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ABSTRACT
Public cloud GPU clusters are becoming emerging platforms for

training distributed deep learning jobs. Under this training par-

adigm, the job scheduler is a crucial component to improve user

experiences, i.e., reducing training fees and job completion time,

which can also save power costs for service providers. However,

the scheduling problem is known to be NP-hard. Most existing

work divides it into two easier sub-tasks, i.e., ordering task and

placement task, which are responsible for deciding the scheduling

orders of jobs and placement orders of GPU machines, respectively.

Due to the superior adaptation ability, learning-based policies can

generally perform better than traditional heuristic-based methods.

Nevertheless, there are still two main challenges that have not

been well-solved. First, most learning-based methods only focus

on ordering or placement policy independently, while ignoring

their cooperation. Second, the unbalanced machine performances

and resource contention impose huge overhead and uncertainty on

job duration, but rarely be considered in existing work. To tackle

these issues, this paper presents a dual-agent scheduler framework

abstracted from the two sub-tasks to jointly learn the ordering and

placement policies and make better-informed scheduling decisions.

Specifically, we design an ordering agent with a scalable squeeze-

and-communicate strategy for better cooperation; for the placement

agent, we propose a novel Random Walk Gaussian Process to learn

the performance similarities of GPU machines while being aware

of the uncertain performance fluctuation. Finally, the dual-agent is
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jointly optimized with multi-agent reinforcement learning. Exten-

sive experiments conducted on the real-world production cluster

trace demonstrate the superiority of our model.
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1 INTRODUCTION
Driven by recent innovations of artificial intelligence, deep learn-

ing (DL) is powering various services such as computer vision [16,

25] and language processing [2, 9]. To deal with the ever-growing

scale of training datasets, distributed DL (DDL) training is a com-

mon practice to shorten the training time. However, training DDL

jobs usually requires powerful and expensive GPUs, and it gradu-

ally becomes infeasible to fit them into a private cluster. Therefore,

many public cloud service providers, e.g.,AWS
1
and Alibaba Cloud

2
,

have built GPU clusters to gain monetary benefits by training DDL

jobs for users. It is reported that the GPU as a service market size

is valued at 2.8 billion dollars in 2022, and will keep a 40% growth

rate in the next year
3
. Under this training paradigm, an effective

DDL job scheduler is critical to improving user experiences, i.e.,
saving budgets and reducing job completion time (JCT), and even

marginal improvements can lead to large social benefits. From the

1
https://aws.amazon.com/

2
https://www.alibabacloud.com/

3
https://www.futuremarketinsights.com/reports/gpu-as-a-service-market
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ResNet VGGSeq2SeqFree GPU

Figure 1: Illustrative example of uncertain performance fluc-
tuation caused by future arrived and co-located jobs in a
machine equipped with four GPUs during four timesteps.

perspective of service providers, optimizing JCT also allows them

to reduce power costs and complete more jobs in the same time so

as to raise revenue. In addition, cheap and fast computing services

will attract more users and improve potential income.

As a typical online bin-packing problem, job scheduling is known

to be NP-hard [17, 74], and the mainstream solutions divide this

problem into two easier sub-tasks, i.e., ordering task and placement
task. The ordering task is responsible for deciding the scheduling or-
ders of jobs, and the placement task scores the affinity of a job with

respect to each machine, where a higher affinity score implies that

the job is more suitable to be placed on this machine. Most existing

work adopts heuristic or meta-heuristic rules in the two sub-tasks,

namely heuristic-based [12] andmeta-heuristic-based scheduler [81].
They are typically based on rules meticulously tuned by experts or

injecting randomness in solution space to search for the optimal so-

lution, which is not only a time-consuming process but also subject

to human cognitive bias. To remedy these drawbacks, another line

of work [39, 73] uses reinforcement learning (RL) [56] to optimize

the ordering or placement policy, namely RL-based scheduler.
Despite the superiority of RL-based schedulers, two challenging

issues still have not been solved. First, to the best of our knowl-

edge, all existing RL-based methods train the ordering or placement

policies independently. They ignore the potential cooperation be-

tween the two policies, which can be exploited to further improve

the performance. The second challenge comes from the placement
sensitivity. The placement agent should be aware of the machine

computation and topological communication performances, which

is the key to placing distributed jobs [71]. However, the system
uncertainty [57, 75] existing in the dynamic cluster environment is

with little prior knowledge, especially for the resource contention [3]
from future co-located jobs, making the machine performances

fluctuate and hard to predict. For example, as shown in Figure 1,

a ResNet [25] job is scheduled and placed with two Seq2Seq [55]

jobs at 𝑡𝑖 under slight resource contention. However, the future co-

located VGG [52] job could lead to nearly 2-x slowdown [3] for the

ResNet during 𝑡𝑖+1 to 𝑡𝑖+2, as they all demand and contend for more

network I/O to communicate gradients. This example shows the

necessity and difficulty of perceiving uncertain future performance

fluctuation multi-step-ahead when scheduling the ResNet job at 𝑡𝑖 .

To alleviate the above issues, we propose a novel Dual-Agent

Scheduler (named DAS) framework for scheduling DDL jobs. First,

we analyze and abstract existing ordering and placement meth-

ods as a dual-agent structure, and formulate the DDL job schedul-

ing process as a Decentralized Markov Decision Process [5]. Sec-

ond, we design a scalable squeeze-and-communicate mechanism to

convey cluster state to the ordering agent, which helps the two

agents collaboratively make scheduling decisions, and leverage

Transformer [59] architecture to compute the position-aware and
pair-wise ranking for prioritizing jobs. Third, the placement agent

should be able to model the computation and topological commu-

nication performances of machines, and be aware of the uncertain

machine performance fluctuation caused by resource contention

from future co-located jobs. To this end, we propose a Random
Walk Gaussian Process (RWGP), which consists of a stacked random

walk kernel function to learn the topological performance similari-

ties of machines. Furthermore, the RWGP is built on the Gaussian

Process [65], where the estimated posterior covariance reflects the

uncertain performance fluctuation and helps to guide the action

decision. Finally, the dual-agent is optimized with the multi-agent

proximal policy optimization [77] algorithm.

To the best of our knowledge, we are the first to abstract the

DDL job scheduler as a dual-agent structure, and utilize the multi-

agent reinforcement learning algorithm to optimize the joint policy.

Experiments conducted on the real-world DDL job trace show that

our method can reduce 34 minutes on JCT per job on average and

save more than ten thousand dollars on training fees every day in a

production cluster comparedwith the best learning-based scheduler.

In addition, an ablation study, parameter tuning, and visualized

case study are provided for a better understanding of our work.

2 BACKGROUND AND RELATEDWORK
2.1 Scheduling Algorithms
Existing scheduling methods can be mainly divided into heuristic-
based, meta-heuristic-based and RL-based schedulers. A representa-

tive heuristic-based ordering rule is First-in-first-out (FIFO) [12],

which assigns higher priorities to jobs that come earlier. Domi-

nant Resource Fairness (DRF) [23], a generalization of min-max

fairness to multiple resource types, computes the shares of the dom-

inant resource of jobs and first schedules the job with the smallest

dominant share. As classical placement rules, First-fit [7] selects

the first-retrieved machine, while Load-balance [58] prefers the

machine with the least workload. Although heuristic algorithms

have been widely deployed in industrial clusters due to their su-

perior computation efficiency [26, 60], their performance is often

sub-optimal. The meta-heuristic-based algorithms [81] try to

find the global optimal solution with randomness. Multi-objective

simulated annealing (MOSA) [51] searches for the job assignment

and resource allocation to minimize makespan and resource cost.

Multi-objective hybrid ant-lion optimizer (MALO) [1] solves the job

scheduling problem by enhancing the ant optimization algorithm

utilizing differential evolution as a local search technique. However,

their low efficiency hinders them to be applied in the production

cluster. More recently, another line of work proposes RL-based
schedulers. DeepRM [39] uses a bitmap to model cluster state and

employs REINFORCE algorithm [66] to decide the time slot when

a job should be executed. DL
2
[43] comprises of offline supervised

learning and online RL stages to optimize resource allocation policy.

