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Abstract
Communication is a critical factor for the big multi-agent world to stay organized and 
productive. Recently, Deep Reinforcement Learning (DRL) has been adopted to learn the 
communication among multiple intelligent agents. However, in terms of the DRL setting, 
the increasing number of communication messages introduces two problems: (1) there are 
usually some redundant messages; (2) even in the case that all messages are necessary, how 
to process a large number of messages in an efficient way remains a big challenge. In this 
paper, we propose a DRL method named Double Attentional Actor-Critic Message Proces-
sor (DAACMP) to jointly address these two problems. Specifically, DAACMP adopts two 
attention mechanisms. The first one is embedded in the actor part, such that it can select 
the important messages from all communication messages adaptively. The other one is 
embedded in the critic part so that all important messages can be processed efficiently. We 
evaluate DAACMP on three multi-agent tasks with seven different settings. Results show 
that DAACMP not only outperforms several state-of-the-art methods but also achieves bet-
ter scalability in all tasks. Furthermore, we conduct experiments to reveal some insights 
about the proposed attention mechanisms and the learned policies.
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1  Introduction

Communication is an essential human intelligence, and it is a crucial factor for the big 
multi-human world to stay organized and productive. The same as human society, commu-
nication is also vital for multi-agent systems because individual agent usually has limited 
capability in such systems. Communication makes sure that the agents can perceive more 
information, and thus work in a more collaborative way.

For decades, researchers have made continuous attempts to apply Reinforcement Learn-
ing (RL) [1] to learn the communication between multiple agents. However, traditional 
studies target at solving simple matrix games, and they usually either predefine the com-
munication message [2–4] or optimize the communication message for a predefined policy 
[5, 6]. It is hard to apply these methods to model-free environments.

Recently, combining Deep Neural Network (DNN) with Reinforcement Learning, Deep 
Reinforcement Learning (DRL) has been successfully applied to learn multi-agent com-
munication from scratch without referring to any model information. The pioneer studies 
include but are not limited to the CommNet [7], DIAL [8], BiCNet [9], ACCNet [10], and 
Master–Slave [11].

Traditionally, it is believed that more communication messages are more conducive to 
agent cooperation. Nevertheless, in terms of the DRL setting, the increasing number of 
communication messages introduces two problems: (1) there are usually some redundant 
messages as pointed out by many researches [12–16]; (2) even in the case that all messages 
are necessary, how to process the large number of messages in an efficient way remains 
a big challenge. Previous DRL methods can hardly handle a large number of messages 
because they have no special designs to equip them with the ability to address these two 
problems.

In this paper, we try to address the above problems using one DRL method. Specifically, 
we take two steps to achieve this goal.

First, we propose a basic model named as Actor-Critic Message Processor (ACMP).1 
It applies one communication channel both in the actor part and in the critic part, respec-
tively. Because two channels ensure enough message exchange, ACMP has great potential 
to generate a good control policy.

Second, in order to process a large number of messages in a more effective way, we 
further extend ACMP with two specially designed attention mechanisms to form a more 
powerful model named as Double Attentional Actor-Critic Message Processor (DAACMP). 
The first attention mechanism is embedded in the communication channel of the actor part 
(so we call it Actor Attention), such that it can select more important messages from all 
communication messages adaptively (i.e., select important messages and filter out redun-
dant messages from all communication messages). The other one is embedded in the com-
munication channel of the critic part (so we call it Critic Attention2), so that all important 
messages can be processed efficiently. Therefore, the two problems mentioned above can 
be addressed by these two attention mechanisms, respectively.

Compared with previous methods, DAACMP adopts two attention mechanisms to 
jointly address the above two problems that hinder multi-agent communication. Thus, 
DAACMP has a better ability to deal with a large number of messages, and accordingly to 

1  It is a modification of our ACML [17] accepted by AAAI-2020.
2  It is the same as that of our ATT-MADDPG [18] accepted by AAMAS-2019.
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control an increasing number of agents (as shown by a lot of experiments). As we know, 
controlling more agents has long been an interest but also a big challenge for the multi-
agent community. The new approach to control more agents is the primary contribution 
of this paper. In contrast, previous methods only adopt one communication channel with 
at most one attention mechanism, so they can hardly control many agents. In addition, the 
basic ACMP, the Actor Attention and the combination of them are firstly proposed in this 
paper.

We evaluate DAACMP on three cooperative multi-agent control tasks with seven dif-
ferent settings. The baselines include three ablation models and five most relevant and 
best performing multi-agent control methods. The results demonstrate that (1) all methods 
adopting communication outperform independent policy learner, which supports that com-
munication has a positive effect; (2) the ablation model ACMP-AA outperforms ACMP, 
which supports that the Actor Attention has a positive effect; (3) the ablation model 
ACMP-CA outperforms ACMP, which supports that the Critic Attention has a positive 
effect; (4) DAACMP outperforms all other methods in all settings, which supports that 
combining the Actor Attention and the Critic Attention has a positive effect.

Moreover, we conduct experiments to reveal some insights about the proposed attention 
mechanisms. (1) The analyses on the Actor Attention show that the magnitude of the atten-
tion weights is positively correlated to the distance between two agents. This is consistent 
with our human cognition: the near-by agents usually have more influence on the current 
agent, so the communication messages are expected to be more important, and the current 
agent has learned to put more attention on the corresponding messages (as indicated by 
the larger attention weights). Therefore, it supports that the Actor Attention can attend to 
more important messages adaptively. (2) The analyses on the Critic Attention show that the 
Q-value function can group similar joint actions of teammates, instead of processing each 
action separately. Therefore, it supports that the Critic Attention can process a large num-
ber of messages in a more efficient way.

The rest of this paper is organized as follows. Section 2 introduces the background about 
RL and attention mechanism. Two aspects of related works are provided in Sect. 3, namely, 
the communication methods and the attention methods in RL community. Section 4 pre-
sents the proposed DAACMP in detail. Specifically, the basic ACMP, the Actor Attention, 
the Critic Attention and the summary of DAACMP are presented in Sects. 4.1–4.4, respec-
tively. Section  5 reports the experiments in detail. Concretely, the settings are shown in 
Sect. 5.1; the results on three tasks are reported in Sect. 5.2–5.4, respectively; the further 
analyses about the ablation models, the learned policy, the Actor Attention and the Critic 
Attention are conducted in Sects. 5.5–5.8, respectively. Finally, we give a short discussion 
about the proposed DAACMP in Sect. 6, and conclude this paper in Sect. 7. Please open 
the bookmark to see the overall structure of this paper.

2 � Background

2.1 � DEC‑POMDP

We consider a partially observable cooperative multi-agent setting that can be formulated 
as the Decentralized Partially Observable Markov Decision Process (DEC-POMDP) [19]. 
It is formally defined as a tuple ⟨N, S,�, T ,�,�,Z, �⟩ , where N is the number of agents; 
S is the set of state s; � = [A1,… ,AN] represents the set of joint action � , and Ai is the 
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set of local action ai that agent i can take; T(s�|s, �) ∶ S × � × S → [0, 1] represents the 
state transition function; � = [R1,… ,RN] ∶ S × � → ℝ

N is the joint reward function; 
� = [O1,… ,ON] is the set of joint observation � controlled by the observation function 
Z ∶ S × � → � ; � ∈ [0, 1] is the discount factor.

In a given state s, agent i can only observe an observation oi , and each agent takes an 
action ai based on its own observation oi , resulting in a new state s′ and a reward ri . The 
agents try to learn a policy �i(ai|oi) ∶ Oi × Ai → [0, 1] that can maximize �[G] where G is 
the discount return defined as G =

∑H

t=0
� trt , and H is the time horizon.

In practice, we map the observation history rather than the current observation to an 
action. Thus, oi represents the observation history of agent i in the rest of the paper. In our 
cooperative setting, ri = rj for different agents i and j. We also assume that the environment 
is joint fully observable [19], i.e., s ≜ � = ⟨oi, �−i⟩ where �−i is the joint observation history 
of the teammates of agent i. Note that this assumption is very common for DEC-POMDP, 
as the joint observation history can approximately represent the state of the system.

2.2 � Reinforcement learning

Reinforcement Learning (RL) [1] is generally adopted to solve special DEC-POMDP prob-
lems where N = 1 . It is a machine learning approach to solve sequential decision-making 
problems. In practice, we usually define the Q-value function as

then the optimal policy �∗ can be derived by �∗ = argmax� Q
�(s, a).

Deep Reinforcement Learning (DRL) methods adopt Deep Neural Network (DNN) to 
approximate the policy �(a|s;�) , the Q-value Q(s, a; w) and/or the environment T(s�|s, a;�) , 
where � , w and � are the parameters of the DNN.

Deep Q-network (DQN) [20] is the first DRL method that achieves human-level control 
of Atari games. It trains DNN Q(s, a; w) based on the Q-learning algorithm to approximate 
the true Q-value function Q�(s, a).

