
Dino: A Block Transmission Protocol with Low
Bandwidth Consumption and Propagation Latency

Zhenxing Hu and Zhen Xiao
School of Computer Science, Peking University

{hzx, xiaozhen}@pku.edu.cn

Abstract—Block capacity plays a critical role in maintaining
blockchain security and improving transactions per second (TPS).
Increasing block capacity can help attain higher TPS, but it also
prolongs block propagation latency and degrades system security.
In the present paper, we argue that existing work compressing
the block size to shorten block propagation latency introduces an
undesired side effect, which is that the size of compressed blocks
will increase with transaction volume. Instead, we propose Dino, a
new block transmission protocol between two peers. Once a node
receives a Dino block, it can recover the original block with that
Dino block and transactions in its transaction pool. Since Dino
transmits block construction rules instead of compressed block
content, it has good scalability to transmit blocks with larger
transaction volume. We deploy Dino into Bitcoin and Bitcoin
Cash to compare it with the state-of-art protocols: Compact,
XThin, and Graphene. For a block with 3,000 transactions, its
corresponding Dino block is no more than 1 KB in size, which
is only 4% of a XThin block, 5% of a Compact block, and 20%
of a Graphene block. The size of Dino blocks stays constant
when the transaction volume reaches Bitcoin and Bitcoin Cash’s
protocol limit. Simulation experiments show that Dino scales well
with higher transaction generation rates and can reduce block
propagation latency.

Index Terms—blockchain, P2P, block transmission

I. INTRODUCTION

TPS is a pain point in the public blockchain. A general
method to improve TPS is adding more transactions in one
block. However, this leads to the increase of block size
as well as the block propagation latency, incurring security
issues like forking [1], double spending [2] [3], and other
mining attacks [4] [5]. A best-of-both-world solution is to
compress the block size while increasing the number of
transactions in it. Existing mainstream public blockchains
like Bitcoin (BTC) and Bitcoin Cash (BCH) have already
deployed block compression approaches, namely the Com-
pact [6], Graphene [7], Xthinner [8], and XThin [9]. Although
they achieve good compression results, they still cannot avoid
the increased block size due to increased transaction volume
since their mechanisms depend on compressing the original
block content. Furthermore, previous research [10] [1] show
that when the block size exceeds 20 KB, the block propagation
latency increases rapidly as its size increases. An efficient
block transmission protocol will have the following benefits:
(1) Each block can contain more transactions to improve TPS;
(2) It takes less bandwidth to transmit blocks; (3) It helps
reduce block propagation latency and improve system security.

Zhen Xiao is corresponding author.

These features make such a protocol appealing. However, it is
still uncertainty that if there exists such a protocol.

Due to the research gap, we propose a new block trans-
mission protocol, Dino, which solves the drawback of the
previous approaches by transmitting block reconstruction rules
instead of compressed block content. When transmitting a new
block in Dino protocol, the sender only needs to transmit
missing transactions and a block reconstruction rule. The
recipient can quickly recover the original block based on the
reconstruction rule and transactions in its transaction pool.
Because Dino no longer transmits block content, its bandwidth
consumption is low and does not increase with the transaction
volume in a block. In summary, this paper makes the following
contributions:

• We propose a new block transmission protocol, Dino, that
transmits block construction rules instead of compressing
block content.

• We deploy Dino on Bitcoin and Bitcoin Cash to compare
it with the state-of-the-art block transmission protocols.
For a block with 1 MB, the size of a Dino block is 4%
of a XThin block, 5% of a Compact block, and 20% of a
Graphene block. Besides, the size of Dino blocks remains
almost constant when the transaction volume increases
from zero to its maximum volume limit.

• We estimate Dino’s performance in simulation experi-
ments with larger transaction volume and higher transac-
tion generation rates. The results show that Dino’s band-
width consumption increases slowly when the transaction
generation rate rises, which means Dino can help reduce
block propagation latency and improve system security.