RIFLING [13] focuses on the placement strategy for DDL jobs with

Q-learning [62], and adopts 𝑘-means [38] to group job representa-

tions to reduce state space. These RL-based techniques, although

efficient, only consider ordering or placement policy independently.
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In this paper, we jointly learn the ordering and placement policies

and their cooperation with a dual-agent framework.

2.2 Multi-agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) [44] has received much

attention in solving cooperative and competitive tasks, e.g., traffic

light control [64] and packet routing [8]. VDN [54] and QMIX [45]

optimize agents by value decomposition. Built on the conventional

PPO [49], multi-agent proximal policy optimization (MAPPO) [77]

consists of multiple agents that could deal with both discrete and

continuous action space, and a shared critic network to estimate the

Q-value. Since partially observable agents cannot learn the global

state and capture the dependencies with the other agents, existing

work [40, 41] proposes to communicate between agents in order

to stabilize the training process [18, 53] and increase exploration,

reward, and diversity of solutions [4]. In order to have a better

collaboration between ordering and placement agents, we design

a squeeze-and-communicate strategy in our model, which allows

scalable message communication.

2.3 Gaussian Process
Gaussian Process (GP) [30] is a Bayesian approach that has been

widely used in analyzing time series with uncertainty [65]. Formally,

it is defined as a collection of random variables, of which any finite

subsets have joint Gaussian distributions. Consequently, a GP can be

specified by its mean function𝑚(𝑥) and covariance kernel function
𝑘𝜂 (𝑥, 𝑥 ′) as: 𝑓 (𝑥) ∼ GP(𝑚(𝑥), 𝑘𝜂 (𝑥, 𝑥 ′)), where 𝑥, 𝑥 ′ ⊂ X denote

the possible inputs and 𝜂 is a set of hyper-parameters of the kernel

function. In more realistic modeling situations, it is typical that

we can only access noisy function values 𝑦 = 𝑓 (𝑥) + 𝜀. Denote
𝑓∗ as the vector of (unknown) evaluations of 𝑓 at a finite 𝑋∗ =

{𝑥1∗, · · · , 𝑥𝑛∗} ⊂ X, the joint prior distribution of the training

outputs 𝑓 and the test outputs 𝑓∗ is:[
f
f∗

]
∼ N

(
0,
[
𝑘 (𝑋,𝑋 ) + 𝜎2𝐼 𝑘 (𝑋,𝑋∗)
𝑘 (𝑋∗, 𝑋 ) 𝑘 (𝑋∗, 𝑋∗)

] )
,

where𝑘 (𝑋,𝑋∗) = 𝑘 (𝑋∗, 𝑋 )𝑇 is the cross-covariancematrix between

𝑋∗ and training input 𝑋 , i.e., the (𝑖, 𝑗)-th element of 𝑘 (𝑋∗, 𝑋 ) is
𝑘 (𝑥𝑖∗, 𝑥 𝑗 ), and 𝜎2 is the variance of Gaussian noise 𝜀. The predictive

posterior distribution on 𝑓∗ conditioned on 𝑋 , 𝑋∗ and 𝑦 is therefore

given by the followings:

𝑚(𝑓∗) = 𝑘 (𝑥∗, 𝑋 )
[
𝑘 (𝑋,𝑋 ) + 𝜎2𝐼

]−1
𝑦 (1)

𝑐𝑜𝑣 (𝑓∗) = 𝑘 (𝑥∗, 𝑥∗) − 𝑘 (𝑥∗𝑋 )
[
𝐾 (𝑋,𝑋 ) + 𝜎2𝐼

]−1
𝐾 (𝑋, 𝑥∗) . (2)

Taking advantage of GP generalizing well with few labels and can

naturally model uncertainty [35, 65], we design a novel GP with

random walk kernel [32], which can well model the performance

similarity and uncertain performance fluctuation.

3 PROBLEM DEFINITION
To begin with, we give a formal definition of the scheduling process

for DDL jobs on a public cloud GPU cluster. Given a GPU cluster

with𝑀 physical machines, each is equipped with the same amount

of GPU cards, CPU, and memory. It consistently receives, schedules,

and executes DDL jobs submitted by users, and charges a certain

amount of training fees from users. As depicted in Figure 2, DDL job

Ordering

Agent

Placement

Agent

GPU Cluster

Pending List

Action Decision

Action Decision

Submit time
Start time
Finish time

Figure 2: The Dec-MDP formulation of DDL job scheduling.
Job 𝑗2 (in purple) is scheduled at 𝑡𝑖+2 by the ordering agent,
and is placed onmachines𝑚0 and𝑚2 by the placement agent.

𝑗2 with a requirement list ⟨𝐶,𝑛𝐺𝑃𝑈 , 𝑛𝐶𝑃𝑈 , 𝑛𝑀𝑒𝑚𝑜𝑟𝑦⟩ is submitted

by a user at timestep 𝑡𝑖+1, namely submission time. It comprises

of 𝐶 parallelly running instances to be dispatched to one or more

machines, where each instance works for a unique part of the com-

plete training dataset or model, i.e., in data- or model-parallelism

manner [29], and requires the same volume of GPU, CPU, and mem-

ory, i.e., 𝑛𝐺𝑃𝑈 , 𝑛𝐶𝑃𝑈 and 𝑛𝑀𝑒𝑚𝑜𝑟𝑦 . After being submitted, 𝑗2 will

first be added into the pending list, then deployed on the cluster

after the scheduler makes scheduling decisions for it at 𝑡𝑖+2, i.e.,
the start time. When 𝑗2 finishes at 𝑡𝑖+3 (i.e., the finish time), its job
completion time (JCT) can be derived as 𝑟 𝑗𝑐𝑡 = 𝑡𝑖+3 − 𝑡𝑖+1, and the

training fee is calculated as 𝑟 𝑓 𝑒𝑒 = 𝑝 ×𝐶 ×𝑛𝐺𝑃𝑈 ×𝑑 , where 𝑝 is the

price of using a GPU per hour, and 𝐶 × 𝑛𝐺𝑃𝑈 is the total requested

number of GPUs and 𝑑 = 𝑡𝑖+3 − 𝑡𝑖+2 is the job duration.
The scheduler module is deployed on the cluster to make or-

dering and placement decisions for jobs waiting in the pending

list. The ordering component is responsible for prioritizing jobs and

deciding which job should be scheduled first, while the placement
component computes the affinity score for each job with respect

to each machine, and a higher affinity score indicates that the job

is more suitable to be placed on this machine. Please note that

we only focus on the run-to-completion scheduling for DDL jobs

without preemption or migration, since the resource availability of

the cluster is constantly changing, and a dynamic scheduler may

introduce extra scheduling overhead [13].

In order to train the scheduler with MARL, we abstract the order-

ing and placement components in the scheduler as ordering agent
and placement agent respectively, and formulate the scheduling

process as a Decentralized Markov Decision Process (Dec-MDP)

based on the above notations, which can be specified as follows:

• Observation: The observation of ordering agent at timestep 𝑡

is the pending job states that can be specified as O𝑗
𝑡 ∈ R𝑁×𝑢 , where

𝑁 is the number of pending jobs, and𝑢 is the number of job features

consisting of the instance, CPU, GPU and memory requirements

and the wait time in the pending list. Serving for the time-variant

workload, the cluster shows a dynamic state as depicted in Figure 2,

which is regarded as the observation of placement agent and can

be represented as a collection of machine states O𝑐𝑡 ∈ R𝑀×𝑣 at 𝑡 ,
where the 𝑘-th row in O𝑐𝑡 is a 𝑣-length feature vector of machine
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𝑚𝑘 , containing the amount of free CPU, GPU, memory, bandwidth

and the resource utilization ratio of𝑚𝑘 .