The actor-critic algorithm [21–23] is one of the most effective RL methods. Its 
schematic structure is shown in Fig.  1. As can be seen, there are two functions rein-
forcing each other: the correct actor (i.e., policy) �(a|s;�) gives high rewarding trajec-
tory (s, a, r, s�) , which updates critic Q(s, a; w) towards the right direction; the correct 
critic Q(s, a; w) picks out the good action for actor �(a|s;�) to reinforce. This mutual 

(1)Q�(s, a) = ��[G|S = s,A = a]

Fig. 1   The schematic structure 
of the actor-critic algorithm. The 
red dashed lines indicate that the 
critic is responsible for updating 
the actor and itself (Color figure 
online)
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reinforcement behavior helps actor-critic methods avoid bad local minima and converge 
faster, in particular for on-policy methods that follow the very recent policy to sample 
trajectory during training [9]. Thus, we implement the proposed ACMP and DAACMP 
based on actor-critic algorithm.

Deterministic Policy Gradient (DPG) [24] is a special actor-critic algorithm where 
the actor adopts a deterministic policy �� ∶ S → A and the action space A is continuous. 
Deep DPG (DDPG) [25] applies DNN ��(s) and Q(s, a; w) to approximate the actor and 
the critic, respectively. DDPG is an off-policy method. It adopts the target network and 
experience replay to stabilize training and to improve data efficiency. Specifically, the 
critic’s parameters w and the actor’s parameters � are updated based on the following 
equations:

where D is the replay buffer containing recent experience tuples (s, a, r, s�) ; Q(s, a;w−) and 
��− (s) are the target networks whose parameters w− and �− are periodically updated by 
copying w and � . To train the proposed ACMP and DAACMP, we extend the above single-
agent equations to multi-agent settings, and the details will be introduced in Sect. 4.

2.3 � Attention mechanism

When human beings see a big picture, she usually attends to the most attractive part 
at first glance. The attention mechanism is a mimic of such ability. It is firstly used for 
image classification [26] and neural machine translation [27]. Afterward, the attention 
mechanism has been widely adopted in many AI communities.

The Soft Attention [28] (sometimes referred as Global Attention [29]) is the most pop-
ular one as shown in Fig. 2. The inputs are several source vectors [S1, S2,… , Sk,… , SK] 
and a target vector T. The model can adaptively attend to more important Sk , where the 
importance score is measured by a user-defined function f (T , Sk) . The important infor-
mation contained in Sk can be encoded into a contextual vector C adaptively according 
to the normalized importance score Wk as follows:

(2)� = r + �Q(s�, a�;w−)|a�=��− (s
�) − Q(s, a;w)

(3)L(w) = �(s,a,r,s�)∼D[�
2]

(4)∇�J(�) = �s∼D[∇���(s) ∗ ∇aQ(s, a;w)|a=�� (s)
]

Fig. 2   The schematic structure 
of Soft Attention (sometimes 
referred as Global Attention)

contextual vector

a�en�on weight vector

… …
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Please note that the attention weight vector W ≜ [W1,W2,… ,Wk,… ,WK] can also be 
seen as a probability distribution because 

∑K

k=1
Wk ≡ 1.

Recently, the authors of Google’s Transformer [30] give a formal definition of Atten-
tion, namely, a function that maps a query vector and a set of key-value vectors to an output 
vector, where the output vector is computed as a weighted summation of the value vectors, 
and the weight assigned to each value vector is computed by a compatibility function of 
the query vector with the corresponding key vector. Taking Eq. (5) as an example, T is the 
query vector, while Sk plays the role of both key and value vectors.

In our DAACMP, both the Actor Attention and the Critic Attention are a kind of Soft 
Attention: we regard the messages from all agents as the input of these attention mecha-
nisms; then the ability that attends to more important messages adaptively will be used in 
the Actor Attention, and the ability that generates a probability distribution adaptively will 
be applied in the Critic Attention. The details are presented in Sect. 4.

3 � Related work

3.1 � Communication model in RL community

How to learn communication protocols efficiently is vital for the success of multi-agent 
systems, and it has been widely studied in the RL community, e.g., the COMmunicative 
Multiagent Team Decision Problem (COM-MTDP) [31] and the DEC-POMDP with Com-
munication (DEC-POMDP-COM) [32]. However, traditional studies target at solving sim-
ple matrix games, and they usually either predefine the communication message [2–4] or 
optimize the communication message for a predefined policy [5, 6]. It is hard to apply 
these methods to complex model-free environments.

Recently, the DNN-implemented communication channel has been proven useful for 
learning beneficial messages. The key idea is that some layers of DNN can be regarded 
as messages, which can be learned simultaneously while the policy network is optimized 
because DNN is end-to-end differentiable. In this paper, we also focus on this kind of 
method, and the most relevant studies include but are not limited to CommNet [7], DIAL 
[8], BiCNet [9], ACCNet [10], Master–Slave [11], MADDPG-M [12], SchedNet [13], 
IC3Net [14], Message-Dropout [15], MADDPG [33], PSMADDPG [34], COMA [35], 
AMP [36], ATOC [37], Meam-Field-RL [38], VDN [39], QMIX [40] and many other 
methods [41–44].

Although these methods adopt different DNN architectures, some of them can be 
roughly divided into two categories from the perspective of an actor-critic algorithm: the 
actor communication design where the message exchange occurs in the actor part of the 
agents [13, 14, 36, 37], and the critic communication design where the message exchange 
occurs in the critic part of the agents [10, 15, 33–35].

The major difference between these methods and our ACMP is that ACMP applies one 
communication channel at the actor part and the critic part, respectively. Since the agents 
can exchange enough messages (i.e., the encoding of all agents’ observations and actions) 
through the channels, ACMP could address two basic multi-agent control problems, 
namely, the partially observable problem and the non-stationary problem [45]. Specifically, 

(5)Wk =
exp(f (T , Sk))

∑K

i=1
exp(f (T , Si))

; C =

K�

k=1

WkSk
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the agent can only get access to its observation and action if there is no communication 
channel (because the agents are usually located at different places with limited perceptual 
ability in multi-agent systems). Therefore, from the perspective of individual agent, the 
environment is partially observable since the agent’s observation is only a part of the whole 
system’s state; the environment is also non-stationary since the system’s state transition 
cannot be determined by the specific action of an individual agent (in contrast, it is deter-
mined by the joint action of all agents as defined by the DEC-POMDP in the Background 
section). In contrast to ACMP, the actor communication design cannot handle the non-sta-
tionary problem because the critic has no communication channel and the actions cannot 
be exchanged, while the critic communication design cannot relieve the partially observ-
able problem because the actor has no communication channel and the observations cannot 
be exchanged.

Furthermore, most methods can hardly be applied to environments that are made up of 
dozens of agents. As we know, when the agent population becomes large, the number of 
communication messages will also increase. In this case, two critical problems need to be 
addressed. On the one hand, there are usually some redundant messages [12–16], and we 
should try to select the most important messages (and filter out the redundant ones) from 
all communication messages. On the other hand, even if only important messages are emit-
ted, we should try to figure out an effective way to process a large number of messages. 
Nevertheless, almost all of the existing methods do not have special designs to provide 
them the ability to handle the two key problems that hinder multi-agent communication.

Please note that some methods [9, 12] adopt two message exchanges like our ACMP, 
but they are not designed to handle a large number of messages. Some methods [15, 37, 38] 
can control hundreds of agents, but they achieve this by simplifying the assumption of the 
environment. For example, [37] assumes that the agent can only interact with a few neigh-
boring agents, although the whole system has many agents; [38] assumes that all other 
agents can be modelled by a mean effect virtual agent, which is unsuitable when there are 
only dozens of agents. In contrast, our DAACMP does not rely on these assumptions.

3.2 � Attention mechanism in RL community

The attention mechanism has been applied in the RL community, especially for the single-
agent setting [46–49]. For example, DARQN [46] extends DQN with both soft and hard 
attention mechanisms to improve the training and interpretability of DQN; Memory Q-Net-
work [47] adopts an attention mechanism to retrieve context-dependent memory so that the 
past experiences can be reused.

Recently, researchers began to realize that attention mechanisms are also important for 
multi-agent RL. For example, AMP [36] adopts Soft Attention to select useful messages 
from a lot of communication messages; ATOC [37] applies Recurrent Attention Model 
to learn an indicator function that indicates whether the agent should interact with neigh-
bors; CommAttn [50] introduces an attention mechanism to calculate the relevance of each 
received message, which enables the agents to communicate only with the necessary team-
mates; ATT-MADDPG [18] designs a principled Attention Module to model the dynamic 
joint policy of teammates in an adaptive manner; MAAC [51] uses the Multi-head Atten-
tion to estimate a better Q-value function by selectively paying attention to other agents’ 
actions.