II. BACKGROUND

Blockchain is a hash list of blocks that contain transactions.
The blocks, which contain many transactions generated by
participants, are stored in the peer-to-peer network which
manages the blockchain. Before being packaged into a block,
every transaction must be validated by every node in the
network. In general, there are two types of nodes in the
blockchain network, light nodes and full nodes. The light
nodes only store the block headers of blockchain, and the full
nodes hold the complete blockchain data and can mine new
blocks to extend the blockchain. In the following, we take
Bitcoin as an example to explain activities in the blockchain
network.

(a) The Full protocol. (b) The Compact protocol.

Fig. 1. The Full and Compact protocol.

A. Transaction Relay

In the blockchain network, most transaction relay protocols
are variations of Gossip [11] [12]. For instance, Bitcoin,
Bitcoin Cash, and Ethereum use Diffusion [13] to relay
transactions. Since a node usually has multiple connections
and a typical transaction is about several hundred bytes, a node
usually does not directly relay a newly received transaction
to its peers. For example, when node A receives a new
transaction, A checks the transaction’s validity first. If it
is valid, A will broadcast an inventory (INV) message that
contains the transaction hash to other neighbors. When A’s
neighbor B receives that INV message, it will send a GetData
message to A to ask for that transaction if B does not have it.
As we can see from the above process, it usually takes three
messages to transmit a new transaction between two nodes.

If a newly received transaction is valid, a node will put
it into its transaction pool. The transaction pool (also called
mempool) is used to store information on unconfirmed trans-
actions.

B. Mining Process

Miners are nodes that compete to extend the blockchain.
They collect transactions generated in the network and package
them into blocks continuously.

To motivate nodes to participate in the mining process,
nodes who mined a valid new block will get some rewards.
Miners generate a block according to Equation 1 in which B
denotes a block, C denotes the block capacity, P denotes its
mempool and F denotes the transaction package algorithm.
As miners prefer to package transactions with higher fee rates
into blocks to obtain higher profits, the transaction package
algorithms F in BTC and BCH are designed to package
transactions with higher fee rates first. When a miner finds
a proper nonce for the mining block, it will broadcast the new
block to its peers in a snap to guarantee its leading position.
Besides, miners also need to receive newly generated blocks
as early as possible to guarantee that they always mine on the
legal chain.

B = F (C, P) (1)

C. Block Transmission

There are two kinds of block relay protocols in the Bit-
coin core client. One is the Full block relay protocol which
transmits the whole block data, and the other is the Compact
block relay protocol [6], which only relays the first 6 bytes of
a transaction hash of all transactions. When a node receives a

Fig. 2. An example of Dino protocol.

Compact block, it needs to reconstruct the block with transac-
tions in its mempool first. A node can reconstruct the block if
all transactions in the new block exist in its mempool and there
is no hash collision. Otherwise, it needs to send a message
to request missing transactions. Fig. 1 demonstrates those
two protocols. There are also some other block transmission
protocols such as XThin [14] and Graphene [7], which are
deployed on Bitcoin Cash.

III. DINO PROTOCOL
The bandwidth consumption of the current block compres-

sion protocols increases linearly with their transaction volume
because they always compress the whole block content, such
as the Compact [6], XThin [14], and Graphene [7]. Henceforth,
if the transaction volume in a block doubles, their bandwidth
consumption will double too. The aim of this paper is to
explore a block transmission protocol with good scalability to
a larger transaction volume among a decentralized blockchain
network. The next section is focused on the protocol conditions
of Dino.

A. Protocol Conditions

The first condition is that almost all transactions in a new
block have already existed in nodes’ mempools. As there is
no way to let a node obtain missing transactions in a new
block other than directly sending them, the current block
compression protocols such as the Compact [6], XThin [14],
and Graphene [7] are based on this assumption. Based on
this condition, a node can reconstruct new blocks through its
mempool. We will measure this condition in section IV.