• Action: The action of the ordering agent is represented as

𝒂 𝑗𝑡 ∈ R𝑁 , where the 𝑖-th element is the scheduling priority of job

𝑗𝑖 . Denoted by A𝑐𝑡 ∈ R𝑁×𝑀 , the placement agent makes placement

decision for each job, and the (𝑖, 𝑘)-th element in A𝑐𝑡 denotes the
affinity score of placing job 𝑗𝑖 on machine𝑚𝑘 .

• Transition: Given the ordering and placement action deci-

sions, the scheduler sorts the pending jobs according to priorities

𝒂 𝑗𝑡 , and allocates resources for them on machines sorted by affinity

scores A𝑐𝑡 . The observations will be transited to the next timestep

when the scheduler is triggered, i.e., when there are enough free

resources in the cluster to run the pending jobs.

• Reward: Basically, our objectives are to minimize JCT 𝑟 𝑗𝑐𝑡

and training fee 𝑟 𝑓 𝑒𝑒 . We additionally design a penalty term for the

jobs that are not successfully scheduled: 𝛼 (𝐶 × 𝑛𝐺𝑃𝑈 ), where 𝛼 is

a hyper-parameter to tune the tolerability of failed scheduling. The

total reward can be specified as follows:

𝑟𝑡 =

𝑁 ′∑︁
𝑖=0

©­« 𝜁𝑖

𝑟
𝑓 𝑒𝑒

𝑖
× 𝑟 𝑗𝑐𝑡

𝑖

− (1 − 𝜁𝑖 )𝛼 (𝐶𝑖 × 𝑛𝐺𝑃𝑈𝑖 )ª®¬ /𝑁 ′, (3)

where 𝜁𝑖 is an indicator that equals 1 when job 𝑗𝑖 is successfully

scheduled and finished, and 0 when 𝑗𝑖 fails to be scheduled, and 𝑁
′

is the number of jobs finished and failed during timestep 𝑡 − 1 to 𝑡 .
Remark. In the reward function (i.e., Eq. 3), the JCT and training fee

are jointly optimized, but they are non-cooperativemetrics and have

been proven to expose a hard tradeoff [79] (can also be demonstrated

in the experiment part). The proof and additional explanation about

the Dec-MDP formulation can be found in Appendix A).

4 METHODOLOGY
In this section, we present a novel Dual-Agent Scheduler (named

DAS) for DDL jobs. First, we introduce the ordering agent with a

scalable squeeze-and-communicate mechanism that can integrate

the cluster state, and a Transformer [59] encoder to learn the

position-aware and pair-wise job priorities. Second, to be aware

of the topological machine performances and uncertain perfor-

mance fluctuation, we present the placement agent with a novel

Random Walk Gaussian Process. After that, we detail the training
process with the MAPPO algorithm.

4.1 Ordering Agent with Message
Communication

The ordering agent is responsible for assigning priority scores for
jobs. The job with a higher priority indicates that it will gain more

benefits if be scheduled first. In this process, it is intuitive that the

cluster observation O𝑐 is an important side information for the

ordering agent to infer the most proper scheduling order under the

current cluster state. Hence, we assume that by properly fusing the

cluster state, it will help the ordering agent make better decisions.

4.1.1 Squeeze-and-communicate mechanism. Considering that the

machine numbers may vary in different clusters, and it will bring

nonnegligible communication overhead to directly access the state

of a large cluster, we design a squeeze-and-communicate module,

making the communication process scalable. Specifically, as de-

picted in Figure 3, we first use two feed-forward networks (FFN) to

extract the deep features of job and cluster states as follows:

S𝑗 = relu(O𝑗W1 + 𝒃1), S𝑐 = relu(O𝑐W2 + 𝒃2), (4)

where S𝑗 and S𝑐 are the extracted job and cluster features respec-

tively, W1 ∈ R𝑢×𝑒 and W2 ∈ R𝑣×𝑒 are learnable weight matrices,

𝑒 is the number of hidden units, and 𝒃1 and 𝒃2 are the initial bias.
After that, we generate the message to be delivered to the ordering

agent by squeezing cluster representation with average pooling:

𝒔𝑐 = AvgPool(S𝑐 ). Then we fuse the message 𝒔𝑐 into job represen-

tations with an adaptive gating mechanism as follows:

S̃𝑗 = 𝛿 · 𝑓 (𝒔𝑐 ) + (1 − 𝛿) · S𝑗 (5)

𝛿 = 𝜎
(
W3 [S𝑗 ⊕ 𝑓 (s̃𝑐 )] + 𝒃3)

)
,

where W3 and 𝒃3 are learnable parameters, ⊕ denotes the concate-

nation operation, and 𝑓 is the function to expand 𝒔𝑐 so that it can

be concatenated with S𝑗 . In this way, the cluster state is conveyed

to the ordering agent and integrated into job representations S̃𝑗 .

4.1.2 Position-aware and self-attentive job ordering. After fusing
the cluster state into job representations, the next step is to infer

the job priorities. Intuitively, the ordering agent should be position-
aware, as the jobs arrive at the pending list according to their sub-

mission order, which is a key factor for job scheduling [50]. Based

on this intuition and inspired by the idea of pair-wise ranking [42],

it is natural to leverage Transformer architecture to automatically

quantify the pair-wise attentive correlations between jobs. First,

we add the position embedding to S̃𝑗 as follows:

Z𝑗 = S̃𝑗 + 𝑃𝐸 (𝑖)

𝑃𝐸 (𝑖)
2𝑘 = sin

(
𝑖/100002𝑘/𝑒

)
, 𝑃𝐸 (𝑖)

2𝑘+1 = cos

(
𝑖/100002𝑘/𝑒

)
,

where 𝑖 is the position index (i.e., the job submission order), and 𝑘

is the dimension index. By applying the multi-head self-attention

mechanism on Z𝑗 , the pair-wise attentive correlations are inte-

grated into job representations Ŝ𝑗 as follows:

Ŝ𝑗 = [ℎ𝑒𝑎𝑑1W𝑂
1
, ℎ𝑒𝑎𝑑2W𝑂

2
, · · · , ℎ𝑒𝑎𝑑ℎW𝑂

ℎ
] (6)

ℎ𝑒𝑎𝑑𝑖 = Attention(Z𝑗W𝑄

𝑖
,Z𝑗W𝐾

𝑖 ,Z
𝑗W𝑉

𝑖 ),

where W𝑄

𝑖
, W𝐾

𝑖
, W𝑉

𝑖
and W𝑂

𝑖
are the corresponding learnable

parameters for the 𝑖-th attention head. The attention function is

implemented by scaled dot-product operation:

Attention(Q,K,V) = softmax( QK⊤√︁
𝑒/ℎ
)V.

Considering that the priority scores are continuous scalars, we

assume the action 𝒂 𝑗 of the ordering agent follows a latent Gauss-

ian distribution N(𝝁 𝑗 ,Σ𝑗 ), and can be explored by sampling from

N(𝝁 𝑗 ,Σ𝑗 ) in training phase as follows:

𝒂 𝑗 ∼ N(𝝁 𝑗 ,Σ𝑗 ) (7)

𝝁 𝑗 = tanh(W4Ŝ𝑗 + 𝒃4), Σ𝑗 = 𝜎 (W5Ŝ𝑗 + 𝒃5), (8)

where the 𝑖-th element in 𝒂 𝑗 ∈ R𝑁 is the priority score of job 𝑗𝑖 ,

and W4, W5, 𝒃4 and 𝒃5 are learnable parameters.
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Figure 3: The overall architecture of our proposed DAS model. In this example, four jobs submitted by users are ready to be
scheduled on the cluster with eight machines, where each machine is equipped with four GPUs.