Although the above methods have verified the importance of attention mechanisms 
for the RL community, they suffer from some basic multi-agent control problems. For 
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example, AMP and ATOC adopt independent critics and the actions cannot be exchanged, 
thus they suffer from the non-stationary problem; ATT-MADDPG and MAAC adopt inde-
pendent actors and the observations cannot be exchanged, therefore they suffer from the 
partially observable problem. In contrast, our DAACMP adopts attentional communication 
to relieve these problems.

4 � The double attentional actor‑critic message processor

To make our method more easy to understand, we firstly introduce the basic Actor-Critic 
Message Processor (ACMP) in Sect.  4.1. The Actor Attention and Critic Attention are 
introduced in Sects. 4.2 and 4.3, respectively. We summarize the proposed attention mech-
anisms in Sect. 4.4.

Before digging into the detailed designs, we list the key variables used in this paper in 
Table 1. Please notice the differences between �−� , �−�(�−�|�) and �−�(�−�|�).

4.1 � The basic actor‑critic message processor (ACMP)

4.1.1 � The motivation

As mentioned in Sect.  3, most previous methods adopt either the actor communication 
design or the critic communication design, thus they suffer from either the non-stationary 
problem or the partially observable problem. ACMP is motivated by combining the merits 
of previous methods, such that it can address both problems simultaneously.

4.1.2 � The design

The schematic structure of ACMP is shown in Fig.  3. As can be seen, the agents can 
exchange messages at both the actor part and the critic part, which makes ACMP fully 
observable and training stationary. On the one hand, since the messages at the actor part 

Table 1   The key variables used in this paper. Please notice the differences between �−� , �−�(�−�|�) and 
�−�(�−�|�)

a
i

The local action of agent i
�−i The joint action of teammates of agent i
� = ⟨a

i
, �−i⟩ The joint action of all agents

The action set A
i
 , �−i , � are denoted similarly

The observation history o
i
 , �−i , � are denoted similarly

The policy �
i
 , �−i , � are denoted similarly

s
′ The next state after s

The observation history o′
i
 , ��

−i
 , �′ and the action a′

i
 , ��

−i
 , �′ are denoted similarly

�−� The joint policy of teammates of agent i
�−�(�−�|�) The probability value for generating �−i under policy 

�−i . That is to say, �
�−i∈�−i

�−i(�−i|s) = 1

�−�(�−�|�) The probability distribution over the joint action 
space �−i under policy �−i



Autonomous Agents and Multi-Agent Systems           (2020) 34:32 	

1 3

Page 9 of 34     32 

are the encodings of the observations of all agents, the agents will have a full observability 
of the whole system due to ⟨oi, �−i⟩ = � ≜ s . On the other hand, since the messages at the 
critic part are the joint observation and the joint action of other agents (i.e., �−i and �−i ), 
combining the observation and action of agent i (i.e., oi and ai ), a joint action � = ⟨ai, �−i⟩ 
taken in a given state s ≜ � = ⟨oi, �−i⟩ can invariably result in the same reward ri and the 
next state s′ with deterministic probability; that is to say, from the perspective of agent i, 
the system’s state transition and reward transition could be treated stationary even if other 
agents may change their policies,3 thus the training process of agents also becomes stable. 
In contrast, most of the existing methods can only relieve one of the two problems.

Specifically, ACMP adopts the following design: each agent is composed of an 
ActorNet, a MessageGeneratorNet and a CriticNet, while all agents share the same 

h

h

h

h

h

h

h

h h

ActorNet

Cri�cNet

MessageGeneratorNet

MessageCoordinatorNet

Fig. 3   The schematic structure of the Actor-Critic Message Processor (ACMP). For clarity, we show the 
structure using a two-agent example. There are four components as indicated by the four rectangles at the 
bottom of this figure, and they are formally named as ActorNet, CriticNet, MessageGeneratorNet, and Mes-
sageCoordinatorNet, respectively. All components are made up of DNN, and h is the hidden layer of the 
DNN; mi is the local message; Mi is the global message. The red arrows imply the message exchange 
among agents, which occurs at both the actor part and the critic part. Please note that each agent is made 
up of an ActorNet, a MessageGeneratorNet and a CriticNet, while the MessageCoordinatorNet is shared by 
all agents. We call ACMP the basic model because it adopts fully connected DNN to process the messages 
(i.e., without special designs like the attention mechanism) (Color figure online)

3  Formally, P(s�, r
i
|�, �,�) = P(s�, r

i
|s, a1,… , a

N
,�1,… ,�

N
) = P(s�, r

i
|s, a1,… , a

N
) = P(s�, r

i
|s, a1,… , a

N
,

��
1
,… ,��

N
) for any πi ≠ π′i. Please refer MADDPG [33] for details.
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MessageCoordinatorNet. All components are implemented by DNN. It works as follows 
(please refer Fig. 3 for better understanding). 

(1)	 mi = MessageGeneratorNet(oi) , i.e., agent i generates the local message mi based on 
its observation oi.

(2)	 All agents send their mi to the MessageCoordinatorNet.
(3)	 M1,… ,MN = MessageCoordinatorNet(m1,… ,mN) , i.e., the MessageCoordinatorNet 

extracts the global message Mi for each agent i based on all local messages ⟨m1,… ,mN⟩
.

(4)	 The MessageCoordinatorNet sends Mi back to agent i.
(5)	 ai = ActorNet(oi,Mi) , i.e., agent i generates action ai based on its local observation oi 

and the global message Mi , which encodes all observations ⟨o1,… , oN⟩ to address the 
partially observable problem.

(6)	 Agent i interacts with the environment using the generated action ai.
(7)	 The CriticNet estimates the Q-value Qi based on all observations ⟨o1,… , oN⟩ = � and 

all actions ⟨a1,… , aN⟩ = � to address the non-stationary problem.
(8)	 After receiving the feedback reward ri from the environment, the ActorNet, CriticNet, 

MessageGeneratorNet, and MessageCoordinatorNet are jointly trained using back-
propagation (BP) based on Eqs. (6)–(8).

Recall that for actor-critic algorithm, the critic is used only during training, while only the 
actor is needed during execution. Therefore, for the above work procedure of ACMP, step 
(7) and step (8) are only used during training, while steps (1–6) are needed both during 
training and during execution.

4.1.3 � The training

As described above, the agents generate ai based on oi and Mi to interact with the environ-
ment, and the environment will feed a reward signal ri back to the agents. Then, the experi-
ence tuples ⟨oi, �−i, ai, �−i, ri, o�i , �

�
−i
⟩ are used to train ACMP.

Specifically, as the agents exchange messages with each other, the actor and the critic 
can be represented as ��i

(oi,Mi) and Qi(oi, ai, ⟨�−i, �−i⟩;wi) , respectively. We can extend 
Eqs. (2)–(4) to multi-agent formulations as shown in Eqs. (6)–(8), where the parameters wi , 
w−
i
 , �i and �−

i
 have similar meaning to these of single-agent setting.

In practice, we adopt the centralized training with decentralized execution paradigm [33, 
35] to train and deploy our model. That is to say, the individual ActorNet, MessageGen-
eratorNet, and CriticNet are trained locally, while the shared MessageCoordinatorNet is 

(6)
�i = ri + �Qi(o

�
i
, a�

i
, ⟨��

−i
, ��

−i
⟩;w−

i
)�a�

j
=��−

j
(o�

j
)

− Qi(oi, ai, ⟨�−i, �−i⟩;wi)

(7)L(wi) = �(oi,�−i,ai,�−i ,ri,o
�
i
,��

−i
)∼D[�

2
i
]

(8)
∇�i

J(�i) = �(oi,�−i)∼D
[∇�i

��i
(oi,Mi)

∗ ∇ai
Qi(oi, ai, ⟨�−i, �−i⟩;wi)�aj=��j

(oj)
]
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trained globally by all agents; after the training is finished, the CriticNet will not be used 
during execution. Besides, ACMP is end-to-end differentiable because all its components 
are implemented by DNN, so the communication message and the control policy can be 
optimized jointly using back-propagation (BP) based on the above equations.

4.2 � The actor attention

4.2.1 � The motivation

As can be seen from the left part of Fig. 4, the basic MessageCoordinatorNet in ACMP is 
implemented by fully connected DNN. Because fully connected DNN treats all messages 
equally, it cannot select more important messages from all messages ⟨m1,… ,mi,… ,mN⟩ , 
especially when the message quantity becomes large (i.e., N is large). The Actor Attention 
is motivated by solving the problem of the fully connected MessageCoordinatorNet, such 
that the attention-based MessageCoordinatorNet can select more important messages from 
⟨m1,… ,mi,… ,mN⟩ adaptively.

4.2.2 � The design

The right part of Fig. 4 shows the structure of the proposed attention-based MessageCoor-
dinatorNet. It works as follows to generate the global message Mi for agent i (please refer 
Fig. 4 for better understanding). 

h

. . . . . .

. . . . . .

. . . . . .

. . . . . . . . .