The second condition is that miners are profit-oriented and
prefer to package transactions with high fee rates into blocks.
It is nearly the truth since the nature of rational miners is
profit-reapers. As the transaction package algorithms in BTC
and BCH are designed to gain the maximum profit, miners
usually use them to generate blocks. Based on this condition,
it is possible for a node to predict which transactions in its
mempool will occur in the next new block. In the next section,
we will describe the details of Dino.

B. An example of the Dino Protocol

The node in this paper refers to a full node that participates
in the transaction and the block relaying process. For ease of

TABLE I
DEFINITION OF SYMBOLS IN DINO.

Symbol meaning
i, j, k Three full nodes.
C The block capacity.
B A valid block mined by a miner.
P The mempool of a node.
F The transaction package algorithm.
R The transaction hash receiving list.
S The transaction hash sending list.
M The missing transaction set get from B − (R ∪ S).
PB The prediction block.
PBx The prediction block built by node x.
T The transformation message that transforms PB to B.
Lr The local received transactions for R.
Rr The remote received transactions for S.

exposition, when we say a node sends or receives a transaction
hash, it means a node sends or receives an INV message, and
vice versa. Suppose a node j receives a new block B and
tries to send it to its peer k. Fig. 2 is an example that shows
how node j transmits B to node k through the Dino protocol.
In this instance, we ignore the block header and the coinbase
transaction of B. Table I lists all symbols we used in the Dino
protocol.

In the example, node j uses a receiving list R to store
transaction hashes it receives from node k, and it also uses
a sending list S to store transaction hashes it sends to node
k, and so does node k. During the transaction relay process,
when node j sends a transaction hash to node k, node j puts
the transaction hash into its S, and node k puts that hash into
its R when it receives that transaction hash.

In step 1, node j receives a new block B. In step 2,
node j iterates all transactions in B and compares them with
transactions in its R and S. After that, node j finds that
transaction TXZ does not exist in its R and S, then puts TXZ
into the missing transaction set M , which contains transactions
that both node k and node j do not have. Further, when
iterating over all transactions in B, node j finds transactions
in S that locate behind TXE and do not exist in block B. It
also finds transactions in R that locate behind TXA and do
not exist in B. We call TXE and TXA the sending anchor and
the receiving anchor, respectively.

In step 3, node j inputs transactions in M, S[: TXE]
(include TXE), and R[: TXA] (include TXA) into Equation 1
and gets a prediction block PBj . When creating the PBj ,
node j sets the block capacity to infinite to ensure all trans-
actions in B will occur in PBj .

In step 4, node j compares PBj with B and gets a
transformation message T that contains information about how
to transform PBj to B.

In step 5, node j packs M , sending anchor, receiving anchor,
and T into a Dino block and sends it to node k. We will explain
the detail of T in section III-F.

In step 6, node k receives that Dino block and uses
transactions in M , S[: TXA], and R[: TXE] to generate
a prediction block PBk which is exactly the same as PBj .

Fig. 3. Two peers sending received transaction messages.

In step 7, node k transforms PBk to block B with T in
that Dino block.

As Dino block does not compress block content and only
contains some missing transactions and a transformation mes-
sage, it costs only several hundred bytes to transmit a large
block. Before further discussing Dino’s overall performance,
we will focus on its components first.

C. Sending and Receiving Lists

As Dino is a protocol that sends block reconstruction rules
instead of block content, the key here is that two peers can
generate two identical prediction blocks. To this end, there
should be a common transaction set for two peers, which
functions as an object of reference. The problem is how to
maintain that common transaction set and keep its consistency.

In Dino, each node uses a sending list S and a receiving list
R to function as a mempool of reference. However, it will cost
too much for every two peers to maintain a common mempool.
Thus, Dino allows S and R only store transaction hashes to
save memory, and the complete transactions are stored in a
node’s own mempool. For two nodes, once a peer receives
a new transaction that does not exist in its S and R, it will
send that transaction hash to the other peer and put it into
its S. Moreover, once a peer receives a transaction hash from
the other peer, it will put it into its R. Hence, the transaction
order in a node’s R is the same as that in the other node’s S.
The design of the two lists is perfectly compatible with the
transaction broadcast process in the current public blockchain,
such as Bitcoin and Bitcoin Cash.