4.2 Placement Agent with RandomWalk
Gaussian Process

The goal of the placement agent is to calculate the affinity scores,
i.e., action A𝑐 ∈ R𝑁×𝑀 , where a higher A𝑐

𝑖𝑘
denotes that job 𝑗𝑖 is

more suitable to be placed on machine𝑚𝑘 . For the 𝐶𝑖 running in-

stances in job 𝑗𝑖 , the scheduler places them on machines according

to the descending order of A𝑐
𝑖
. During the DDL job execution phase,

the performance bottleneck lies in the machine with the worst

computation and communication performance [11]. Moreover, as

the resource contention introduced by co-located jobs is uncertain

and with little prior knowledge, which is the main source of sys-

tem uncertainty [57, 75] in the cluster environment, the machine

performance is not deterministic and with uncertain fluctuation.

Behind this placement process, there are two intuitive princi-

ples: (1) the job instances should first be placed on the machines (i.e.,
with higher affinity scores) with similar performances, e.g., having
similar free GPU, CPU, memory and bandwidth, to ensure that no

machine could become the performance bottleneck. (2) The place-

ment agent should be aware of the uncertain future performance

fluctuation caused by resource contention. Based on the above prin-

ciples, we propose a novel RandomWalk Gaussian Process (RWGP)

to predict the affinity scores. It models the topological performance

similarities of machines with a stacked random walk kernel and

perceives the uncertain performance fluctuation with Gaussian

Process. The RWGP consists of the following four steps.

4.2.1 Job-aware cluster representations. First, considering that the

cluster representations should be unique regarding different jobs

as their resource requirements are distinct, we derive the job-aware
cluster representations Ŝ𝑐 = Ŝ𝑗 ⊗ S𝑐 ∈ R𝑁×𝑀×𝑀 , where Ŝ𝑗 is the
job representation (i.e., Eq. 6), and ⊗ denotes the Kronecker product.

4.2.2 Kernel function in Euclidean space. In this step, we aim to

tackle the performance uncertainty issue (i.e., the second intuitive

principle). Inspired by the Gaussian Process (GP) capturing uncer-

tainty in the dynamic system by learning functions over mean and

covariance [35, 65], we build a GP to infer the posterior probability

distribution of placement action based on the input of historical

cluster states and the output of historical placement actions:

X𝑡 = [Ŝ𝑐𝑡−𝜏 , �S𝑐𝑡−𝜏+1, · · · , Ŝ𝑐𝑡−1] (9)

Y𝑡 = [A𝑐𝑡−𝜏 ,A𝑐𝑡−𝜏+1, · · · ,A
𝑐
𝑡−1], (10)

where 𝜏 is the length of historical data. The key to GP is the design

of the kernel function, which should be able to capture the correla-

tions between inputs effectively [72]. An easy way is to learn the

correlations of historical cluster states in Euclidean space. Here, we

adopt the Matern52 kernel [22] to measure their correlations as it is

second-order derivable and is suitable to fit real functions [19, 70].

The Matern52 kernel can be achieved with the followings:

𝑘Matern (𝑥1, 𝑥2) =
2
1−𝜈

Γ(𝜈)

(√
2𝜈𝑔

)𝜈
𝐵𝜈

(√
2𝜈𝑔

)
(11)

𝑔(𝑥1, 𝑥2) = (𝑥1 − 𝑥2)⊤𝜌−2 (𝑥1 − 𝑥2),

where 𝜈 = 5

2
is a smoothness parameter, Γ and 𝐵𝜈 are the gamma

function and the modified Bessel function, and 𝑔 measures the

distance between 𝑥1 and 𝑥2 scaled by the lengthscale parameter

𝜌 . With the above GP formulation, we can estimate the posterior

mean and covariance of A𝑐𝑡 based on the input S𝑐𝑡 with Eq. 1 and 2.

4.2.3 Random walk kernel in non-Euclidean space. In order to incor-
porate the topological structure of the cluster into GP, we abstract

the cluster as a graph 𝐺𝑡 at timestep 𝑡 , where each node denotes

a machine and the adjacency matrices are P𝑡 = 𝑘Matern (Ŝ𝑐𝑡 , Ŝ𝑐𝑡 ) =
[P(1)𝑡 , P(2)𝑡 , · · · , P(𝑁 )𝑡 ], where P(𝑖 )𝑡 ∈ R𝑀×𝑀 is the adjacency matrix

for job 𝑗𝑖 . Suppose that there is a random walker, it selects the next

visited machine node according to P(𝑖 ) , where a larger P(𝑖 )
𝑘𝑙

denotes

that machines𝑚𝑘 and𝑚𝑙 are more similar for placing job 𝑗𝑖 and

there is a higher probability to transit from𝑚𝑘 to𝑚𝑙 (following the

2780



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Mingzhe Xing et al.

first intuitive principle). Motivated by the graph kernel theory [61]

and deep kernel learning [67, 68], we propose a two-layer kernel

that wraps kernel 𝑘Matern (Eq. 11) with random walk kernel [32] to

measure the transition correlations:

𝑘RW (𝐺1,𝐺2) =
|𝑉× |∑︁
𝑖,𝑘=1

[ ∞∑︁
ℓ=0

𝜆ℓPℓ×

]
𝑖𝑘

, (12)

where 𝑉× and P× denote the Kronecker product of the nodes and

adjacency matrices of 𝐺1 and 𝐺2, 𝜆 is a positive and real-valued

weight, and ℓ denotes the length of random walking. In what fol-

lowings, we show that the stacked kernel 𝑘RW is symmetric and

positive semi-definite, which satisfies the prerequisites of GP ker-

nel [65]. The proof of Proposition 1 is in Appendix B.1.

Proposition 1. Since Matern52 kernel 𝑘Matern is symmetric and
positive semi-definite [22], the new kernel 𝑘RW that wraps it with a
random walk kernel is also symmetric and positive semi-definite.

To efficiently compute the stacked random walk kernel 𝑘RW, we

transform it to the exponential form with the following proposi-

tion (the proof can be found in Appendix B.2):

Proposition 2. The stacked random walk kernel 𝑘RW ( i.e., Eq. 12)
is diagonalizable and can be transformed to the exponential series [21,
31] as 𝑘RW (𝐺1,𝐺2) = exp(𝛽P×), where 𝛽 is a positive parameter.

4.2.4 Posterior distribution of RWGP. Based on the above kernel

formulations and Eq. 1 and 2, we can derive the posterior mean

𝑝 (𝝁𝑐𝑡 |Ŝ𝑐𝑡 ,X𝑡 ,Y𝑡 ) and covariance 𝑝 (Σ𝑐𝑡 |Ŝ𝑐𝑡 ,X𝑡 ,Y𝑡 ) as follows:

𝝁𝑐𝑡 = 𝑘RW (Ŝ𝑐𝑡 ,X)
[
𝑘RW (X𝑡 ,X𝑡 ) + 𝜎2I

]−1 Y𝑡 (13)

Σ𝑐
𝑡 = 𝑘RW (Ŝ𝑐𝑡 , Ŝ𝑐𝑡 ) − 𝑘RW (Ŝ𝑐𝑡 ,X𝑡 )

[
𝑘RW (X𝑡 ,X𝑡 ) + 𝜎2I

]−1
𝑘RW (X𝑡 , Ŝ𝑐𝑡 ) .

(14)

With this Random Walk Gaussian Process, the estimated pos-

terior covariance (i.e., Eq. 14) naturally reflects the system uncer-

tainty [15, 34, 47] from a dynamic and topological view. The un-

certainty awareness is crucial for the agent to explore the action

space [36], and we sample the placement decision A𝑐𝑡 from the

posterior distribution:

A𝑐𝑡 ∼ N(𝝁𝑐𝑡 ,Σ𝑐𝑡 ) .
In this way, the action with a higher uncertainty can be effec-

tively explored with the RWGP, while the action with a higher

predictive value is well exploited. Furthermore, the job-specific

cluster topological structure can be integrated into the learning

process, which encourages the random walker to select the ma-

chines with similar performances regarding each job. So far we

have obtained the ordering and placement action decisions, and the

scheduler can allocate according resources for each job.