Fig. 4   Left: the basic MessageCoordinatorNet is implemented by fully connected DNN. The DNN’s 
parameters we

i
 and wd

i
 encode local message mi into hidden layer h and decode h into global message Mi , 

respectively. Right: the proposed MessageCoordinatorNet is implemented by Soft Attention DNN. Only 
the generation of Mi is shown to simplify the illustration. The parameters wq

i
 and wk

i
 project mi into a 

“query” feature space and mj∧j≠i into a “key” feature space, respectively. Note that all mj∧j≠i share the same 
parameter wk

i
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(1)	 m
q

i
= mi × w

q

i
 , namely, projecting the local message mi into a “query” feature space mq

i
 

by multiplying parameter wq

i
.

(2)	 mk
ij
= mj × wk

i
 for each j ≠ i , namely, projecting the local message mj into a “key” fea-

ture space mk
ij
 by multiplying parameter wk

i
 . Please note that wk

i
 is shared by all mj∧j≠i.

(3)	 W
j

i
= (m

q

i
)T (mk

ij
) for each j ≠ i , namely, calculating the importance score (i.e. Wj

i
 ) 

between mi and each mj∧j≠i . Please note that this calculation is not based on the origi-
nal message space but the new projected feature space, where mq

i
 can be seen as the 

query, and mk
ij
 as the key.

(4)	 Wi = [W1
i
,… ,W

j

i
,… ,WN

i
] = softmax(W1

i
,… ,W

j

i
,… ,WN

i
) for each j ≠ i , namely, 

normalizing the original [W1
i
,… ,W

j

i
,… ,WN

i
] into a probability distribution 

Wi = [W1
i
,… ,W

j

i
,… ,WN

i
] where 

∑N

j=1
W

j

i
= 1.

(5)	 Mi =
∑N

j=1
W

j

i
mj , namely, generating the global message Mi as a weighted summation 

of all local messages mj , where the weight of mj is Wj

i
 . Please note that this calculation 

is based on the original message space.

The above working process of attention-based MessageCoordinatorNet is a little more 
complicated than the fully connected one. Nevertheless, we would like to point out three 
advantages of such design. First, step (5) means that the global message Mi can attend to 
more important local messages and thus ignore the unimportant local messages according 
to the weights Wj

i
 . It is very critical when the message quantity is large or the messages are 

redundant. Second, step (3) and step (4) indicate that the weights Wj

i
 are calculated for each 

instance of ⟨m1,… ,mi,… ,mN⟩ , therefore Mi can attend to important messages in an adap-
tive manner for different instances of ⟨m1,… ,mi,… ,mN⟩ . Last, only step (1) and step (2) 
introduce some parameters (i.e., wq

i
 and wk

i
 ), and wk

i
 is shared by all mj∧j≠i . It implies that 

the proposed attention-based design has the same number of parameters as the fully con-
nected design, thus we can give a fair comparison for these methods. Please note that the 
first two advantages have achieved our goal mentioned in the motivation section, namely, 
providing MessageCoordinatorNet the ability to select more important messages from all 
messages ⟨m1,… ,mi,… ,mN⟩ in an adaptive manner.

Besides, the difference between the fully connected design and our attention-based 
design seems to only lie in the transformation of ⟨m1,… ,mN⟩ to Mi : the fully connected 
design projects m-space to M-space, but in the attention-based design, Mi is just a weighted 
summation of the original mi , with no projection onto a new feature space. However, please 
note that the whole model is end-to-end differentiable, so the parameters of other modules 
(i.e., the ActorNet, the MessageGeneratorNet, and the CriticNet) will also be different after 
the models are well-trained. It means that when our DAACMP removes the projection of 
m-space to M-space, other modules of DAACMP will easily complement this since there 
are multiple layers in DAACMP and the multilayer feedforward network is universal func-
tion approximator [52–54]. In contrast, our attention-based design can select more impor-
tant messages from all messages ⟨m1,… ,mi,… ,mN⟩ in an adaptive manner, but the fully 
connected design can hardly achieve this.

4.2.3 � The training

Because the proposed attention mechanism is embedded in the MessageCoordinatorNet, 
the whole network keeps end-to-end differentiable. Therefore, it can be optimized jointly 
with the agent’s policy using back-propagation (BP) based on Eqs. (6)–(8). This is the 
same as the original ACMP.
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4.3 � The critic attention

4.3.1 � The motivation

The Critic Attention is motivated by two considerations. The first one is that the Crit-
icNet in ACMP is implemented by fully connected DNN as shown on the left part of 
Fig. 5, thus it is inflexible to deal with many messages since fully connected DNN treats 
all messages equally.

Another more insightful and principled consideration is the agent modelling prob-
lem [55]. Specifically, if the agent maintains the models about teammates’ policies, it 
can adjust its policy accordingly to achieve proper cooperation. Nevertheless, since all 
agents are learning concurrently to adapt to each other, their policies are changing con-
tinuously. This kind of dynamically changing policy is very hard to model in an accu-
rate manner.

The Critic Attention is designed and embedded into the CriticNet, making sure that 
the dynamic joint policies of teammates can be modelled adaptively, and thus a large 
number of messages can be processed efficiently. More detailed motivation can be found 
in [18].

A�en�on
Module

contextual
Q-value

ac�on condi�onal
Q-values

a�en�on weight

K-head
Module

real
Q-value

: fully-connected layer
: a�en�on opera�on

= ==

hidden layer

Fig. 5   Left: the basic CriticNet is implemented by fully connected DNN. Right: the proposed CriticNet is 
implemented by Soft Attention DNN. For clarity, we show the detailed generation of Q1 using a three-agent 
example: the discrete action space is {l, r} , and the agents prefer to take the actions r, l, and r, respectively. 
In this case, the second action conditional Q-value Q2

1
 will contribute more weights to the computation of 

the contextual Q-value Qc
1
 , as indicated by thicker red links. We call Qi the real Q-value, Qc

i
 the contextual 

Q-value, and Qk
i
 the action conditional Q-value. The difference is that Qc

i
 and Qk

i
 are multi-dimensional vec-

tors, while Qi is the real scalar Q-value used in Eqs. (6)–(8) (Color figure online)
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4.3.2 � The design

To make our design more easy to understand, we introduce it based on the assumption 
that the action space is discrete and small. The extension to continuous action is pre-
sented in Sect. 4.3.3.

Recall that the environment is influenced by the joint action � in multi-agent setting. 
From the perspective of agent i, the outcome of ai taken in a given state s is dependent on 
�−i . Therefore, similar to the definition of Q�(s, a) in Eq. (1), we define the Q-value func-
tion relative to the joint policy of teammates as Q�i|�−i

i
(s, ai) as previous study [18, 56], 

and our new objective is to find the optimal policy �∗
i
= argmax�i Q

�i|�−i

i
(s, ai) . Mathemati-

cally, Q�i|�−i

i
(s, ai) can be calculated as follows.4

Equation (10) implies that in order to estimate Q�i|�−i

i
(s, ai) , the critic network of agent i 

should have the abilities: 

(1)	 To estimate Q�i
i
(s, ai, �−i) for each �−i ∈ �−i;

(2)	 To calculate the expectation of all Q�i
i
(s, ai, �−i).5

In order to estimate Q�i
i
(s, ai, �−i) for each �−i ∈ �−i , we design a K -head Module where 

K=|�−i| . As shown at the bottom of Fig. 5, the K-head Module generates K action condi-
tional Q-value Qk

i
(s, ai|�−i;wi) for each �−i to approximate the true Q�i

i
(s, ai, �−i) . Specifi-

cally, Qk
i
(s, ai|�−i;wi) is generated using ai and all observations ⟨oi, �−i⟩ = � ≜ s ; as for the 

information about �−i , it is provided by an additional hidden vector hi(wi) , which will be 
introduced shortly.6

In order to calculate the expectation of all Q�i
i
(s, ai, �−i) , the weights �−i(�−i|s) of all 

Q
�i
i
(s, ai, �−i) are also required as indicated by Eq. (10). However, it is hard to approximate 

these weights. On the one hand, for different state s, the teammates will take different �−i 
with different probabilities �−i(�−i|s) based on the policy �−i . On the other hand, the policy 
�−i is changing continuously, because the agents are learning concurrently to adapt to each 
other.

We propose to approximate all �−i(�−i|s) ∈ �−i(�−i|s) jointly by a weight vector 
Wi(wi) ≜ [W1

i
(wi),… ,WK

i
(wi)] , where wi is the parameters of the critic network of agent i. 

That is to say, we use Wi(wi) to approximate the probability distribution �−i(�−i|s) , rather 
than approximating each probability value �−i(�−i|s) separately. A good Wi(wi) should sat-
isfy the following conditions: (1) �K

k=1
Wk

i
(wi) ≡ 1 , such that Wi(wi) is a probability distri-

bution indeed; (2) Wi(wi) can change adaptively when the joint policy of teammates �−i 

(9)Q
�i|�−i

i
(s, ai) = �

�−i∼�−i
[Q

�i
i
(s, ai, �−i)]

(10)= �
�−i∈�−i

[�−i(�−i|s)Q
�i
i
(s, ai, �−i)]

5  The expectation is equivalent to the weighted summation, and the weight of Q�i
i
(s, ai, �−i) is �−i(�−i|s) as 

shown in Eq. (10).
6  This is why we use Qk

i
(s, ai|�−i;wi) instead of Qk

i
(s, ai, �−i;wi) to represent the defined action conditional 

Q-value.