D. Received Transaction Message

In the transaction broadcast process, when node k sends an
INV message to node j, node j may not ask node k for that
transaction because node j may already have received it or
node j is waiting for another node to send that transaction.
It means node k can not know which transactions in its S
node j has received. That prevents node j and node k from
generating two identical prediction blocks. Thus, Dino allows
each node periodically to send a message to the other peer to
tell which transactions it has received so far. That message is
called the received transaction message. Each node uses two
variables: local received transaction Lr and remote received
transactions Rr. Lr is maintained by the node itself and Rr

is maintained by the other peer.
Fig. 3 shows how node j and node k send received

transaction messages to each other. Node k sends a received
transaction message that contains a transaction hash TXH to

node j, which means node k has received all transactions in
its receiving list R before, including TXH. After sending that
message, node k updates its Lr from TXF to TXH. Node j will
update its Rr from TXF to TXH when it receives that message.
Similarly, node j sends a received transaction message that
contains a transaction hash TXA to node k, which means node
j has received all transactions in its receiving list R before,
including TXA. After sending that message, node j updates
its Lr from TXC to TXA. Node k will also update its Rr

from TXC to TXA when it receives that message.
By periodically sending received transaction messages, both

node j and k can know which transaction messages the
other one has received in their receiving and sending lists.
For the nodes that significantly care about privacy leakage
by periodically sending received transaction messages, we
provide an alternative approach in section VI-B.

E. Prediction Block

The recipient can successfully transform PB to B on the
condition that PB contains all transactions in B. Therefore,
upon receiving a new block, the sender needs to find those
transactions in the new block who do not exist in S and R.
We call those transactions missing transactions, and they will
be put into the missing transaction set M and sent to the
recipient. Having found the missing transactions, the sender
will put transactions in M , R, and S into the transaction
package algorithm F to generate a PB whose transaction
order is very similar to the transaction order in B. It should be
noted that not all transactions in R and S are used to generate
PB because some transactions in R and S that do not exist in
the new block can be eliminated. We will discuss that process
in section III-G.

In Dino’s implementation, each node uses transactions in its
mempool to generate PB, and the transaction hashes in M ,
R, and S function like filters to filter out transactions absent in
them. Since two peers maintain S and R, conflicting transac-
tions may occur in M , R, and S. Dino gives transactions in M
higher priority than those in R and S. If there are conflicting
transactions in R and S, the transactions with higher fee rates
are considered valid.

F. Transformation Message

After building PB, the sender needs to compute the trans-
formation message T . As PB contains all transactions in B,
the transactions in B exist in an interval of PB. Moreover,
since PB and B are generated by the same greedy algorithm
F , their transaction orders are very similar. By deleting and
reordering a few transactions in PB, the transaction order in
PB can be the same as that in B. The sender gets T as follows:

(1) For each transaction in B, the sender finds their corre-
sponding indexes in PB and put them into an array, which
is called the index array.
(2) The sender puts the minimum and the maximum el-
ements of the index array into another array. We call it
the interval array and use letter I to denote it. Thus, all
transactions in B exists in PB[I[0] : I[1]].

(3) The sender finds the longest increasing subsequence
(LIS) in the index array, and we call it a LIS array.
(4) The sender iterates each transaction in PB[I[0] : I[1]].
If that transaction does not exist in B , the sender puts
the index of that transaction into a delete array; if the
transaction exists in B but does not exist in the LIS array,
the sender puts its index in PB as well its index in B into
a reorder array. If that transaction exists in the LIS array,
the sender does nothing.

A transformation message T contains three elements, the
interval array, the delete array, and the reorder array. The
interval array in Fig. 2 is [0, 8], which means transactions in
B exist in PB[0 : 8]. The delete array in Fig. 2 is [1, 5], which
means node k should delete TXG and TXH. Each element in
the reorder array contains two indexes, and the reorder array
in Fig. 2 means node k should put the transaction at PB[4]
in B[4].

