad. As a result, we mainly compare XingTian with RLLib
[30, 31], the state-of-the-art DRL framework with publications and
an open-sourced codebase maintained actively. We also conduct
several experiments with respect to Acme, Reverb, and Launchpad.
We use RLLib of version 1.8.0., Acme of version 0.4.0, Reverb of
version 0.7.0, and Launchpad of version 0.4.1.

We conduct all the experiments in this section in the experimen-
tal platform described in Table 2. Benchmarks we use for evaluation
will be introduced in the following subsections.

5.1 Data Transmission Efficiency
To evaluate the data transmission throughput of XingTian and
other DRL frameworks, we design a dummy DRL algorithm, where
the explorers only send out a certain number of messages of a
configurable size, while the learner asynchronously receives the
messages and reports the end-to-end latency and data transmission
throughput after receiving all messages. Every explorer is config-
ured to send 20 messages in total, and the learner receives messages
asynchronously for 20 rounds. For example, if there are 16 explorers,
in each round the learner receives 16 messages without caring
about the senders of these messages and reports that this round is
over. This way, we can evaluate the data transmission throughput
expressed as the size of the messages received by the learner per
second. We omit the data transmission in the other direction in
real DRL algorithms, i.e., the learner does not broadcast anything
to explorers. The reason is that the throughput of DRL algorithms
measures how fast rollouts can be transmitted from the explorers
to the learner and then be consumed to optimize the policy. We
design the dummyDRL algorithm to keep the communication mode
of DRL algorithms and to evaluate the maximum throughput of
rollout transmission of DRL algorithms in the ideal situation where
the explorers send out messages aggressively without waiting for
DNN parameters or interacting with the environment, and the
learner receives messages asynchronously in each iteration without
computational workloads.

In XingTian, we implement this dummy DRL algorithm by
implementing corresponding interfaces to make the rollout worker
thread and trainer thread behave accordingly; in RLLib, we im-
plement the dummy DRL algorithm with RLLib’s low-level data
streaming API. We also implement the dummy DRL algorithm
in Launchpad by inserting a Reverb-based buffer between the
dummy explorers and the dummy learner. The technical report
of Launchpad suggests that a DRL algorithm can be implemented
separately on Launchpad, and the explorers and the learner can
communicate with each other directly. However, in most practices,
DRL algorithms are implemented based onAcme that always inserts
a data management buffer (usually implemented with Reverb)

Optimizing Communication in Deep Reinforcement Learning with XingTian Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

1 4 16 64 256 1024 2048 4096 8192 16384 32768 65536
Message Size (KB)

0

20

40

60

Th
ro

ug
hp

ut
 (M

B/
s)

10−1

100

101

102

103

En
d-

to
-e

nd
 L

at
en

cy
 (s

)

XingTian Throughput
RLLib Throughput
Launchpad Throughput
XingTian Latency
RLLib Latency
Launchpad Latency

(a) One Explorer.

1 4 16 64 256 1024 2048 4096 8192 16384 32768 65536
Message Size (KB)

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

B/
s)

10−1

100

101

102

103

104

En
d-

to
-e

nd
 L

at
en

cy
 (s

)

XingTian Throughput
RLLib Throughput
Launchpad Throughput
XingTian Latency
RLLib Latency
Launchpad Latency

(b) 16 Explorers.

Figure 4: Data Transmission Results in a Single Machine.

between the explorers and the learner, and Launchpad is only used
for distributed deployment. Therefore, we keep the structure with
a data buffer in the dummy DRL algorithm to evaluate the data
transmission efficiency of Acme with Launchpad and Reverb.

We evaluate the data transmission efficiency using messages
that vary in size between 1KB and 64MB, which covers the range
of rollout message sizes in typical DRL algorithms according to our
experience. Results in this subsection are averaged from five runs,
and error bars are attached to all the figures.

Fig. 4 illustrates the data transmission throughput and the end-
to-end latency reported by the learner after receiving messages
of 20 rounds from all explorers when deploying the dummy DRL
algorithm in a single machine. Fig. 4(a) shows the results when
the dummy DRL algorithm is configured with one explorer and
Fig. 4(b) shows the results when there are 16 explorers. With
one explorer, XingTian achieves data transmission throughput of
71.01 MB/s when the message is 64 MB, which is 103.32% higher
than RLLib. With 16 explorers, such performance gains still hold
and XingTian achieves 108% higher data transmission throughput
than RLLib at 967.91 MB/s when the message is 64 MB. XingTian
doubles the data transmission throughput in a single machine
compared to RLLib because data transmission in XingTian starts
immediately once the data are ready instead of waiting for the
requirement originated from the recipient. Such a rapid transmitting
pattern helps a lot even if there is only one explorer. Fig. 4 also
illustrate the end-to-end latency and data transmission throughput
of the dummy DRL algorithm implemented with Launchpad and
Reverb. In both cases with one explorer and 16 explorers, the data
transmission throughput of Launchpad and Reverb is always lower
than 2 MB/s. It is noticeable that deploying more explorers does
not improve the data transmission throughput of Launchpad and
Reverb, and the data buffer based on Reverb is the bottleneck. We
also evaluate the data transmission efficiency of the dummy DRL
algorithm implemented separately with Launchpad (not illustrated