4  The detailed derivation can be found in [56].
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is changed, such that Wi(wi) can really model the teammates’ joint policy in an adaptive 
manner.

Recall that the attention mechanism is intrinsically suitable for generating a probability 
distribution in an adaptive manner (please refer Sect. 2.3), so we leverage it to design an 
Attention Module. As shown at the middle of Fig. 5, Attention Module works as follows.

Firstly, a hidden vector hi(wi) is generated based on all actions of teammates (i.e., �−i).
Then, the attention weight vector Wi(wi) is generated by comparing hi(wi) with all action 

conditional Q-values Qk
i
(s, ai|�−i;wi) . Specifically, we apply the dot score function [29] to 

calculate the element Wk
i
(wi) ∈ Wi(wi):

Lastly, the contextual Q-value Qc
i
(s, ai, �−i;wi) is calculated as a weighted summation of Wk

i
 

and Qk
i
:

Summary The teammates have been considered in Eq. (10), while Eq. (12) is an approxima-
tion of Eq. (10), because Qk

i
(s, ai|�−i;wi) and Wk

i
(wi) can learn to approximate Q�i

i
(s, ai, �−i) 

and �−i(�−i|s) , respectively. Therefore, the dynamic joint policies of teammates can be 
modelled adaptively, and a large number of messages (namely, all ⟨o1,… , oi,… , oN⟩ and 
⟨a1,… , ai,… , aN⟩ ) can be processed efficiently. Consequently, the agents can cooperate 
with each other adaptively and efficiently.

4.3.3 � The key implementation

Attention Module After getting the contextual Q-value Qc
i
(s, ai, �−i;wi) , we need to trans-

form the multi-dimensional Qc
i
 into a scalar real Q-value Qi using a fully connected layer 

with one output neuron, as shown at the top of Fig. 5.
The reason is that many researches have shown that the multi-dimensional vector works 

better than scalar when implementing the Soft Attention [28, 30]. In our Attention Module, 
we also find that vector works much better than scalar, so the Qc

i
 , Qk

i
 , hi(wi) and Wi(wi) are 

all implemented using vectors. However, the standard RL adopts a scalar real Q-value Qi , 
thus we should transform Qc

i
 into a scalar real Q-value Qi.

K-head Module We have limited the above discussion to discrete action space. A natural 
question is that should we generate one Qk

i
(s, ai|�−i;wi) for each �−i ∈ �−i ? What if the 

action space is continuous?
In fact, there is no need to set K = |�−i| . Many researchers have shown that only a small 

set of actions are crucial in most cases, and the conclusion is suitable for both continuous 
action space environments [24] and discrete action space environments [57].

Therefore, we argue that if Qk
i
(s, ai|�−i;wi) could group similar �−i (i.e., representing dif-

ferent but similar �−i using one Q-value head), it will be much more efficient. As the deep 
neural network is a universal function approximator [52–54], we expect that our method 
can possess this ability. Further analysis in Sect. 5.8 also indicates that our hypothesis is 
reasonable. Hence, we adopt a small K even with continuous action. Specifically, we set 
K = 4 in this paper. Our previous work [18] has shown that the Critic Attention is robust at 
a wide range of K (e.g., from 2 to 16) to obtain good results.

(11)Wk
i
(wi) =

exp(hi(wi)Q
k
i
(s, ai��−i;wi))

∑K

k=1
exp(hi(wi)Q

k
i
(s, ai��−i;wi))

(12)Qc
i
(s, ai, �−i;wi) =

K∑

k=1

Wk
i
(wi)Q

k
i
(s, ai|�−i;wi)
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Parameter Training Method In the first paragraph of Sect. 4.3.2, we have mentioned that 
we introduce Fig. 5 based on the assumption that the action space is discrete and small. In 
this setting, we can manually specify which Qj

i
 is which. For the training, we can first train 

the K-head Module for each specific joint action and only then train the Attention Module. 
But this is a little cumbersome. In practice, the action space is usually large or continuous 
(it is the case in our experiments), so we adopt the approximation method mentioned in the 
key implementation section. For the training, because the K-head Module and the Atten-
tion Module are submodules embedded in the CriticNet, the whole network keeps end-to-
end differentiable. Thus, they can be optimized jointly with the agent’s policy in an end-to-
end manner using back-propagation (BP) based on Eqs. (6)–(8). This end-to-end training 
can bring the deep network into full play as indicated by the results of experiments. This is 
the same as the proposed Actor Attention in Sect. 4.2.

4.4 � The summary of attentions in DAACMP

The proposed DAACMP combines the basic ACMP with the Actor Attention introduced 
in Sect. 4.2 and the Critic Attention introduced in Sect. 4.3. We briefly summarize them as 
follows.

The Actor Attention From the perspective of an individual agent, there are usually some 
unimportant and redundant messages in the actor part. For example, the messages emitted 
by faraway agents may be unimportant and redundant for the current agent. In this case, the 
Actor Attention is used to select the most important messages adaptively from all commu-
nication messages. A bigger attention weight usually means that the corresponding mes-
sage is more important for generating coordinated actions.

The Critic Attention From the perspective of training a centralized Q-value function, all 
the messages in the critic part are necessary for stabilizing the training (i.e., addressing the 
non-stationary problem), therefore all the messages are beneficial. In this case, the Critic 
Attention is used to process a large number of messages in an efficient way. Specifically, 
we derive the Critic Attention from the perspective of agent modelling, and the attention 
weight vector Wi(wi) ≜ [W1

i
(wi),… ,WK

i
(wi)] is used to jointly approximate the probability 

distribution �−i(�−i|s) , rather than approximating each probability value �−i(�−i|s) sepa-
rately, so the large number of messages can be processed much more efficiently.

In practice, to train the two attention mechanisms cooperatively, we adopt a shared repre-
sentation learning between actors and critics. Specifically, the joint observation � = ⟨oi, �−i⟩ 
of the critic part shown in Fig. 5 is replaced by the message concatenation [mi|Mi] of the 
actor part shown in Fig. 4, since [mi|Mi] is a high-level abstraction of ⟨oi, �−i⟩.7 That is to 
say, there is a shortcut connection between the actor and the critic. This design has two 
advantages: (1) the shared representation learning is more data-efficient; (2) most impor-
tantly, the training signals from the critic part (i.e., the gradients of the objective function) 
can be easily back-propagated to the actor part through the shortcut connection, which can 
ease the training of the network.

7  Please note that Mi is a weighted summation of all other local messages mj∧j≠i , while mj is an encoding of 
oj . Therefore, [mi|Mi] has all the necessary information contained in ⟨oi, �−i⟩ , which means that the shared 
representation learning will not lose important information about ⟨oi, �−i⟩ if the model is well-trained. In 
contrast, it can bring many benefits, e.g., data efficiency, robust training, and so on.
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5 � Experiments

We firstly present the experimental settings in Sect. 5.1. The experimental results on three 
multi-agent control tasks are reported in Sects. 5.2–5.4, respectively. Then, we give fur-
ther analyses of the ablation models, the learned policy, the Actor Attention and the Critic 
Attention in Sect. 5.5–5.8, respectively.

5.1 � The experimental settings

5.1.1 � The testing environments

The Packet Routing Task As shown in Fig. 6, there are several edge routers in each topol-
ogy. Each edge router has an aggregated flow that should be transmitted to other edge rout-
ers through available paths (e.g., in Fig. 6a, B is set to transmit flow to D, and the available 
paths are BEFD and BD). Each path is made up of several links, and each link has a link 
utilization, which equals to the ratio of the current flow on this link to the maximum flow 
transmission capacity of this link.

The routers are controlled by our algorithm, and they try to learn a good flow splitting 
policy to minimize the Maximum Link Utilization in the whole network (MLU). The intui-
tion behind this objective is that high link utilization is undesirable for dealing with bursty 
traffic.8 The observation includes the flow demands in the routers’ buffers, the latest ten 
steps’ estimated link utilizations, the average link utilization of last control cycle and the 
latest action taken by the router. The action is the splitting ratio of each available path. 
The reward is 1 −MLU because we want to minimize MLU. Exploration bonuses based on 
local link utilization can be added accordingly.

Fig. 6   The packet routing task. 
Please note that the large topol-
ogy is very complex: the links 
have different capacities and 
delay time, while the routers have 
variable next hops and data buff-
ers; in addition, it has the same 
complexity as the real-world 
Abilene Network (A backbone 
network https​://en.wikip​edia.org/
wiki/Abile​ne_Netwo​rk) in terms 
of the numbers of routers, links, 
and paths. It is used for the scal-
ability test
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(a) The small topology.
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(b) The large topology.