When node k receives a Dino block, it can construct PBk

which is identical to PBj . Then, node k can transform PBk

to B with T in that Dino block.

G. Optimize Dino’s Bandwidth

Since all transactions in B exist in an interval of PB,
“transaction in PB” in this section means transactions in
PB[I[0] : I[1]]. The transaction set that generates PB is
different from the one generating B, or, to be more precise,
the former contains some transactions while the latter does
not. We call those transactions the redundant transactions.
The more redundant transactions there are, the more different
the transaction order of PB from that of B is, and the more
transactions there are to be deleted and reordered in T . Hence,
we should try to eliminate those redundant transactions before
building PB. We still take Fig. 2 as an example to explain
our viewpoint. What is more, we suppose miner i mines B at
time t1 and node j receives it at time t2.

1) Block Propagation Latency: Block propagation latency
has a significant impact on the size of T . t2 − t1 is the
time for B to propagate to node j. Although the transactions
generated during block propagation do not exist in B, they
may enter node j and node k’s sending and receiving lists
during the transaction broadcast process. If node j directly
uses all transactions in its S and R to generate PBj , it will
lead to a significant difference between the transaction orders
of PBj and B. Take Fig. 2 as an example, suppose node
j’s Lr for R is TXI, and Rr for S is TXJ. If node j uses
transactions in R[: Lr] and transactions in S[: Rr] to generate
PBj , PBj will contain TXJ, TXH and TXI. However, those
three transactions do not exist in B because they had not
entered the miner’s mempool when the miner generated B.
As the blockchain network generates transactions all the time,
if it takes much more time for B to propagate to node j,
more redundant transactions will enter into its sending and
receiving lists. The consequence is that the transformation
message contains many redundant transactions that need to
be deleted and reordered, making the Dino block very large.

We use two anchors to eliminate the impact of block
propagation latency. One is the sending anchor for S, and the
other is the receiving anchor for R. Anchor is a transaction
hash, for a transaction hash list, transactions who are located
behind an anchor do not exist in B. For node j, at step
2 in Fig. 2, the receiving anchor is TXA, which means
transactions who are located after TXA do not exist in B,
and the sending anchor is TXE, which means transactions
who are located after TXE do not exist in B. Finally, The
node j uses transactions in M , S[: TXE], and R[: TXA] to
build PBj . By using sending and receiving anchors, redundant
transactions generated during the block propagation process
can be excluded.

2) Transaction Generation Rate: Besides the block prop-
agation latency, the transaction generation rate, namely the
number of transactions generated every second, is another
factor that causes the difference between the transaction orders
of PBj and B. We assume the time for a transaction to
propagate to the whole network is no longer than ∆t. For
node j’s receiving anchor TXA, we suppose node j receives
TXA at time tn and miner i receives TXA at time tm, and
then we get Equation 2.

|tn− tm| ≤ ∆t

⇒ tn−∆t ≤ tm ≤ tn+∆t
(2)

That B contains transaction TXA means miner i firstly
receives TXA and then mines B. Thus, we get Inequality 3.

tm ≤ t1 (3)

After t1, transactions miner i receives at tx, (t1 ≤ tx) may
be received by node j at time t, then we get Inequality 4
according to Inequality 2.

tx−∆t ≤ t ≤ tx+∆t (4)

Based on Inequality 2, Inequality 3, and Inequality 4, we
get Inequality 5. Inequality 5 implies that transactions miners
received after t1 do not exist in B but they may be received
by node j between tn− 2∆t and tn.

tn−∆t ≤ tm

⇒ tn−∆t ≤ t1 ≤ tx

⇒ tn− 2∆t ≤ t1−∆t ≤ tx−∆t

⇒ tn− 2∆t ≤ t

(5)

If the transaction generation rate is v, there are at most
2∆t×v redundant transactions in PB[I[0] : I[1]]. Since those
redundant transactions are located in the tails of S and R,
Dino uses two bitsets [15] to eliminate those redundant trans-
actions; one bitset is for the sending list, and the other is for
the receiving list. For S, the sender traces 2∆t×v transactions
before the sending anchor, and for each transaction, if it exists
in the new block, we set its bit to ‘1’; if it does not exist in
the new block, we set its bit to ‘0’, and so does R. Those
transactions whose bit is ‘0’ are redundant transactions, and
they will not be used to generate the prediction block. The

(a) First 24 blocks after restart. (b) Proportion of transactions.