4.3 Optimizing via MAPPO
In the previous sections, we have presented the dual-agent structure.

In this section, we introduce the centralized critic network and the

MAPPO [77] algorithm we use to optimize the networks.

The architecture of the centralized critic network is designed as

a simple multi-layer perception (MLP), taking the observations and

actions as inputs to estimate the Q-value as follows:

𝑄𝜙 (O
𝑗
𝑡 ,O

𝑐
𝑡 , 𝒂

𝑗
𝑡 ,A

𝑐
𝑡 ) = MLP

( [
O𝑗
𝑡 ⊕ O𝑐𝑡 ⊕ 𝒂 𝑗𝑡 ⊕ A𝑐𝑡

] )
, (15)

where 𝜙 is the model parameter of the critic network, and ⊕ de-

notes the concatenation operation. The centralized critic network

can motivate the dual-agent to learn cooperation by perceiving a

more comprehensive landscape. It can be optimized with Temporal-

Difference Error (TD Error) [46] as follows (for brevity, we use 𝜋𝜃
to denote the joint ordering policy 𝜋𝜃 𝑗 and placement policy 𝜋𝜃𝑐

in the followings, where 𝜃 𝑗 and 𝜃𝑐 are the policies parameters):

L𝑇𝐷𝑡 =

(
𝑄𝜙 (O

𝑗
𝑡 ,O

𝑐
𝑡 , 𝒂

𝑗
𝑡 ,A

𝑐
𝑡 ) − 𝑦𝑡 )

)
2

(16)

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄𝜙𝑜𝑙𝑑
(
O𝑗

𝑡+1,O
𝑐
𝑡+1, 𝜋𝜃𝑜𝑙𝑑 (O

𝑗

𝑡+1,O
𝑐
𝑡+1)

)
,

where 𝑄𝜙 and 𝑄𝜙𝑜𝑙𝑑 denote the critic and target critic networks,

𝜋𝜃𝑜𝑙𝑑 is the target agent policy, 𝜃 is the model parameter of the

dual-agent, and 𝛾 is the reward discount factor. The parameters

𝜃𝑜𝑙𝑑 and 𝜙𝑜𝑙𝑑 of target networks are copied from 𝜃 and 𝜙 every 𝑧

timesteps, respectively.

The objective function of the dual-agent comprises policy gradi-

ent and entropy loss, which can be specified as follows:

L𝐴𝑐𝑡𝑜𝑟 = −
(
L𝑃𝐺 + 𝜆𝐻 (𝜋𝜃 )

)
(17)

L𝑃𝐺 = E𝑡
[
min

(
ratio, clip(ratio, 1 − 𝜖, 1 + 𝜖)

)
𝐵𝑡

]
ratio = E𝑡

[
exp

(
log(𝜋𝜃 ) − log(𝜋𝜃𝑜𝑙𝑑 )

) ]
, (18)

where 𝐻 denotes the entropy of the given policy distribution, 𝜆 is

the weight of entropy loss, 𝜖 controls the bound of the difference

between policy 𝜋𝜃 and target policy 𝜋𝜃𝑜𝑙𝑑 , and 𝐵𝑡 is the Generalized

Advantage Estimation [48] thatmeasures the advantage of taking an

action, which can be derived by the Q-value (in Eq. 15). For the term

of log-probability of policy distributions in Eq. 18, since the prior

distributions of ordering and placement actions are identical, i.e.,
following Gaussian distribution, we only present the log-probability

of 𝜋𝜃 𝑗 as an explanation, which can be derived by substituting the

mean 𝝁 𝑗 , covariance Σ𝑗 (in Eq. 8) and action 𝒂 𝑗 (in Eq. 7) into the

following equation:

log(𝜋𝜃 𝑗 ) = −1
2

[
(𝒂 𝑗 − 𝝁 𝑗 )2 + 𝑁 log(2𝜋)

]
− log( |Σ𝑗 |) .

By minimizing the TD Error (Eq. 16) and actor loss (Eq. 17), the

critic network is optimized to accurately estimate the Q-value, and

the agents try to maximize the final return, i.e., cumulated reward.

The complete learning process of DAS is detailed in Appendix C.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Simulation environment. In order to efficiently evaluate the

performances of baselines and our model, we adopt a modified

GPU cluster scheduling simulator that has been used in many DDL

scheduling research work [20, 27, 76]. It continuously receives and

schedules DDL jobs submitted by users, and then reports the JCT

and duration of each job. The training fee can be obtained from job

duration and resource requirements as introduced in Section 3.

5.1.2 Dataset. The DDL jobs in our experiments are from Alibaba

Cluster Trace [63], which is recorded in a real-world production

GPU cluster over a two-month period. In this dataset, each entry

contains the basic information of a DDL job, i.e., the number of

running instances, submission time, job duration, required GPU,
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Figure 4: Statistical information of our DDL job dataset.

CPU, and memory. In the pre-processing stage, we sort all the jobs

according to the increasing order of their submission time, and then

prune the jobs that are too large to fit into the clusters. We select

the first 20,000 jobs, and split them into training and test sets with

a ratio of 8 : 2. We present their statistical information in Figure 4.

From Figure 4(a), we can see that the majority of jobs need a small

number of GPUs, while a certain proportion of jobs are big-model

and require more than 32 GPUs. Besides, we show the distribution

of the number of submitted jobs by the day hours in Figure 4(b).

5.1.3 Experiment setting. To evaluate the performance of ourmodel

on clusters with different scales, we initialize three clusters with

various numbers of machines, where eachmachine is equipped with

the same amount of V100 GPU, CPU, and memory. Specifically, the

Small cluster has 8 machines with 64 GPUs; theMedium cluster has

16 machines with 128 GPUs; the Large cluster has 32 machines with

256 GPUs. For the parameters in our model, the number of hidden

units 𝑒 is set as 64. According to the price provided by Alibaba

Cloud
4
in August 2022, the monetary cost 𝑝 of using a V100 GPU

per hour is 2.84 dollars. The complete hyper-parameter settings of

our model are summarized in Appendix D.

5.1.4 Evaluation metrics. We adopt the average JCT and training

fee of jobs in the test dataset as metrics to evaluate the performances

of different models, which can be specified as follows:

𝐽𝐶𝑇 =

| J |∑︁
𝑖=0

𝑟
𝑗𝑐𝑡
𝑖

|J | , 𝐹𝑒𝑒 =

| J |∑︁
𝑖=0

𝑟
𝑓 𝑒𝑒

𝑖

|J | ,

where J is the test job set, and the definitions of 𝑟
𝑗𝑐𝑡
𝑖

and 𝑟
𝑓 𝑒𝑒

𝑖
can

be found in Section 3. Please note that the lower these metrics are,

the performance is better.

5.1.5 Baselines. We compare our model with baselines from three

categories, namely (1) heuristic-based schedulers, (2) meta-heuristic-

based schedulers, and (3) RL-based schedulers, including:

• FIFO-FirstFit first schedules the earliest come job [12] and

places it on the available machine first retrieved [7].

• FIFO-LoadBalance first schedules the earliest come job and

places it on the machine with the least workload [58].

• DRF-FirstFit first schedules the job with the minimum dom-

inant resource share [23] and places it on the available machine

first retrieved.

• DRF-LoadBalance first schedules the job with the minimum

4
https://www.alibabacloud.com/en/product/gpu/pricing

dominant resource share and places it on the machine with the

least workload.

• Tetris [24] computes the dot product of normalized required

resources of jobs and available resources of machines tomake sched-

uling decisions.

•MALO [1] uses a hybrid ant-lion optimization algorithm based

on an elite differential evolutionary algorithm to search for an opti-

mal multi-objective job scheduling policy.

•MOSA [51] uses a two-step evolutionary approach to search

for the optimal ordering and placement strategy.