1 4 16 64 256 1024 2048 4096 8192 16384 32768 65536
Message Size (KB)

0
25
50
75

100
125
150
175
200
225

Th
ro

ug
hp

ut
 (M

B/
s)

XingTian w/ 32 Explorers
XingTian w/ 16 Remote Explorers
RLLib w/ 32 Explorers

(a) Throughput. The dashed line denotes the NIC bandwidth between
machines.

1 4 16 64 256 1024 2048 4096 8192 16384 32768 65536
Message Size (KB)

10−1

100

101

102

En
d-

to
-e

nd
 L

at
en

cy
 (s

)

XingTian w/ 32 Explorers
XingTian w/ 16 Remote Explorers
RLLib w/ 32 Explorers

(b) End-to-end Latency.

Figure 5: Data Transmission Results in two Machines.

in the figures). The solely Launchpad-based dummy DRL algorithm
achieves data transmission throughput of no more than 10 MB/s
and 100 MB /s, with one explorer and 16 explorers, respectively.
Although the data transmission throughput of the solely Launchpad-
based dummy DRL algorithm is better than when there is a Reverb-
based data buffer, it is still not comparable to XingTian.

Fig. 5 presents data transmission results when deploying the
dummy DRL algorithm in two machines. We deploy the dummy
DRL algorithm based onXingTian across twomachines by assigning
exactly 16 explorers in each machine in the configuration file, and
deploy the RLLib version with 32 explorers in two machines by
setting the placement_strategy as SPREAD. Launchpad currently
can only be deployed in a single machine. We further deploy the
XingTian-based dummy DRL algorithm with the learner in one
machine and 16 explorers in the other machine. The dashed line
(118.04 MB/s) in Fig. 5(a) illustrates the NIC bandwidth between the
machines measured by iperf. With 64MB messages, XingTianwith
32 explorers achieves 221.73 MB/s data transmission throughput;
XingTian with 16 remote explorers achieves 110.84 MB/s data
transmission throughput; and RLLib with 32 explorers achieves
72.88 MB/s data transmission throughput. XingTian with 16 remote
explorers achieves data transmission throughput near the NIC
bandwidth. With 32 explorers spreading in two machines, the data
transmission throughput of XingTian is 3.04 times that of RLLib.
Besides, it is noticeable that when message size is larger than 64KB,
the end-to-end latency of XingTian with 32 explorers is almost the
same as that of XingTian with 16 remote explorers. As a result, the
learner in the dummy DRL algorithm with 32 explorers observes
twice as much data transmission throughput as the learner with 16
remote explorers observes. This indicates that data transmission
across processes inside a machine in XingTian is almost shadowed
by the data transmission across machines. Data transmission cannot
start in RLLib until the dummy learner asks for data through RPC,

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

which sometimes gets across machines and introduces high latency.
Consequently, the pulling communication model of RLLib delays
data transmission between machines, while XingTian starts data
transmission as soon as the data are ready and is able to fully utilize
the NIC bandwidth.

We can tell from the results in this subsection that XingTian’s
asynchronous and aggressive communication model dramatically
improves the data transmission efficiency in the communication
mode of DRL algorithms.

5.2 Performance of DRL Algorithms
We then evaluate the performance of three different kinds of DRL
algorithms, i.e., IMPALA, DQN, and PPO. Acme is a single-thread
DRL framework and relies on Launchpad to deploy distributed DRL
algorithms. However, integral multi-process DRL algorithm imple-
mentations are not yet available in the open source repositories of
Acme or Launchpad. For example, one of the collaborators from the
Acme community say that they do not plan to add more detailed
documentation for implementing IMPALA in Acme 3. Besides,
there are known and unsolved issues 4 that get in the way of
implementing IMPALA utilizing multiple processes. So we conduct
experiments with RLLib-based DRL algorithms and XingTian-based
DRL algorithms in this subsection. Implementations of RLLib-based
DRL algorithms are from the public RLLib repository.