Fig. 4. Transaction Proportion in mempool.

sender puts the two bitsets into that Dino block and sends
them to the recipient. Upon receiving that Dino block, the
recipient eliminates redundant transactions according to those
two bitsets and anchors before building PB.

One bit can filter out one redundant transaction. It helps
Dino eliminate those redundant transactions caused by the
transaction generation rate with low bandwidth cost. Since
the two anchors and two bitsets can help eliminate almost all
redundant transactions, the transaction order in PB is almost
identical to that in B.

The next section is focused on the evaluation of Dino.

IV. EVALUATION

As far as we know, the Compact, XThin, Xthinner, and
Graphene are the state-of-art protocols in the current produc-
tion blockchain network. As the author of Xthinner states
that Xthinner is not as compact as Graphene [16], it is not
considered for comparison in this paper. The Compact is
deployed on the Bitcoin and Bitcoin Cash, and the XThin
and Graphene are deployed on the Bitcoin Cash. Hence, we
deploy Dino on Bitcoin Core 0.19 and Bitcoin Cash’s 0.19
client to compare with Compact, XThin, and Graphene.

A. Implementation Detail

In implementing Dino, taking both the performance and
privacy into account, we let a node send a received transaction
message to its peer when it continually receives at least four
transactions in its R, and let a received transaction message
contain only the first 6 bytes of a transaction hash to save
bandwidth. In current Bitcoin, the transaction generation rate
v is about 7 tx/s, and the time for a new transaction to
reach 90% nodes is about 16 seconds [17]. Thus, we set the
bitset in Bitcoin and Bitcoin Cash to 28 bytes. After six-block
confirmation for a block, a node can delete transaction hashes
that belong to that block in the sending and the receiving lists
to save memory.

B. Experiment Setup

We use 16 nodes to start the experiment and each of
them has 4 cores and 16 GB memory, the bandwidth among
our nodes is 1.5 Gb/s. Those nodes are distributed in Asia,
America and Europe. Each node connects to at least 8 nodes
and can have at most 125 connections. A node starts as fol-
lows: (1) Each node independently connects to the blockchain
network to receive new blocks and transactions; (2) The
node randomly connects to our own nodes with decreasing

(a) Comparison in BTC.

(b) Comparison in BCH.

Fig. 5. Bandwidth comparison with missing transactions.

connection numbers. The first node connects to 15 other nodes,
the second node randomly connects to 14 nodes, and the third
node randomly connects to 13 nodes, etc..

C. Observation

Dino assumes that almost all transactions in a new block
have already existed in nodes’ mempools. To have a clear
understanding of this assumption, we run a bitcoin node with
the default configuration for one month to collect data. We stop
and restart the node during the experiments to test the impact
of missing transactions on block transmission. Fig. 4a shows
that after receiving the first 12 blocks, the node’s mempool
contains the overwhelming majority of the transactions in new
blocks. The proportion of missing transactions decreases with
the increase of running time. Fig. 4b shows the proportion of
transactions that already exist in the node’s local mempool. We
find that at least 97% of transactions in a new block exist in the
local mempool. The white blank low ebbs in Fig. 4b is caused
when the node finished block synchronization and started
to receive new blocks; its mempool has a low transaction
proportion because the node misses many transactions during
its offline time. The transactions in mempool originate from
transaction broadcast process, thus Dino’s first condition is
easy to satisfy.