• DL2 [43] combines offline supervised learning and online RL

for faster convergence and better ordering decisions.
• RIFLING [13] groups job states with 𝑘-means to obtain robust

job representation and reduce state space, and then uses RL to make

placement decisions for jobs.
More details about baselines can be found in related work. For fair

comparisons, we use the same features for all the RL-based base-

lines (heuristic- and meta-heuristic-based methods can only use

partial features due to the limitations of their rules), and make slight

modifications for them to fit our scenario. For example, RIFLING

only adopts the job states to make decisions, while we complement

it by concatenating with the cluster states. To reproduce the results

of the baselines, we report their parameter settings in Appendix D.

5.2 Performance Comparison
We present the JCT and Fee of all baselines and our method on

Small, Medium, and Large cluster settings in Table 1.

Among all these baselines, the heuristic-based schedulers per-

form the worst, as they use hand-crafted heuristic rules, which

cannot adapt to dynamic workloads well. Meta-heuristic-based

schedulers perform better, as they explore the solution space by

injecting randomness. However, these exploration strategies make

them much less efficient (about 50-x slower than DAS in our exper-

iments), and inapplicable in real-world production clusters. The

RL-based models can be optimized to dynamically adapt to the

cluster environments and time-variant job workloads during the

learning process. And RIFLING achieves the lowest Fee as it fo-

cuses on finding the best placement decision, which can reduce the

job duration. However, its JCT is slightly larger than DL
2
which

focuses on deciding the best ordering decision and has a lower time

cost of waiting in the pending list. Please note that the JCT and

Fee have been proven to be non-cooperative and expose a hard-

tradeoff [79] (see Appendix A), which means that they may not

decrease at the same time as they are correlated but distinguishing

objectives, i.e., JCT optimizes all the jobs fairly, while Fee tends to

optimize the high-value jobs with more GPUs and longer duration.

As a comparison, our DASmodel outperforms all the competitors

in all cases. We can observe that the improvement of JCT decreases

as the cluster scale becomes larger. This is because for the same job

workload, the Large cluster has relatively enough resources and

hence the different scheduling decisions have less impact on the

metric. It implies that our approach is especially contributable to the

cluster with a heavy workload. We further conduct an experiment

for the same cluster but with different workloads in Appendix E.

Moreover, despite the non-cooperative and hard-tradeoff natures of

JCT and Fee, our method outperforms the baselines on both metrics
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Table 1: Performance comparisons with baselines and ablation study for four variants of our method. The JCT is in minutes
and Fee is in dollars. The best and second best are in bold and underline, respectively. Please note that the metrics are presented
at job level, and even marginal improvements can lead to significant benefits regarding all the clusters running on the cloud.

Algorithms

Small Medium Large Average

JCT Fee JCT Fee JCT Fee JCT Fee

Heuristic-based

FIFO-FirstFit 720.228 51.685 171.282 51.684 110.316 51.219 333.942 51.529

FIFO-Load Balance 715.776 51.559 162.102 50.900 112.290 51.112 330.054 51.189

DRF-FirstFit 862.242 52.055 164.778 51.354 109.098 52.325 378.708 51.911

DRF-Load Balance 852.984 51.798 173.106 51.908 113.556 51.924 379.884 51.877

Tetris 813.480 51.668 176.688 52.567 113.364 53.109 367.842 52.448

Meta-heuristic-based

MALO 708.858 51.675 182.862 51.129 111.660 51.233 334.458 51.346

MOSA 759.222 51.783 173.400 51.998 109.422 51.933 347.346 51.905

RL-based

DL
2

721.083 51.166 160.100 50.970 110.215 51.080 330.468 51.072

RIFLING 717.576 51.160 176.676 50.980 109.872 51.039 334.708 51.060

Ours

DA 697.732 51.106 173.354 51.097 108.821 51.025 326.636 51.076

DA+MC 680.861 50.952 163.456 50.941 109.854 50.701 318.057 50.865

DA+RWGP 686.894 51.029 157.071 50.856 107.896 50.439 317.287 50.684

DA+MC+RWGP (DAS) 638.046 50.484 155.003 50.019 108.700 50.354 300.584 50.286

in all cases, which further shows the effectiveness of the designed

reward function (i.e., Eq. 3) and the overall learning framework.

Although it seems the improvement of Fee is not significant

compared with the best baseline RIFLING, which achieves the low-

est Fee and competitive JCT among all baselines, it still will save

more than ten thousand dollars for users per day as over 17 thou-

sand jobs are submitted to a production cluster in Alibaba Cloud

every day [63]. Please note that this saving is only for a single clus-

ter and the aggregate savings will be significant regarding all the

clusters running in Alibaba Cloud. The optimized JCT also allows

service providers to reduce power costs and complete more jobs in

the same time. Cheap and fast computing services will also attract

more users and improve potential income.We conduct theWilcoxon

signed-rank test [69] on the JCT and Fee metrics of our method and

RIFLING on the three cluster environments, and the p-values of

JCT and Fee metrics are less than 0.05 and 0.10 respectively, which

also proves that the improvements are statistically significant (the

detailed results and analysis can be referred in Appendix G).

5.3 Ablation Study
To examine the effects of different modules, four variants of our

method are compared, including: (1) DA denotes only using the

dual-agent formulation (introduced in Section 3) and MAPPO as

the training framework; (2) DA+MC denotes additionally using

the message communication mechanism (in Section 4.1) for the

ordering agent based on DA; (3) DA+RWGP denotes additionally

using the Random Walk Gaussian Process (in Section 4.2) for the

placement agent based on DA; (4) DA+MC+RWGP denotes our

complete model, i.e., DAS.
From the bottom four rows in Table 1, we can see that DA can

achieve better JCT and competitive Fee compared with RL-based

baselines, but the improvement is minor as it is just a simple com-

bination of the two agents. With the squeeze-and-communicate

mechanism, DA+MC performs better than DA, which proves that

the communication can improve cooperation between agents and

help them collaboratively make better decisions. By incorporating

the RWGP, it can also lead to improvements on both metrics. It

shows that the RWGP can well model the topological performance

similarities and uncertain performance fluctuation, which are nec-

essary for well scheduling DDL jobs. The DA+MC+RWGP, i.e., our
complete DAS model, combines the message communication and

RWGP, and achieves the best performances among all variants on

average, which further proves the effectiveness of each module.

5.4 Performance Tuning
In this part, we examine the robustness of our model. Specifically,

we analyze the model performances influenced by two important

parameters in the ordering and placement agents respectively, i.e.,
the number of attention head ℎ (in Eq. 6) and the length of his-

torical data 𝜏 (in Eq. 9 and 10) in RWGP. We average the JCT and

Fee metrics on the three cluster environments by varying the two

parameters and present the results in Figure 5. For simplicity, we

only incorporate RIFLING, which achieves the lowest Fee and com-

petitive JCT among all baselines from Table 1, as a comparison.

In the ordering agent, the ℎ attention heads learn the position-

aware and pair-wise attention from different weight space views.

We varyℎ in the set of {1, 2, 4, 8}. It can be observed from Figure 5(a)

and 5(b) that our model is consistently better than RIFLING at the

four choices, and achieves the best Fee when ℎ = 4. However, the

JCT and Fee show opposite trends. Recall that fairly scheduling all

jobs can obtain a lower average JCT while prioritizing large and

long-duration jobs (i.e., high-value jobs) can result in an optimized

Fee. It indicates that a proper number of attention heads (i.e., ℎ = 4)

in the job ordering phase can help distinguish jobs with different

characteristics and first schedule high-value jobs, but will introduce

more noise when optimizing JCT as it treats jobs equally.

In the placement agent, the RWGP derives the posterior distribu-

tion of placement actions based on the 𝜏-length of historical cluster

states and actions. We vary 𝜏 in the set of {4, 6, 8, 10}. As we can see

from Figure 5(c) and 5(d), the JCT and Fee of our model consistently
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Figure 5: Performance tuning by varyingℎ and 𝜏 . Ourmethod
consistently outperforms RIFLING on both metrics.

outperform RIFLING, and reach their lowest point when 𝜏 = 8. It

indicates that a small 𝜏 cannot provide adequate historical knowl-

edge, while a larger 𝜏 may introduce stale and noisy information

when making placement decisions.