We deploy XingTian-based and RLLib-based DRL algorithms in
the same experimental platform and with the same hyperparam-
eters such as DNN structures, the learning rate, and the discount
rate, etc. We deploy the DRL algorithms with five environments,
including a gym environment CartPole and four Atari environments
BeamRider, Breakout, Qbert, and SpaceInvaders [6]. We use the
basic DQN algorithm with a single explorer, and we assign ten
explorers and 32 explorers in PPO and IMPALA, respectively. In
DQN, we allocate a replay buffer with a size of 1,000,000 rollout
steps, and configure the learner to start training after 20,000 steps
are collected. After training begins, every time the explorer inserts
four new rollout steps into the replay buffer, the learner performs
a training session with 32 steps sampled from the replay buffer.
Explorers in PPO and IMPALA send out messages of 200 rollout
steps when interacting with CartPole, and send out messages
containing 500 rollout steps in Atari environments. The learner
of PPO has to consume rollout steps from all explorers in each
iteration, so the batchsize is 2,000 and 5,000 when interacting
with CartPole and Atari environments, respectively. The learner of
IMPALA updates the DNN parameters with rollout steps from one
explorer in each iteration with a batchsize of 200 or 500.

5.2.1 Convergence and Execution Time of DRL Algorithms
We measure the convergence of the DRL algorithms based on

different frameworks with the average episode return received by
the explorers after the learner trains the DNNs consuming a certain
number of rollout steps (1M steps for CartPole and 10M steps for
Atari environments). Fig. 6 illustrates the average episode returns
in different DRL algorithms. We also put the public reference results
of RLLib for Atari environments5 in the figures that are denoted
3https://github.com/deepmind/acme/issues/50
4https://github.com/deepmind/acme/issues/133
5https://github.com/ray-project/rl-experiments

CartPole BeamRider Breakout Qbert SpaceInvaders

103

Av
g.

 E
pi

so
de

 R
et

ur
n

XingTian
RLLib
RLLib_ref

(a) IMPALA.

CartPole BeamRider Breakout Qbert SpaceInvaders

103

104

Av
g.

 E
pi

so
de

 R
et

ur
n

XingTian
RLLib
RLLib_ref

(b) DQN.

CartPole BeamRider Breakout Qbert SpaceInvaders
102

103

104

Av
g.

 E
pi

so
de

 R
et

ur
n

XingTian
RLLib
RLLib_ref

(c) PPO.

Figure 6: Average Episode Return in Different DRL Algo-
rithms.

IMPALA DQN PPO
103

104

105

Ti
m

e
(s

)

XingTian
RLLib

Figure 7: Time to Complete 10M steps in Different DRL
Algorithms with Atari Environments.

as “RLLib_ref". Results show that all three kinds of DRL algorithms
based on XingTian attain better or similar convergent performance
compared to the RLLib-based algorithms we deploy and the public
RLLib reference results. XingTian-based IMPALA gets 1.80% and
6.80% more average episode return than RLLib-based IMPALA and
RLLib reference results, respectively. XingTian-based DQN gets
89.90% and 121.93% more average episode return than RLLib-based
DQN and RLLib reference results, respectively. XingTian-based PPO
gets 11.24% and 22.32% more average episode return than RLLib-
based PPO and RLLib reference results, respectively.

Fig. 7 shows that DRL algorithms implemented in XingTian com-
plete training consuming 10M rollout steps in Atari environments
within less time than RLLib-based ones due to higher communica-
tion efficiency. XingTian-based IMPALA takes 41.54% less time than
RLLib-based IMPALA to complete 10M steps. XingTian-based DQN
takes 39.47% less time than RLLib-based DQN. XingTian-based PPO
takes 22.92% less time than RLLib-based PPO.

5.2.2 Throughput of DRL Algorithms
We further evaluate the throughput of the DRL algorithms in

Atari environments, which is typically defined as rollout steps
consumed by the learner per second. We illustrate the throughput

https://github.com/deepmind/acme/issues/50
https://github.com/deepmind/acme/issues/133
https://github.com/ray-project/rl-experiments

Optimizing Communication in Deep Reinforcement Learning with XingTian Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

0 1000 2000 3000
Time (s)

2500

5000

7500

10000

Th
ro

ug
hp

ut
 (s

te
ps

/s
)

XingTian-BeamRider
XingTian-Breakout
XingTian-Qbert
XingTian-SpaceInvaders
RLLib-BeamRider
RLLib-Breakout
RLLib-Qbert
RLLib-SpaceInvaders

(a) Throughput.

0 50 100 150 200 250 300
Latency (ms)

XingTian & RLLib Train
XingTian Actual Wait

XingTian Trans.
RLLib Trans.

(b) Rollout Transmission Latency and Training Time.

0 5 10 15 20 25
Time (ms).

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(c) CDF of Time to Wait for Rollouts before Training.

Figure 8: Throughput and Transmission Time Analysis of
IMPALA.

of each DRL algorithm within one hour of execution in the figures.
We present the throughput of DRL algorithms based on different
frameworks in different colors, and different line styles distinguish
different environments.