Fig. 4 also shows the inefficiency of Full block protocol and
Compact block protocol. The Full block transmission protocol
ensures that the recipient can ultimately receive all the new
block transactions, but it wastes much bandwidth and may
cause bandwidth spikes in the block relay process if the block
size is too large. The Compact block just transmits transaction
hashes whose size is much smaller than a full block. However,
another round trip is needed to receive missing transactions if
the recipient fails to reconstruct the new block.

(a) Comparison in BTC.

(b) Comparison in BCH.

Fig. 6. Bandwidth comparison with no missing transactions.

D. Bandwidth Consumption

1) Bandwidth with Missing Transactions: Because many
transactions are missing during the starting hours, Dino,
Compact, XThin, and Graphene all need to transmit the
missing transactions. To clearly show the impacts of miss-
ing transactions, we use “Dino+”, “Compact+”, “XThin+”
and “Graphene+” to denote their bandwidth consumption
excluding missing transactions. Fig. 5 shows the bandwidth
consumption of those protocols when our nodes receive the
first new 50 blocks after synchronizing history blocks. The
left y-axes in Fig. 5a and Fig. 5b denote the size of “Dino+”,
“Compact”, “XThin+” and “Graphene+”. The right y-axis in
Fig. 5a denotes the size of missing transactions. Because the
transaction generation rate in Bitcoin Cash is lower than that in
Bitcoin, our nodes can collect all transactions in BCH quickly,
thus to show the result clearly, we set the right y-axis in Fig. 5b
as the number of missing transactions.

As transactions in a block are sorted by their hashes in
Bitcoin Cash, the transaction order in the new block is always
a subsequence of the transaction order in Dino’s prediction
block. Thus, Dino’s bandwidth consumption in Bitcoin Cash
is better than that in Bitcoin. The results show that if there
are missing transactions, the sizes of Dino, XThin, Compact,
and Graphene largely depend on the number of missing
transactions, while Dino’s bandwidth is still the lowest.

2) Dino’s Scalability to Transaction Volume: When a node
runs long enough, almost all transactions in a new block
have already existed in nodes’ mempools. Fig. 6 shows the
bandwidth comparison when there are no missing transactions.
When the transaction volume increases from zero to its upper
limit, the sizes of the Compact block, the XThin block, and the
Graphene block increase linearly, while the size of Dino blocks
is about 600 bytes in BTC and 400 bytes in BCH. Furthermore,

(a) Time efficiency (b) Memory usage (c) Extra bandwidth usage.

Fig. 7. Dino’s time, memory and extra bandwidth consumption.

TABLE II
BREAKDOWN OF BANDWIDTH COST IN A DINO BLOCK

Component Bandwidth(BCH) % Bandwidth(BTC) %
coinbase 61.13% 66.53%
header 32.59% 16.33%

deleted txs 6.00% 12.86%
reordered txs 0.00% 3.79%

bitset 0.28% 0.49%

the size of Dino blocks also remains constant. This is because
transaction volume has no impact on the size of Dino blocks.
For a block with 3,000 transactions, its corresponding Dino
block is no larger than 1 KB, which is 4% of a XThin block,
5% of a Compact block, and 20% of a Graphene block. The
result shows that Dino has good scalability to transaction
volume for current Bitcoin and Bitcoin Cash.

3) Bandwidth Component Statistics: We break the compo-
nent of Dino blocks that have no missing transaction. Table II
shows the average proportion of every component in a Dino
block in BTC and BCH, respectively. The highest proportions
are the coinbase transaction and block header, which means
that when there are no missing transactions, the size of a
Dino block can be tiny. The low proportion of deleted and
reordered transactions means the transaction orders between
prediction blocks and the new block are very similar, proving
our assumption that miners are greedy and prefer to package
transactions with higher fee rates. As the transactions in a
block are sorted by their hashes in BCH, the proportion of
reordered transactions in BCH is always zero.