5.5 Case Study
When utilizing the strong decision-making ability of RL, the poor

explainability of its black-box policy limits its credibility. In this

section, we provide qualitative case studies based on experiments

conducted on the Small cluster (8 machines, each equipped with 8

GPUs) to add the credibility and feasibility of our method in the real

world and also provide enlightenment to the experts and benefit

future decision-making.

First, we visualize the cluster state and heatmap of the ordering
action in Figure 6(a). From the heatmap, we can see that job 𝑗2 (in

red) has a significantly higher probability (i.e., 0.69) of being sched-

uled first. By inspecting into the profile of 𝑗1, we find that it needs

8 instances and each requires 7 GPUs, which cannot be satisfied

by the available resources of the current cluster. It implies that the

communication mechanism is able to convey the cluster state to

the ordering agent, so as to make proper ordering decisions.

Furthermore, Figure 6(b) demonstrates the cluster state and

heatmap of placement action for job 𝑗5 (in purple). It can be ob-

served that 𝑗5 prefers to be placed on machine𝑚1,𝑚2,𝑚3,𝑚4 and

𝑚6, which have similar workload, i.e., only running job 𝑗3 (in green).
𝑚5 has the smallest affinity score as there might be resource con-

tention to place 𝑗5 with 𝑗4 (in blue) on𝑚5, and the workloads and

performances of placed machines could be imbalanced a lot. This

example shows that the RWGP is able to detect the performance

similarities of machines and the potential resource contention.

In addition, we present a case of four-step scheduling process

in Figure 6(c) to illustrate the superiority of our model over the

baselines. In which, two jobs are running on machines 3 and 7

at 𝑡𝑖 respectively, and the job 𝑗6 (in grey) on machine 7 is more

CPU-intensive than the job 𝑗7 (in yellow) on machine 3. At 𝑡𝑖+1, our
model schedules the new job 𝑗8 (in pink) with smaller CPU require-

ments on machines 4-7, freeing up machines 0-3 for the upcoming

Machine 0 Machine 1 Machine 2 Machine 3

Machine 7Machine 6Machine 5Machine 4

(a) Job ordering decision.

Machine 0 Machine 1 Machine 2 Machine 3

Machine 4 Machine 5 Machine 6 Machine 7

(b) Job placement decision.

Machine 0 Machine 1 Machine 2 Machine 3

Machine 4 Machine 5 Machine 6 Machine 7

Machine 0 Machine 1 Machine 2 Machine 3

Machine 4 Machine 5 Machine 6 Machine 7

Machine 0 Machine 1 Machine 2 Machine 3

Machine 4 Machine 5 Machine 6 Machine 7

Machine 0 Machine 1 Machine 2 Machine 3

Machine 4 Machine 5 Machine 6 Machine 7

(c) Job scheduling decisions in four steps.

Figure 6: Case study on the Small cluster to show the effec-
tiveness of the ordering and placement policies of our model.

CPU-intensive job 𝑗9 (in brown) at 𝑡𝑖+2. However, the FirstFit- and
LoadBalance-based methods will schedule job 𝑗8 on machines 0-3

or 0-2 and 4 as they are first retrieved or with the least workload,

which makes it infeasible to schedule and place job 𝑗9. It is also hard

for the other methods to make optimal scheduling decisions as they

ignore to explicitly model the machine performance similarities and

potential resource contention from future arrived and co-located

jobs, which can be effectively tackled by our DAS model.

6 CONCLUSION
In this paper, we propose a dual-agent scheduler for DDL jobs to

optimize the JCT and training fee. First, we abstract the ordering and

placement sub-tasks as a dual-agent structure, and formulate the

scheduling process as Dec-MDP. For the ordering agent, we enhance

it with a scalable squeeze-and-communicate mechanism for better

collaboration with the placement agent. A Transformer encoder is

employed to model the arrival order and pair-wise correlations of

pending jobs. For the placement agent, we propose a novel Random

Walk Gaussian Process to learn the performance similarities and

uncertain performance fluctuation of machines. Finally, the dual-

agent and centralized critic network are jointly optimized with

the MAPPO algorithm. Extensive experiments on the real-world

production cluster trace demonstrate the effectiveness of our DAS

model compared with nine baselines. In the future, we will explore

to generalize our model to other scheduling and pricing scenarios.
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APPENDIX
A ANALYSIS OF JCT AND TRAINING FEE
The JCT and training fee are non-cooperative metrics and expose

a hard tradeoff [79]. In this part, we will give a non-formal proof.

Let us consider two extreme and opposite scheduling methods,

which are also used in production clusters as naive scheduling

policies [14, 28, 78]. (1) Lazy. Each job in the pending list should

wait to be scheduled until all the jobs running in the cluster finish.

This scheduling rule will provide the utmost free resources and

the slightest resource contention for each job, which can bring the

lowest job duration and thus is Fee-efficient, but the JCT is almost

the worst as the waiting time of each job is the summation of job

duration of all previous running jobs. (2) Eager. The job will be

scheduled whenever there are enough resources in the cluster. The

eager approach, on the other hand, is JCT-efficient since it mini-

mizes the waiting time in the pending list, but introduces a much

higher Fee as the resource contention and communication cost are

heavy. Aside from the above discussion, the non-cooperative and

hard tradeoff natures can also be demonstrated in Table 1, where

baselines can hardly achieve good performances on both metrics,

while our model outperforms them on both JCT and Fee, which

further shows the effectiveness of the designed reward function (i.e.,
Eq. 3) and the overall learning framework. Please note that in this

paper, we do not focus on the mutual relation and ideal balance of

the two metrics, which can be explored with Pareto Optimality [37]

and will be regarded as our future work. It is also worth noting that

it is more proper to formulate the scheduling problem as Decentral-

ized Partially Observable Markov Decision Process [6], but we use

the Dec-MDP formulation for simplicity and clarity.

B PROOF OF PROPOSITIONS
B.1 Proof of Proposition 1

Proposition 1. Since Matern52 kernel 𝑘Matern is symmetric and
positive semi-definite (PSD) [22], the new kernel 𝑘RW that wraps it
with random walk kernel is also symmetric and positive semi-definite.

Proof. To prove that 𝑘RW is PSD, it is enough to prove the

eigenvalues 𝜉𝑖 of Pℓ× are non-negative. Let 𝑣𝑖 be the eigenvector of

P× associated with eigenvalue 𝛿𝑖 , then

Pℓ×𝑣𝑖 =Pℓ−1× (P×𝑣𝑖 ) = Pℓ−1× (𝛿𝑖𝑣𝑖 ) = 𝛿𝑖Pℓ−2× (P×𝑣𝑖 )
= 𝛿2𝑖 Pℓ−3× 𝑣𝑖 = · · · = 𝛿ℓ−1𝑖 P×𝑣𝑖 = 𝛿ℓ𝑖 𝑣𝑖 .

Since P× is PSD and its eigenvalues 𝛿𝑖 ≥ 0 for all 𝑖 , the eigenvalues

𝜉𝑖 = 𝛿ℓ
𝑖
≥ 0, and Pℓ× is proved to be PSD. Besides, as the power

of a symmetric matrix is also symmetric, it is obvious that Pℓ× is

symmetric. □

B.2 Proof of Proposition 2
Proposition 2. The stacked random walk kernel 𝑘RW ( i.e., Eq. 12)

is diagonalizable and can be transformed to the exponential series [21,
31] as 𝑘RW (𝐺1,𝐺2) = exp(𝛽P×), where 𝛽 is a positive parameter.

Proof. From Proposition 1, P× is symmetric and PSD, thus

can be diagonalized as P× = T−1DT. The power of the matrix

can be easily calculated as Pℓ× = (T−1DT)ℓ = T−1DℓT. Since

the exponential of a square matrix H can be defined as 𝑒𝛽H =

lim𝑛→∞
∑𝑛
𝑖=0
(𝛽H)𝑖
𝑖!