8  The detailed advantages of minimizing MLU are discussed in [58].

https://en.wikipedia.org/wiki/Abilene_Network
https://en.wikipedia.org/wiki/Abilene_Network
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The necessity of cooperation among routers is as follows: one link can be used to 
transmit the flow from more than one router, so the routers should not split too much or 
too little flow to the same link at the same time; otherwise, this link will be either over-
loaded or underloaded.

The Cooperative Navigation Task As shown in Fig. 7, N agents and N landmarks are 
generated at random locations of a 10-by-10 2D plane. The 2D plane is bounded by the 
lower-left coordinate ⟨0, 0⟩ and the upper-right coordinate ⟨10, 10⟩ . That is to say, if the 
agent is at position pt = ⟨px, py⟩ and moves with a velocity vt = ⟨vx, vy⟩ , the next position 
of the agent will be pt+1 = ⟨(px + vx)%10, (py + vy)%10⟩.

The agents are controlled by our algorithm, and they try to learn a good policy to 
cover all landmarks. The observation is the relative positions and velocities of other 
agents and landmarks. The action is the velocity, including both the magnitude and 

Fig. 7   The cooperative naviga-
tion task: N agents try to coop-
eratively cover N landmarks. In 
this paper, we test three cases 
where N = 2 , N = 3 and N = 4 , 
respectively. Please note that the 
diameter of the agent and the 
landmark is only 0.2; compared 
to the size of the 2D plane (i.e., 
10-by-10), it is not easy for the 
agents to cover the landmarks 
simply by chance

agent

landmark

(a) The simple traffic case where N = 4. (b) The complex traffic case where N = 8.

Fig. 8   The traffic control task: N cars try to cooperatively drive through the junction. In this paper, we test 
two cases where the agent number is N = 4 and N = 8 , respectively
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direction. The reward is the summation of the negative proximity of any agent to each 
landmark.

The necessity of cooperation among these agents is as follows: in order to get more 
rewards, the agent team must cooperatively cover all landmarks. If one landmark is left 
uncovered, the proximity of any agent to this landmark will be large, and the reward (i.e., 
the negative proximity) will be small.

The Traffic Control Task As shown in Fig. 8, N cars are driving on the road with a 4-way 
junction. The car collision occurs when the locations of two cars are overlapped, but it does 
not affect the simulation except for the reward these car receives.

The cars are controlled by our algorithm, and they try to learn a good driving policy to 
cooperatively drive through the junction with small collision and delay (which are meas-
ured by large reward). The simulation is terminated after 100 steps or when all cars suc-
cessfully exit the junction.

For each car, the observation encodes its current location and assigned route number. 
The action is a real number a ∈ (0, 1) , which indicates how far to move ahead the car on 
its route. For the reward, each car gets a reward r�

time
= −0.1� at each timestep to discour-

age a traffic jam, where � is the total timesteps since the car appeared in the simulator; in 
addition, a car collision incurs a penalty rcoll = −10.0 on the received reward, while an 
additional reward rexit = 30.0 will be given if the car successfully exits the junction; thus, 
the total reward at time t is: r(t) =

∑Nt

i=1
r
�i
time

+ Ctrcoll + Etrexit , where Nt , Ct and Et are the 
numbers of car present, car collision and car exiting at timestep t, respectively.

The necessity of cooperation among these cars is as follows: when the cars are near 
the junction, some cars should leave space for other cars, such that the car collision (and 
accordingly, the penalty on the reward) can keep small, and that the car team can get more 
total rewards.

5.1.2 � The baselines

The proposed DAACMP combines ACMP with two attention mechanisms introduced in 
Sects. 4.2 and 4.3. To verify the potential of each attention mechanism, we firstly compare 
DAACMP with some ablation models:

•	 ACMP. It is the basic model introduced in Sect. 4.1.
•	 ACMP-AA. It is the model that combines ACMP with the Actor Attention introduced in 

Sect. 4.2.
•	 ACMP-CA. It is the model that combines ACMP with the Critic Attention introduced in 

Sect. 4.3.

We also compare DAACMP with the most relevant and best performing multi-agent con-
trol methods:

•	 Independent Actor-Critic (IND-AC) [9]. For IND-AC, each agent learns its own actor-
critic network independently without communication. We can know the effect of com-
munication by comparing with IND-AC.

•	 CommNet [7]. CommNet is a policy gradient method. It processes other agents’ mes-
sages by averaging them. The average operation is a special case of attention where 
the attention weights on all messages are equal. We extend CommNet to an actor-
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critic method, where the actor is the original CommNet and the critic is a fully con-
nected DNN. It belongs to the actor communication design.

•	 MADDPG [33]. MADDPG adopts centralized critics to share messages among mul-
tiple agents, while the actors are independent. In MADDPG, both the actors and 
critics are implemented by the fully connected DNN, and there is no attention to 
process the messages. It belongs to the critic communication design.

•	 AMP [36]. AMP belongs to the actor communication design. It also adopts an atten-
tion mechanism like the Actor Attention introduced in Sect. 4.2 to process the mes-
sages. The major difference is that (1) it generates each attention weight indepen-
dently, while our method generates all attention weights Wi = [W1

i
,… ,W

j

i
,… ,WN

i
] 

as a whole; (2) our Actor Attention is more concise with fewer parameters.
•	 ATT-MADDPG [18]. ATT-MADDPG belongs to the critic communication design. It 

enhances MADDPG with the Critic Attention proposed in Sect. 4.3.

(a) The results on the small routing topology.

(b) The results on the large routing topology.

Fig. 9   The experimental results on packet routing tasks. To make the figure easy to read, we show the 
results of ablation models (i.e., ACMP, ACMP-AA, and ACMP-CA) in Sect. 5.5 rather than in this figure
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5.1.3 � The hyperparameters

For different tasks, we adopt different hyperparameters. The detailed information is 
shown in the “Appendix 1”.

5.2 � The experimental results on packet routing tasks

The average rewards of 5 independent experiments are shown in Fig.  9. As can be 
seen, for the small topology shown in Fig. 9a, all methods have a similar performance. 
The reason is that this topology is rather simple, and all methods can find a not-so-
bad control policy after they have been trained, regardless of whether the methods 
adopt advanced communication mechanisms. Despite that, we notice two interesting 
phenomenons: 

(1)	 The performance of IND-AC is the worst, while other methods that adopt communica-
tion perform better. It means that communication has a positive effect, which has been 
widely observed by other researchers.

(2)	 On the one hand, our DAACMP can obtain more rewards than all baseline methods 
when the training is finished, while on the other hand, it turns out that DAACMP 
is harder to train as shown in the figure: other methods start converging after about 
500 training episodes, while DAACMP begins to converge until about 1500 training 
episodes. The reason is that there are two attention mechanisms in DAACMP. The 
sophisticated attentions need more data to train. At the same time, the attentions also 
equip DAACMP with a stronger ability to process the communication messages once 
trained well.

When the evaluation turns to the large topology shown in Fig. 9b, the proposed DAACMP 
outperforms other methods by a larger margin, and it is more stable than other methods; 
while IND-AC (which is without communication) does not work at all in the large topol-
ogy, and the performances of other methods are unsatisfactory (although better than that 
of IND-AC). It indicates that DAACMP has better scalability. A possible reason is that the 
attention mechanisms can attend to more relevant agents (and accordingly, the influence of 
irrelevant agents is weakened). Take Fig. 6b as an example, agent4 is very likely to attend 
to agent1 and agent2 rather than agent3. This property enables DAACMP to work well 
even within a complex environment with an increasing number of agents. In contrast, with-
out a mechanism to select more important messages or to model the relevant agents, other 
methods will not be furnished with such scalability.

5.3 � The experimental results on cooperative navigation tasks

The average rewards of 10 independent experiments are shown in Fig. 10. The results 
demonstrate a similar trend as that of packet routing tasks: 

(1)	 For N = 2 , different methods have similar performance, regardless of whether the 
methods adopt communication mechanisms. As analyzed before, the task is rather 
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simple when N = 2 , and all methods can get a good result. It leaves no space for the 
more advanced methods to improve on.