IMPALA. Fig. 8(a) shows that XingTian-based IMPALA achieves
70.71% higher throughput than RLLib-based IMPALA on average.
During execution, the explorers send messages containing rollouts
of size 13,855.20 KB to the learner. Fig. 8(b) shows that in RLLib-
based IMPALA, every time the learner wants to spend about 32 ms
to update the DNN parameters, it has to wait for about 301 ms to ask
the explorer to transmit rollouts. In XingTian, it takes about 212 ms
to transmit a message with the same size as the rollouts. However,
the results show that the learner in XingTian waits only about 11
ms for the rollouts before starting training on average. We further
illustrate the cumulative distribution function (CDF) of the time to
wait for rollouts before training in XingTian-based IMPALA in Fig.
8(c), which shows that the learner spends no more than 20 ms under
96.61% of the cases to wait for rollouts and waits for less than 5 ms
under 11.85% of the cases. In XingTian-based IMPALA, the rollout
transmission overlaps with multi-round training computation.
Rollout transmission from an explorer targeting the learner starts
aggressively and takes place simultaneously while the learner
updates DNN parameters consuming rollouts from other explorers.

DQN. As illustrated in Fig. 9(a), the throughput of DQN is large
at the beginning and then decreases as training starts, and XingTian-
based DQN achieves 58.44% higher throughput than RLLib-based
DQN on average. During execution, the learner samples 32 rollout

0 1000 2000 3000
Time (s)

200

400

600

Th
ro

ug
hp

ut
 (s

te
ps

/s
)

XingTian-BeamRider
XingTian-Breakout
XingTian-Qbert
XingTian-SpaceInvaders
RLLib-BeamRider
RLLib-Breakout
RLLib-Qbert
RLLib-SpaceInvaders

(a) Throughput.

0 10 20 30 40 50 60
Latency (ms)

XingTian & RLLib Train
XingTian Actual Wait

RLLib Sample & Trans.

(b) Rollout Sampling & Transmission Latency and Training Time.

Figure 9: Throughput and Sampling & Transmission Time
Analysis of DQN.

steps from the replay buffer for training each time. The size of a
message containing 32 rollout steps is 1,912.96 KB, and training
consuming these rollout steps takes about 8 ms. As shown in Fig.
9(b), sampling and transmitting 32 rollout steps from the replay
buffer actor in another process in RLLib takes about 62 ms, and in
XingTian, the learner only need to wait for the sampling latency of
about 8 ms from the local replay buffer.

PPO. Fig. 10(a) shows that XingTian-based PPO achieves 30.91%
higher throughput than RLLib-based PPO on average. Although the
explorers and the learner of PPO execute in a synchronous man-
ner, XingTian grabs the communication-computation overlapping
opportunity and transmits rollouts from each explorer to the the
learner aggressively. During execution, the learner has to collect
rollouts of size 138,585.32 KB in total from all the ten explorers
before starting training. Fig. 10(b) shows that in RLLib-based PPO,
every time the learner wants to spend about 1,298 ms for DNN
training, it has to wait for about 368 ms to ask all the explorers to
transmit rollouts. In XingTian, it takes about 256 ms to transmit
the messages with the same size as the rollouts from ten explorers.
Results show that it actually takes the learner in XingTian about
114 ms to wait for the rollouts before the training starts.

5.3 Scalability
There are two key considerations on scalability: (1) how many
resources a framework can manage properly and (2) how many
resources an DRL algorithm can use [62] and we mainly focus on
the former. We evaluate the communication efficiency of XingTian
compared to RLLib when deploying XingTian-based and RLLib-
based IMPALA under different scale deployments with a different
number of explorers. Experiments with no more than 64 explorers
are conducted in a single machine; the experiments with 128
explorers and 256 explorers are deployed in two machines and four
machines, respectively. We use the BeamRider environment for all
the experiments, and explorers in all experiments send outmessages
containing 500 rollout steps. The learners in the experiments with
128 and 256 explorers are configured with a batchsize of 1,000

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

0 1000 2000 3000
Time (s)

500

1000

1500

2000

Th
ro

ug
hp

ut
 (s

te
ps

/s
)

XingTian-BeamRider
XingTian-Breakout
XingTian-Qbert
XingTian-SpaceInvaders
RLLib-BeamRider
RLLib-Breakout
RLLib-Qbert
RLLib-SpaceInvaders

(a) Throughput.

0 200 400 600 800 1000 1200
Latency (ms)

XingTian & RLLib Train
XingTian Actual Wait

XingTian Trans.
RLLib Trans.

(b) Rollout Transmission Latency and Training Time.

Figure 10: Throughput and Transmission Time Analysis of
PPO.

2 4 8 16 32 64
128(2 m/c)

256(4 m/c)

Number of Explorers

0

5000

10000

15000

Th
ro

ug
hp

ut
 (s

te
ps

/s
ec

)

971
1841

3172

5603

10726

13119

17442 18076
XingTian
RLLib

Figure 11: Scalability Results.

rollout steps, and the batchsize of learners with fewer explorers is
500 rollout steps.