, thus 𝑒𝛽P× = T−1𝑒𝛽DT, where 𝑒𝛽P×
is calcu-

lated component-wise. □

C LEARNING ALGORITHM
We present the overall scheduling and learning process of our DAS

model in Algorithm 1.

Algorithm 1 The learning process for the DAS model.

Initialize: Ordering and placement agents with model parameters

𝜃 = {𝜃 𝑗 , 𝜃𝑐 }, the target agent networks 𝜃 𝑗
𝑜𝑙𝑑

= 𝜃 𝑗 and 𝜃𝑐
𝑜𝑙𝑑

= 𝜃𝑐 ,

critic network 𝜙 , target critic network 𝜙𝑜𝑙𝑑 = 𝜙 ; empty pending

list and GPU cluster, timestep 𝑡 = 0;

1: while Submitted jobs not finished do
2: Obtain job and cluster observations O𝑗

𝑡 and O𝑐𝑡 ;
3: Obtain the posterior distributions of ordering and place-

ment actions as Eq 8, 13 and 14:

4: 𝝁 𝑗 ,Σ𝑗 , 𝝁𝑐 ,Σ𝑐 = 𝜋𝜃 (O𝑗 ,O𝑐 )
5: Sample ordering and placement actions:

6: 𝒂 𝑗 ∼ N(𝝁 𝑗 ,Σ𝑗 ), A𝑐 ∼ N(𝝁𝑐 ,Σ𝑐 )
7: Schedule jobs according to the action decisions. Record 𝑟

𝑗𝑐𝑡
𝑡

and 𝑟
𝑓 𝑒𝑒
𝑡 of finished jobs, and compute 𝑟𝑡 by Eq. 3;

8: Update the centralized critic network:

9: Minimize the loss L𝑇𝐷𝑡 computed by Eq. 16

10: Update the ordering and placement agents:

11: Minimize the loss L𝐴𝑐𝑡𝑜𝑟 computed by Eq. 17

12: if 𝑡 % 𝑧 == 0 then
13: Update target critic and agent networks:

14: 𝜃
𝑗

𝑜𝑙𝑑
← 𝜃 𝑗 , 𝜃𝑐

𝑜𝑙𝑑
← 𝜃𝑐 , 𝜙𝑜𝑙𝑑 ← 𝜙

15: end if
16: 𝑡 ← 𝑡 + 1
17: end while

D ADDITIONAL PARAMETER SETTINGS
To reproduce the results of all the comparison methods, we report

their parameter settings in this part.

For the baselines, all the models have some parameters to be

tuned except for the heuristic-based methods. Note that the RL-

basedmethods employ PPO [49], the single-agent version ofMAPPO,

as the RL framework. We report their parameter settings used

throughout the experiments in Table 2.

For our DAS model, apart from the parameters introduced in

Section 5.1.3, we report the other hyper-parameters in the follow-

ings. The reward discount factor 𝛾 and weight of entropy loss 𝜆 are

0.98 and 0.03, respectively. In each episode, we randomly select a

segment containing 1000 jobs, and the episode ends when all these

jobs finish. The network is trained using Adam optimizer [33] with

learning rate tuned in {0.0001, 0.00005, 0.00001, 0.000005, 0.000001}.
For the number of pending jobs 𝑁 , if more than 𝑁 jobs exist in the

pending list, we would sample 𝑁 jobs, and pad the pending jobs

with dummy jobs when there are less than 𝑁 jobs in the pending

list. The 𝛼 in Eq. 3 is 0.1, the copy interval 𝑧 of target networks is 2,

and the bound 𝜖 between the policy and the target policy is 0.2.
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(a) JCT of the Small cluster.

Low Normal High
49.50

49.75

50.00

50.25

50.50

50.75

51.00

51.25

51.50

Fe
e

0.00

0.20

0.40

0.60

0.80

1.00

Im
pr

ov
em

en
t

DAS
RIFLING
Improvement

(b) Fee of the Small cluster.
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(c) JCT of the Medium cluster.
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(d) Fee of the Medium cluster.
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(e) JCT of the Large cluster.
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(f) Fee of the Large cluster.

Figure 7: The performance comparisons by varying the work-
load, i.e., the job arrival rate.

Table 2: Parameter settings of baselines.

Models Settings

MALO

initial temperature T=400,

cooling ratio P=0.99,

number of iterations I=50

MOSA

number of iterations I=100,

number of solutions S=50

DL
2

hidden_size=64,

entropy_loss_weight=0.03,

clip_ratio=0.2,

𝛾=0.98,

learning_rate=0.000001,

Adam optimizer

RIFLING

num_clusters=

√︃
𝑁
2
,

hidden_size=64,

entropy_loss_weight=0.03,

clip_ratio=0.2,

𝛾=0.98,

learning_rate=0.000001,

Adam optimizer

E PERFORMANCE COMPARISON FOR
DIFFERENTWORKLOADS

From Table 1, we can see that for the same workload, the improve-

ment on JCT decreases as the cluster size becomes larger. It is

mainly because regarding the same workload, the Large cluster has

relatively enough resources, and hence different actions have less

impact on the metrics. In this part, we aim to explore the perfor-

mances of our DAS model and RIFLING regarding the same cluster

but with different levels of workloads. Specifically, we set three

levels of workloads, i.e., Low, Normal and High, which stand for the

2-x slower, the original speed, and 2-x faster of the job arrival rate,

and present the JCT, Fee, and relative improvements in Figure 7.

As depicted, the JCT and Fee of DAS outperform RIFLING in most

cases. The improvement of JCT increases as the workload becomes

heavy, while Fee is improved the most for the Normal setting and

is still better than RIFLING on the other settings. This experiment

shows that our model can improve JCT a lot especially for the heavy

workload. For the Fee, its improvement declines when the workload

is heavy, which is most likely due to the high resource contention

under heavy workload and the hard tradeoff of the metrics, but it

still outperforms RIFLING on all workload settings.

F DISCUSSION OF SCHEDULER OVERHEAD
We investigate the inference speed of job ordering and placement

decision-making by our model on an Ubuntu 16.04 server with 4

cores CPU, 32G memory, and an NVIDIA GTX 1080Ti GPU. The

average inference time per job on the three cluster settings, i.e.,
Small, Medium and Large, are 0.0132, 0.0138 and 0.0156 seconds,

which is much less than the average JCT reported in Table 1 (more

than 300 minutes) and can be ignored in the scheduling process.

We believe that this finding supports the feasibility of using our

proposed scheduling algorithm in practical scenarios. We would

also like to highlight that additional speedup techniques can be

applied to further reduce the scheduler overhead, e.g., , data paral-
lelism [29], or replacing the Gaussian Process in the RWGP with

the sparse Gaussian Process [10]. Regarding the training overhead,

since we trained our model on the simulator as other work, the

time cost is also acceptable. With the sim-to-real algorithms [80],

the trained policy can be adapted to the real scenario with a few

fine-tuning overheads.

G EXTENDED PERFORMANCE COMPARISON

Table 3: The p-values ofWilcoxon signed-rank test conducted
on the JCT and Fee metrics for our DAS model and RIFLING.

Small Medium Large

JCT Fee JCT Fee JCT Fee

0.0002 0.0588 0.0006 0.0570 0.04911 0.0792

Considering that the JCT and Fee metrics do not follow Normal

distributions as most jobs are short-duration jobs and need no more

than 4 GPUs (see Figure 4(a)), and a small proportion of jobs are

large and long-running jobs, we adopt the Wilcoxon signed-rank

test [69], a non-parametric significant test algorithm that has no

assumption on the data distribution, to conduct the significant test.

The results are shown in Table 3. We can see that the p-values

of JCT and Fee metrics are less than 0.05 and 0.10 respectively,

which further demonstrates that the improvements of our model

are statistically significant.
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