(2)	 When the evaluation turns to complex tasks (e.g., when N = 3 and N = 4 ), the perfor-
mances of other methods drop severely (especially for the non-communicating IND-
AC), while the proposed DAACMP performs much better than other methods, and it 
achieves much larger reward. One the one hand, it means that communication is very 
important for the cooperation among agents. On the other hand, it asserts that our 
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Fig. 10   The experimental results on cooperative navigation tasks. Please note that the original reward is a 
negative value (recall that the reward is the negative proximity of agent to landmark), so we add 50 to the 
original rewards such that the reward shown in this figure becomes a positive value, which is more consist-
ent with our human cognition

Table 2   The experimental results on traffic control tasks

N = 4 N = 8

Reward Delay Collision Reward Delay Collision

IND-AC − 1109.2 100.0 0.0 − 2139.3 100.0 0.5
CommNet − 129.2 45.6 2.3 − 573.4 61.6 6.8
MADDPG − 31.8 28.7 3.2 − 107.8 41.2 2.3
AMP − 97.1 41.8 1.2 − 1950.6 100.0 0.9
ATT-MADDPG − 12.4 20.6 3.8 − 25.5 30.3 4.7
ACMP − 35.3 30.9 2.6 − 102.8 41.3 1.9
ACMP-AA − 56.2 38.3 0.8 − 305.8 74.5 2.3
ACMP-CA − 18.2 26.7 2.7 0.6 23.9 4.1
DAACMP 52.5 10.5 2.1 5.7 23.2 3.9
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DAACMP has a stronger ability to process the communication messages and to achieve 
better scalability.

5.4 � The experimental results on traffic control tasks

The average rewards of 10 independent experiments are shown in Table  2. As can be 
observed, the delay of IND-AC is 100 steps in both settings where N = 4 and N = 8 . 
Recall that the simulation is terminated after 100 steps (or when all cars successfully exit 
the junction). It implies that IND-AC does not learn any useful driving policy, namely, it 
traps in the local optimal policies that the cars are too cautious to drive with a large speed. 
Compared to IND-AC, all other methods can complete the traffic control task within 100 
steps (except for AMP in the setting of N = 8 ). This, in turn, proves that communication is 
important for speeding up the car.

However, even with communication, the performances of CommNet, AMP and ACMP-
AA have a great decline when the evaluation setting changes from N = 4 to N = 8 . In con-
trast, MADDPG, ATT-MADDPG, and ACMP-CA have better abilities to maintain their 
performance. We notice that the former methods adopt communication in the actor part, 
while the latter methods adopt communication in the critic part. Therefore, the reason 
for the above phenomenon may be that the traffic control tasks have some random biases, 
which are captured by the critic communication methods. For example, at the junction of 
the 4-way road, all actions of other agents are very important for the current agent. In this 
case, the critic communication methods can take all actions into consideration, while the 
actor communication methods do not have this ability, so the latter methods consistently 
outperform the former methods.

Importantly, adopting an attention mechanism to process the communication mes-
sages both in the actor part and in the critic part, our DAACMP obtains the greatest 
reward and the smallest delay in both settings, and it shows good scalability when the set-
ting changes from N = 4 to N = 8 . The reason is that DAACMP has found a better trade-
off between a small delay and a small collision. Recall that the total reward at time t is: 
r(t) =

∑Nt

i=1
(−0.1�) + Ct(−10.0) + Et(+30) where � is the total timesteps since the car 

appeared in the simulator, and Nt , Ct and Et are the numbers of car present, car collision 
and car exiting at time t, respectively. The reward setting means that a great delay will 
introduce a very large reward penalty (which is much larger than the penalty induced by a 
collision). Thus, DAACMP has learned to drive the cars with a large speed to complete the 
simulation with the smallest delay. On the other hand, avoiding collisions is also in favor of 
the total reward, therefore DAACMP manages to avoid collisions even with a large speed, 
and the number of collisions induced by DAACMP is at the medium level among the num-
bers of all collisions. In contrast, other methods have either a great delay (e.g., IND-AC 
and AMP) or a great collision (e.g., CommNet and ATT-MADDPG), making their total 
rewards unsatisfactory.
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5.5 � The further analysis of the ablation models

In the section, we give a brief analysis of the ablation models, i.e., ACMP, ACMP-AA, 
and ACMP-CA. The results of packet routing tasks are shown in Fig. 11, and the results of 
cooperative navigation and traffic control tasks can be found in previous sections (please 
refer Fig. 10 and Table 2).

As can be seen, ACMP-AA and ACMP-CA outperform the basic ACMP in most cases.9 
In addition, we notice that either ACMP-AA or ACMP-CA outperforms all other baseline 

(a) The results on the small routing topology.

(b) The results on the large routing topology.

Fig. 11   The experimental results of the ablation models on packet routing tasks. The results of other base-
lines are shown in Fig. 9

9  There are two exceptions. The first one is that ACMP-AA underperforms ACMP on the cooperative navi-
gation task when N = 2 . The other one is that ACMP-AA underperforms ACMP on traffic control tasks. 
As analyzed before, the reason of the former exception is that this setting is too simple to leave space for 
advanced methods to improve on, while the reason of the latter exception is that traffic control task has ran-
dom biases going against the property of ACMP-AA.
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methods in all complex settings. Considering that there are totally seven different settings 
of three different tasks, we can conclude that the proposed attention mechanisms are indeed 
helpful for enhancing the performance.

Most importantly, all results show that DAACMP can further improve on the perfor-
mance of ACMP-AA and ACMP-CA. Specifically, the improvements are either a consider-
able rewards increase (please refer Fig. 10 and Table 2) or a more stable training process 
(please refer Figs. 9b and 11b). It means that the combination of Actor Attention and Critic 
Attention (but not a single attention) is necessary for achieving more stable and better 
results.

5.6 � The further analysis of the learned policy

To get a better understanding of the cooperation among different agents, we give a detailed 
analysis of the learned policy based on the cooperative navigation task. As shown in 
Fig. 12, at the beginning (i.e., the first picture), A2 and A3 are closed to L2 and L3 respec-
tively, while the distance between A1 and L2 is approximately equal to that between A1 
and L3. Therefore, A2 “directly” moves to L2 and A3 to L3, while A1 “hesitantly” moves 
toward the center of L2 and L3. After some timesteps, the state changes to the second 
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Fig. 12   A convergent joint policy learned by DAACMP on the cooperative navigation task. L1, L2, and 
L3 represent different landmarks. A1, A2, and A3 stand for different agents. The red arrows indicate the 
agents’ actions. Please note that the attention weights under each picture are generated by the third agent 
(i.e., A3). To make this section focus on the policy analysis, we will analyze these attention weights in the 
next section (Color figure online)
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picture. At this point, A1 “realizes” that A2 will go to L2 and A3 will go to L3. Therefore, 
A1 “directly” moves to L1 in the following timesteps as shown in the next three pictures. 
Consequently, the agents cover all landmarks as shown in the last picture.

Except for the above analysis, we are surprised by the behavior of the first agent (i.e., 
A1). As we can see from the third picture and the fourth picture, when A1 “realizes” that 
she should go to L1, she moves to L1 from the left side to leverage the feature of the envi-
ronment,10 instead of moving to L1 from the right side because this may disturb A2 and 
A3. These behaviors indicate that the agents have really learned a meticulous cooperative 
joint policy.

5.7 � The further analysis of the actor attention

In Sect. 4.4, we claim that the Actor Attention is used to select the most important mes-
sages from all communication messages. In this experiment, we want to verify whether the 
attention weights can show some intuitions about this claim.

Specifically, we show the attention weights generated by the third agent (i.e., A3) in 
Fig.  12. As can be seen, the magnitude of the attention weights is positively correlated 
to the distance between A3 and other agents. For example, in the first picture of Fig. 12, 
A1 is very close to A3 while A2 is far away from A3, so the attention weights on A1 
is much larger than that on A2 (namely, 0.8124 is much larger than 0.1876). In the fol-
lowing three pictures, A1 moves away from A3, so the attention weights on A1 gradually 
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Fig. 13   The Q-values and attention weights generated by router B in the small topology

10  Recall that the 2D plane is bounded. The agent’s next position is calculated by 
pt+1 = ⟨(px + vx)%10, (py + vy)%10⟩.
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become smaller. Finally, when the agents cover all landmarks in the last picture, the atten-
tion weights on A1 and A2 are approximately equal.

The above results are consistent with our human cognition: the near-by agents usually 
have more influence on the current agent, so the communication messages are expected to 
be more important, and the current agent has learned to put more attention on the corre-
sponding messages (as indicated by the larger attention weights). Therefore, it supports our 
claim that the Actor Attention can attend to more important messages adaptively.

5.8 � The further analysis of the critic attention

In Sect. 4.3.3, we claim that the attention weight Wk
i
(wi) generated by the Critic Attention 

is used to approximate the probability �
−i(𝐚−i|s) , and the K-head Module is expected to 

have the ability to group different but similar 𝐚
−i . In this experiment, we want to verify 

whether the above claim is consistent with the experimental results.
Specifically, taking router B in the small packet routing topology as an example, we 

randomly sample 50 non-cherry-picked experience tuples (s, a, Q(s, a)) from the replay 
buffer, and show the different heads’ Q-values11 and the attention weights of these samples 
in Fig. 13. As can be seen, head4 has the smoothest Q-values, and the weights of head4 
are much greater than the weights of other heads. In contrast, head1 has a large range of 
Q-value volatility, and the weights of head1 are much smaller.