As illustrated in Fig. 11, the throughput of XingTian-based
IMPALA is always higher than RLLib-based IMPALA. Within
up to 32 explorers, XingTian achieves an approximately linear
acceleration ratio. The throughput growth slows down when the
number of explorers continues to increase because the learner is
gradually saturated and we leave it for future work to develop a
DRL algorithm where 256 explorers do not saturate the learner. It is
noticeable that when deployed in four machines with 256 explorers,
RLLib-based IMPALA’s throughput drops while XingTian-based
IMPALA’s throughput still gets improved and is 91.12% higher
than the RLLib-based one. This is because communication across
machines gets more and the pulling communication model in RLLib
compromises performance, whereas messages in XingTian are
pushed asynchronously and aggressively once they are produced.

Due to the decentralized organization and the asynchronous
aggressive communication model, XingTian maintains high com-
munication efficiency when the communication becomes more
complicated in larger scale deployments. This way, XingTian
enables researchers to accelerate DRL algorithms by optimizing the
computational logic to exploit more resources without dealing with
attendant complex orchestration issues.

6 RELATEDWORK
Single-threaded one-off reference implementations of DRL algo-
rithms such as OpenAI Baselines [11], Stable Baselines [44], Keras
RL [43], and Dopamine[9] provide a convenient starting point
for DRL researchers. Tensorforce [28] and Garage [15] exploit
multiprocessing and multithreading. ReAgent [16] focuses on
offline training of industrial DRL tasks where experiments do
not run in simulators. Stooke et al. [53, 54] discuss parallelization
and acceleration methods for existing DRL algorithms and share
parallelized implementations of some algorithms.

Other studies for general-purpose DRL frameworks wrap up
common building blocks of DRL algorithms and expose interfaces
for researchers. XingTian is closely related to such frameworks.
Fiber [62] extends the multiprocessing library from python to
deploy DRL algorithms in multiple machines. XingTian provides
high-level interfaces that are more friendly and efficient for
researchers. Acme [20], Intel Coach [7], and Surreal [14] are similar
in that they insert separate data buffers between the explorers
and the learner. Acme relies on Reverb [8] to implement the data
buffer and Launchpad [61] for distributed deployment, and all
components communicate with each other by RPC. Intel Coach
uses data stores such as NFS, S3 to transfer policy, and uses
distributed memory libraries such as Redis, Kinesis to transfer
rollouts. Surreal uses ZeroMQ between components. RLLib [30] is
a DRL framework based on Ray [39], which builds a task graph to
organize computational components. The later version RLLib Flow
[31] provides stream APIs to develop DRL algorithms. RLgraph [46]
extends the computational graph in TensorFlow for DRL algorithms.
Tianshou [58] provides a DRL framework based on PyTorch. Both
RLgraph and Tianshou rely on Ray to manage the explorers. These
DRL frameworks use centralized control logic to organize the
computation, pay little attention to optimizing communication,
and fail to utilize the communication-computation overlapping
opportunity.

7 CONCLUSION
We present XingTian, a novel DRL framework that co-designs
the management of communication and computation in DRL
algorithms and takes advantage of the communication-computation
overlapping opportunity. XingTian organizes the computation in
DRL algorithms in a decentralized way and provides an asyn-
chronous communication channel. We implement XingTian and
evaluate it. Experimental results show that XingTian has better data
transmission efficiency and that XingTian-based DRL algorithms
achieve up to 70.71% higher throughput than those implemented
in the state-of-the-art DRL framework RLLib with better or similar
convergent performance. Moreover, XingTian maintains high
communication efficiency under different scale deployments.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers for
their thoughtful suggestions. Jun Qian and Zhen Xiao are the
corresponding authors.

Optimizing Communication in Deep Reinforcement Learning with XingTian Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon
Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-
Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (Savannah, GA, USA, November
2-4) (OSDI 2016). USENIX Association, USA, 265–283. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/abadi

[2] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng,
and Wojciech Zaremba. 2020. Learning dexterous in-hand manipulation. The
International Journal of Robotics Research 39, 1 (2020), 3–20.

[3] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan
Kautz. 2017. Reinforcement Learning through Asynchronous Advantage Actor-
Critic on a GPU. In Proceedings of the 5th International Conference on Learning
Representations (Toulon, France, April 24-26, 2017) (ICLR 2017). OpenReview.net,
USA. https://openreview.net/forum?id=r1VGvBcxl

[4] Richard Bellman. 1957. A Markovian decision process. Journal of mathematics
and mechanics 6, 5 (1957), 679–684.

[5] Dimitri P Bertsekas. 2011. Dynamic programming and optimal control 3rd edition,
volume II. Belmont, MA: Athena Scientific (2011).

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[7] Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. 2017. Reinforcement
Learning Coach. Retrieved May 13, 2022 from https://doi.org/10.5281/zenodo.
1134899

[8] Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos, Toby Boyd,
Thibault Sottiaux, and Manuel Kroiss. 2021. Reverb: A Framework For Experience
Replay. arXiv preprint arXiv:2102.04736 (2021).

[9] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and
Marc G Bellemare. 2018. Dopamine: A research framework for deep reinforcement
learning. arXiv preprint arXiv:1812.06110 (2018).

[10] Alfredo V Clemente, Humberto N Castejón, and Arjun Chandra. 2017. Efficient
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1705.04862
(2017).

[11] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter
Zhokhov. 2017. OpenAI Baselines. Retrieved May 15, 2022 from https:
//github.com/openai/baselines

[12] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, KeWang, andMarcinMichalski.
2020. SEEDRL: Scalable and Efficient Deep-RLwith Accelerated Central Inference.
In Proceedings of the 8th International Conference on Learning Representations
(Addis Ababa, Ethiopia, April 26-30, 2020) (ICLR 2020,). OpenReview.net, USA.
https://openreview.net/forum?id=rkgvXlrKwH

[13] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg,
and Koray Kavukcuoglu. 2018. IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures. In Proceedings of the 35th
International Conference on Machine Learning (Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018) (ICML 2018, Vol. 80). PMLR, USA, 1406–1415. http:
//proceedings.mlr.press/v80/espeholt18a.html

[14] Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan
Creus-Costa, Silvio Savarese, and Li Fei-Fei. 2018. SURREAL: Open-Source
Reinforcement Learning Framework and Robot Manipulation Benchmark. In
Proceedings of the 2nd Annual Conference on Robot Learning (Zürich, Switzerland,
29-31 October 2018) (CoRL 2018, Vol. 87). PMLR, USA, 767–782. http://proceedings.
mlr.press/v87/fan18a.html

[15] The garage contributors. 2019. Garage: A toolkit for reproducible reinforcement
learning research. Retrieved May 13, 2022 from https://github.com/rlworkgroup/
garage

[16] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary
Kaden, Vivek Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. 2018.
Horizon: Facebook’s open source applied reinforcement learning platform. arXiv
preprint arXiv:1811.00260 (2018).

[17] Danijar Hafner, James Davidson, and Vincent Vanhoucke. 2017. Tensorflow
agents: Efficient batched reinforcement learning in tensorflow. arXiv preprint
arXiv:1709.02878 (2017).

[18] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. 2017. Emergence
of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
(2017).

[19] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David

Silver. 2018. Rainbow: Combining Improvements in Deep Reinforcement
Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (New Orleans, Louisiana, USA, February 2-7, 2018) (AAAI-18). AAAI
Press, USA, 3215–3222. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/17204

[20] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal
Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate
Baumli, SarahHenderson, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi,
Caglar Gulcehre, Tom Le Paine, Andrew Cowie, ZiyuWang, Bilal Piot, and Nando
de Freitas. 2020. Acme: A Research Framework for Distributed Reinforcement
Learning. arXiv preprint arXiv:2006.00979 (2020). https://arxiv.org/abs/2006.00979

[21] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado van Hasselt, and David Silver. 2018. Distributed Prioritized Experience Re-
play. In Proceedings of the 6th International Conference on Learning Representations
(Vancouver, BC, Canada, April 30 - May 3, 2018) (ICLR 2018). OpenReview.net,
USA. https://openreview.net/forum?id=H1Dy---0Z

[22] Huawei. 2020. MindSpore. Retrieved May 13, 2022 from https://www.mindspore.
cn/

[23] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, et al. 2019. Human-level performance in 3D multiplayer
games with population-based reinforcement learning. Science 364, 6443 (2019),
859–865.

[24] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard,
Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal
Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure
prediction with AlphaFold. Nature 596, 7873 (01 Aug 2021), 583–589.

[25] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H.
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk
Michalewski. 2020. Model Based Reinforcement Learning for Atari. In Proceedings
of the 8th International Conference on Learning Representations (Addis Ababa,
Ethiopia, April 26-30, 2020) (ICLR 2020). OpenReview.net, USA. https://
openreview.net/forum?id=S1xCPJHtDB

[26] Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney.
2019. Recurrent Experience Replay in Distributed Reinforcement Learning. In
Proceedings of the 7th International Conference on Learning Representations (New
Orleans, LA, USA, May 6-9, 2019) (ICLR 2019). OpenReview.net, USA. https:
//openreview.net/forum?id=r1lyTjAqYX

[27] Vijay R. Konda and John N. Tsitsiklis. 1999. Actor-Critic Algorithms. In
Proceedings of the Advances in Neural Information Processing Systems (Denver,
Colorado, USA, November 29 - December 4, 1999) (NIPS Conference 1999). TheMIT
Press, USA, 1008–1014. http://papers.nips.cc/paper/1786-actor-critic-algorithms

[28] Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. 2017. Tensorforce: a
TensorFlow library for applied reinforcement learning. Retrieved May 14, 2022
from https://github.com/tensorforce/tensorforce

[29] Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath
Sivakumar, Tim Rocktäschel, and Edward Grefenstette. 2019. Torchbeast: A
pytorch platform for distributed rl. arXiv preprint arXiv:1910.03552 (2019).