The above phenomenon leads us to believe that the K-head Module can group simi-
lar 𝐚−i indeed. For example, the heavily weighted head4 may represent a large set of non-
crucial 𝐚

−i (e.g., a flow splitting ratio between [0.3, 0.7]), while the lightly weighted head1 
may represent a small set of crucial 𝐚

−i (e.g., a flow splitting ratio between [0.8, 0.9]). The 
explanation is as follows.

From the perspective of Q-value, since head4 may represent the non-crucial 𝐚
−i , most 

local actions ai will not have a great impact on the MLU (and accordingly, on the reward 
and the Q-value), therefore it is reasonable that head4 has smooth Q-values.

From the perspective of attention weight, as head4 may represent a large set of non-
crucial 𝐚

−i that are preferred by many routers, the probability summation �
𝐚−i
�
−i(𝐚−i|s) 

of the 𝐚
−i grouped by head4 will be large; considering our assumption that the attention 

weight Wk
i
(wi) is an approximation of the probability �

−i(𝐚−i|s) , it will be reasonable that 
the attention weight of head4 is larger than that of other heads.

The Q-values and the attention weights of head1 can be analyzed similarly to show that 
our hypothesis (i.e., the K-head Module can group different but similar 𝐚

−i ) is reasonable.

6 � Discussion

More Agents Our method aims at processing the communication messages among about a 
dozen of agents. In this setting, the proposed attention mechanisms can work well as shown 
by the experiments. However, we found that our method (as well as all baseline methods) 
cannot perform well when the agent population is increasing further. The reason is that the 
attention mechanism is very hard to train with only a single reward signal when the agent 

11  As mentioned in Sect. 4.3.3, the Q-value heads are 32D vectors, so we merge the last two layers of the 
critic network to transform the vector into a scalar Q-value shown in Fig. 13a. The detailed transformation 
process is shown in the “Appendix 2”.
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population is too large, as indicated by Figs. 9 and 11. Future directions to address the set-
ting of more agents are two-folds: introducing more self-motivated training signals like the 
world models or introducing more assumptions on the environments. For example, [37] 
assumes that the agent can only interact with a few neighbor agents, while [38] assumes 
that all other agents can be modelled by a mean effect virtual agent, so they can control 
hundreds of agents. However, these are beyond the topic of this paper, and we refer the 
readers to [59–61] and [37, 38] for some intuitions.

Further Analyses In the experiments, we have given detail analyses about the ablation 
models, the learned policy, the proposed Actor Attention and Critic Attention. These anal-
yses have shown some intuitive reasons about why our DAACMP works well. However, 
more analyses can be done, e.g., the explanation of the learned communication messages, 
the influence of the hyperparameters K of the K-head Module (recall that we set K = 4 in 
all experiments). In fact, these have been widely studied by other researches about multi-
agent communication, and they are also beyond the topic of this paper. We recommend [18, 
41–44, 62] to the readers for the details.

Future Improvements Compared to previous methods, DAACMP makes the key contri-
bution that it is the first method to jointly address two challenging problems (namely, how to 
select more important messages from all messages adaptively, and how to process all impor-
tant messages efficiently) that hinder multi-agent communication. This is mainly achieved 
through two carefully designed attention mechanisms. Therefore, more advanced message 
processing mechanism design is the direction of future improvements. For example, we can 
apply Multi-head Attention Mechanism [30] or Graph Attention Mechanism [63, 64] to 
jointly attend to the communication messages from different relevant agents and different 
message representation subspaces. However, keep in mind that the advanced mechanisms 
are usually harder to train, thus more reward signals and small tricks are needed. Also, these 
are beyond the topic of this paper, and please refer [51, 65, 66] for a better understanding.

7 � Conclusion

This paper presents an actor-critic RL method to process a large number of communica-
tion messages among multiple agents. Our method embeds an attention mechanism both in 
the actor part and in the critic part, respectively. The attention mechanism in the actor part 
aims at selecting the most important messages from all communication messages, while 
the attention mechanism in the critic part is used to model the dynamic joint policy of 
teammates. Consequently, the communication messages can be processed in an effective 
way, and all agents will cooperate with each other much more efficiently.

We evaluate our method on three cooperative multi-agent control tasks with seven differ-
ent settings. The results show that our method not only outperforms several state-of-the-art 
methods by a large margin but also achieves better scalability. Moreover, to better under-
stand our method, we conduct thorough experiments: (1) the ablation studies indicate that 
the two proposed attention mechanisms are necessary for achieving better and more sta-
ble performance; (2) the illustration of a concrete policy shows that the agents have really 
learned a cooperative joint policy; (3) the analyses on the attention weights and the Q-values 
demonstrate that our method has mastered a sophisticated attention mechanism indeed.
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Appendix 1: The hyperparameters

See Tables 3, 4 and 5.

Table 3   The hyperparameters 
used in cooperative navigation 
tasks

Learning rate of actor 1e−3
Learning rate of critic 1e−2
Learning rate of target network 1e−3
Network weights initializer Xavier (uniform = False)
K of K-head of models with attentional 

critic
4

Hidden dimension of network 32 or 64
Activation function of network Relu or sigmoid or tanh
Buffer size 1e6
Batch size 128
Experiment count 10
Episode count 5000
Max episode length 10
Epsilon 1.0
Epsilon delta 0.0005
Epsilon end 0.0
Exploration OU noise
Discount factor 0.9
Random seed of experiment i 1000 ∗ i

Table 4   The hyperparameters 
used in packet routing tasks Learning rate of actor 1e−3

Learning rate of critic 1e−2
Learning rate of target network 1e−3
Network weights initializer Xavier (uniform = False)
K of K-head of models with attentional 

critic
4

Hidden dimension of network 32 or 64
Activation function of network Relu or sigmoid
Buffer size 62,800
Batch size 64
Experiment count 5
Episode count 2000
Max episode length 20 * 7 or 50 * 7
Epsilon 1.0
Epsilon delta 0.001
Epsilon end 0.0
Exploration Based on human prior
Discount factor 0.95
Random seed of experiment i 1000 ∗ i
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Appendix 2: The layer merging method

This section introduces the layer-merging method that transforms the multi-dimensional 
action conditional Q-values into scalar Q-values.

Originally, we want to implement the following equation (here, we take K = 3 as an 
example):

where Qi is the real Q-value used in Bellman equations, Qik is the k-th Q-value head, and 
wk is the weight of each Q-value head, respectively. Note that in the equation, Qik is a sca-
lar. This is the original naive idea.

However, as mentioned in the main paper, in our real implementation, the action condi-
tional Q-values Qk

i
 (i.e., the Q-value heads) and the contextual Q-value Qc

i
 are 32D vectors 

that mimic the scalar Q-value. To generate the real Q-value Qi used in Bellman equations, 
we further add a fully-connected layer, which has one output node representing the real 
Q-value Qi , after the contextual Q-value Qc

i
.

With the above precondition, we use the variables in the main paper (i.e., in our real 
implementation) to calculate wk and Qik (and accordingly, Qi ) in Eq. (13) in a suitable 
way.

Recall that, in the real implementation, Qi is generated using:

where Qc
i
 is the 32D contextual Q-value, Qc

i

m is the m-th element of Qc
i
 , and lm is the m-th 

network weight which links Qc
i

m and Qi . Note that lm is a scalar, and the last layer of the 
critic network can be denoted as L = [l1, l2,… , l32]

Recall that, in the real implementation, the contextual Q-value Qc
i
 is generated using:

(13)Qi = w1Qi1 + w2Qi2 + w3Qi3

(14)Qi = l1Qc
i

1
+ l2Qc

i

2
+⋯ + l32Qc

i

32

Table 5   The hyperparameters 
used in traffic control tasks Learning rate of actor 1e−3 or 0.5 * 1e−3

Learning rate of critic 1e−2 or 0.5 * 1e−2
Learning rate of target network 1e−3 or 0.5 * 1e−3
Network weights initializer Xavier (uniform = False)
K of K-head of models with attentional 

critic
4

Hidden dimension of network 32 or 64
Activation function of network Relu or sigmoid
Buffer size 1e6
Batch size 64 or 128
Experiment count 10
Episode count 2000
Max episode length 100
Epsilon 1.0
Epsilon delta 0.001
Epsilon end 0.0
Exploration Random
Discount factor 0.99
Random seed of experiment i 1000 ∗ i
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where Qk
i
 is the action conditional Q-values (each of which is a 32D vector), and 

W = ⟨W1,W2,W3⟩ is the learned attention weight where W1 +W2 +W3 = 1 . Note that Wk 
is a scalar. Accordingly, the m-th element of Qc

i
 is generated using:

Then we can rewrite Eq. (14) as:

Comparing Eq. (18) with Eq. (13), we can calculate wk and Qik using:

As can be seen from the above equations, this method directly connects the action condi-
tional Q-values Qk

i
 with the last layer of the critic network L to transform the multi-dimen-

sional Q-value into scalar Q-value. It can be seen as a layer merging method. We expect 
that the above analysis is acceptable.
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