[30] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib:
Abstractions for Distributed Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning (Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018) (ICML 2018, Vol. 80). PMLR, USA, 3059–3068. http:
//proceedings.mlr.press/v80/liang18b.html

[31] Eric Liang, Zhanghao Wu, Michael Luo, Sven Mika, Joseph E. Gonzalez, and Ion
Stoica. 2021. RLlib Flow: Distributed Reinforcement Learning is a Dataflow Prob-
lem. In Proceedings of the Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems 2021 (Virtual Event, De-
cember 6-14, 2021) (NeurIPS 2021). USA, 5506–5517. https://proceedings.neurips.
cc/paper/2021/hash/2bce32ed409f5ebcee2a7b417ad9beed-Abstract.html

[32] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous control with
deep reinforcement learning. In Proceedings of the 4th International Conference
on Learning Representations (San Juan, Puerto Rico, May 2-4, 2016) (ICLR 2016).
USA. http://arxiv.org/abs/1509.02971

[33] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. 2018.
Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning. In Proceedings of the 2018 IEEE International Conference
on Robotics and Automation (Brisbane, Australia, May 21-25, 2018) (ICRA 2018).
IEEE, USA, 6252–6259. https://doi.org/10.1109/ICRA.2018.8461113

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://openreview.net/forum?id=r1VGvBcxl
https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.5281/zenodo.1134899
https://github.com/openai/baselines
https://github.com/openai/baselines
https://openreview.net/forum?id=rkgvXlrKwH
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v87/fan18a.html
http://proceedings.mlr.press/v87/fan18a.html
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://arxiv.org/abs/2006.00979
https://openreview.net/forum?id=H1Dy---0Z
https://www.mindspore.cn/
https://www.mindspore.cn/
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=r1lyTjAqYX
https://openreview.net/forum?id=r1lyTjAqYX
http://papers.nips.cc/paper/1786-actor-critic-algorithms
https://github.com/tensorforce/tensorforce
http://proceedings.mlr.press/v80/liang18b.html
http://proceedings.mlr.press/v80/liang18b.html
https://proceedings.neurips.cc/paper/2021/hash/2bce32ed409f5ebcee2a7b417ad9beed-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2bce32ed409f5ebcee2a7b417ad9beed-Abstract.html
http://arxiv.org/abs/1509.02971
https://doi.org/10.1109/ICRA.2018.8461113

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Lichen Pan, et al.

[34] Amjad Yousef Majid, Serge Saaybi, Tomas van Rietbergen, Vincent Francois-
Lavet, R Venkatesha Prasad, and Chris Verhoeven. 2021. Deep Reinforcement
Learning Versus Evolution Strategies: A Comparative Survey. arXiv preprint
arXiv:2110.01411 (2021).

[35] Hangyu Mao, Wulong Liu, Jianye Hao, Jun Luo, Dong Li, Zhengchao Zhang, Jun
Wang, and Zhen Xiao. 2020. Neighborhood Cognition Consistent Multi-Agent
Reinforcement Learning. In Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence (NewYork, NY, USA, February 7-12, 2020) (AAAI 2020). AAAI
Press, USA, 7219–7226. https://ojs.aaai.org/index.php/AAAI/article/view/6212

[36] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. 2020.
Learning Agent Communication under Limited Bandwidth by Message Pruning.
In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (New
York, NY, USA, February 7-12, 2020) (AAAI 2020). AAAI Press, USA, 5142–5149.
https://ojs.aaai.org/index.php/AAAI/article/view/5957

[37] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016.
Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of
the 33nd International Conference on Machine Learning (New York City, NY,
USA, June 19-24, 2016) (ICML 2016, Vol. 48). JMLR.org, USA, 1928–1937. http:
//proceedings.mlr.press/v48/mniha16.html

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[39] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
In Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation (Carlsbad, CA, USA, October 8-10, 2018) (OSDI 2018). USENIX
Association, USA, 561–577.

[40] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, et al. 2015. Massively parallel methods for deep
reinforcement learning. arXiv preprint arXiv:1507.04296 (2015).

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Proceedings of the Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019 (Vancouver, BC, Canada, December 8-14, 2019) (NeurIPS
2019). USA, 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[42] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and
Vladlen Koltun. 2020. Sample Factory: Egocentric 3D Control from Pixels at
100000 FPS with Asynchronous Reinforcement Learning. In Proceedings of the
37th International Conference on Machine Learning (Virtual Event, 13-18 July 2020)
(ICML 2020, Vol. 119). PMLR, USA, 7652–7662. http://proceedings.mlr.press/v119/
petrenko20a.html

[43] Matthias Plappert. 2016. keras-rl. Retrieved May 13, 2022 from https://github.
com/keras-rl/keras-rl

[44] Antonin Raffin, AshleyHill, Maximilian Ernestus, AdamGleave, Anssi Kanervisto,
and Noah Dormann. 2019. Stable Baselines3. Retrieved May 13, 2022 from
https://github.com/DLR-RM/stable-baselines3

[45] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using
connectionist systems. Vol. 37. Citeseer.

[46] Michael Schaarschmidt, Sven Mika, Kai Fricke, and Eiko Yoneki. 2019. RLgraph:
Modular Computation Graphs for Deep Reinforcement Learning. In Proceedings of
Machine Learning and Systems 2019 (Stanford, CA, USA, March 31 - April 2, 2019)
(Mlsys 2019). mlsys.org, USA, 65–80. https://proceedings.mlsys.org/book/279.pdf

[47] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In Proceedings of the 4th International Conference on Learning
Representations (San Juan, Puerto Rico, May 2-4, 2016) (ICLR 2016). USA. http:
//arxiv.org/abs/1511.05952

[48] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with
a learned model. Nature 588, 7839 (2020), 604–609.

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[50] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with
deep neural networks and tree search. nature 529, 7587 (2016), 484–489.

[51] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,

and Go through self-play. Science 362, 6419 (2018), 1140–1144.
[52] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[53] Adam Stooke and Pieter Abbeel. 2018. Accelerated methods for deep
reinforcement learning. arXiv preprint arXiv:1803.02811 (2018).

[54] Adam Stooke and Pieter Abbeel. 2019. rlpyt: A research code base for deep
reinforcement learning in pytorch. arXiv preprint arXiv:1909.01500 (2019).

[55] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An
introduction. MIT press.

[56] Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy Gradient Methods for Reinforcement Learning with Function Approxi-
mation. In Proceedings of the Advances in Neural Information Processing Systems
(Denver, Colorado, USA, November 29 - December 4, 1999) (NIPS Conference
1999). The MIT Press, USA, 1057–1063. http://papers.nips.cc/paper/1713-policy-
gradient-methods-for-reinforcement-learning-with-function-approximation

[57] Apache Arrow Development Team. 2021. Apache Arrow. Retrieved May 13,
2022 from https://arrow.apache.org/

[58] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao
Zhang, Yi Su, Hang Su, and Jun Zhu. 2022. Tianshou: A Highly Modularized
Deep Reinforcement Learning Library. Journal of Machine Learning Research 23,
267 (2022), 1–6. http://jmlr.org/papers/v23/21-1127.html

[59] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[60] Mingzhe Xing, Hangyu Mao, and Zhen Xiao. 2022. Fast and Fine-grained
Autoscaler for Streaming Jobs with Reinforcement Learning. In Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence (Vienna,
Austria, 23-29 July 2022) (IJCAI 2022). ijcai.org, USA, 564–570. https://doi.org/10.
24963/ijcai.2022/80

[61] Fan Yang, Gabriel Barth-Maron, Piotr Stańczyk, Matthew Hoffman, Siqi Liu,
Manuel Kroiss, Aedan Pope, and Alban Rrustemi. 2021. Launchpad: A
Programming Model for Distributed Machine Learning Research. arXiv preprint
arXiv:2106.04516 (2021).

[62] Jiale Zhi, Rui Wang, Jeff Clune, and Kenneth O Stanley. 2020. Fiber: A platform
for efficient development and distributed training for reinforcement learning and
population-based methods. arXiv preprint arXiv:2003.11164 (2020).

https://ojs.aaai.org/index.php/AAAI/article/view/6212
https://ojs.aaai.org/index.php/AAAI/article/view/5957
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/DLR-RM/stable-baselines3
https://proceedings.mlsys.org/book/279.pdf
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
https://arrow.apache.org/
http://jmlr.org/papers/v23/21-1127.html
https://doi.org/10.24963/ijcai.2022/80
https://doi.org/10.24963/ijcai.2022/80

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Communication Characteristics of DRL Algorithms
	2.2 Shortcomings of Prior DRL Frameworks
	2.3 Summary

	3 Design
	3.1 Design Principles
	3.2 Architecture of XingTian

	4 Implementation and Extension of XingTian
	4.1 Implementation Details
	4.2 Construct DRL Algorithms with XingTian
	4.3 Extending XingTian: Supporting Population-Based Training

	5 Evaluation
	5.1 Data Transmission Efficiency
	5.2 Performance of DRL Algorithms
	5.3 Scalability

	6 Related Work
	7 Conclusion
	References