E. Time Efficiency and Memory Usage

1) Time Efficiency: We test Dino’s time consumption of
building a Dino block and recovering the new block from a
Dino Block. To build a Dino block, the sender has to construct
PB and calculate the difference between PB and B, whose
time complexity is O(nlog(n)), and the time complexity to
recover a new block is O(n). Fig. 7a is a scatter plot that
shows the time consumption of Dino. For a block with about
3,000 transactions, it is very fast to recover a new block and
build a Dino block.

2) Memory Usage: We collect data on nodes’ memory
usage of sending lists and receiving lists. For each transaction,
a node only needs to contain its hash and a pointer to the
transaction. The memory usage increases with the transaction

hashes in the two lists, and when the nodes have collect
transactions in the network, their memory costs will keep
constant. It is observed that Bitcoin’s mempool usually has
about 60,000 transactions, and it costs about 2.7 MB to store
those transactions. For a node with 15 connections, it cost
about 40.5 MB. In Bitcoin Cash, there are usually 3000
transactions in a node’s mempool, and it costs 0.15 MB to
store transaction hashes. For a node with 15 connections, it
cost about 2.1 MB. Fig. 7b shows a node’s memory usage
when using the Dino protocol to transmit blocks to different
peers. We believe Dino’s memory usage is acceptable in the
current blockchain network.

3) Extra Bandwidth Consumption: To understand the
bandwidth of Dino’s received transaction message, we collect
data of the bandwidth consumption of INV messages as
well as the bandwidth consumption of received transaction
messages in Dino. Fig. 7c shows bandwidth consumption
of INV messages and received transaction messages. The
result shows that as the process goes on, the INV message
occupies large bandwidth consumption while the received
transaction messages occupies less bandwidth. The bandwidth
consumption of received transaction messages is only about
5% of the bandwidth consumption of INV messages in the
transaction relay process. We believe that the extra bandwidth
consumption is acceptable.

V. SIMULATION

As BTC and BCH’s transaction generation rates and trans-
action volume are limited, we test Dino’s scalability to larger
transaction volume and higher transaction generation rates as
well as its network effects in our simulator.

A. Simulator Setup

We modified an open-source Bitcoin Simulator [18] to sup-
port transaction relay and Dino protocol. There are two types
of nodes in our simulation: full nodes (do not mine blocks)
and miners. We set nodes number to 9000 full nodes [19]
and 16 miners. For full node configuration, the bandwidth
and network latency come from Verizon [20], [21]. Each
full node connects to at least eight connections and has at
most 125 connections, which is the default configuration in
Bitcoin. For miners’ configuration, their number, connections
and bandwidth come from blockchain.info. We set the coin-
base transaction as 400 bytes and the block interval as 10

Fig. 8. Dino’s scalability to larger transaction volume.

minutes. We collect 100,000 transactions from the Bitcoin
network to use their parameters in the simulation. In each
experiment, we let miners generate 1,000 blocks to measure
Dino’s performance.

The nodes start up as follows: (1) Miners connect to
each other; (2) Each full node connects to eight random
nodes. Every second, each node generates a transaction with
probability p. If the node number is n, transaction generation
rate is v, then p = v

n . It should be noted that we do not
account for heterogeneous nodes and leaving nodes during the
transaction relay phase (churn).

B. Scalability to Larger Transaction Volume

The block capacity is set to increase from 1 MB to 6 MB
and we test Dino’s scalability when the transaction volume in-
creases from 2,500 to 15,000. To provide miners with enough
transactions to fill the block, we set the transaction generation
rate at 28 tx/s. Fig. 8 shows the maximum, minimum and
mean bandwidth consumption of Dino blocks with different
transaction volumes. The number near the blue bar shows the
average bandwidth of Dino blocks. For a fixed transaction
volume, the size of Dino blocks is stable. The result further
proves Dino’s good scalability to larger transaction volume.

C. Scalability to Larger Transaction Rate

In section III-G we claim that transaction generation rates
have a significant impact on the size of Dino blocks. We
set the transaction generation rate to 7 tx/s, 14 tx/s, 28 tx/s,
56 tx/s and 112 tx/s. For each transaction generation rate,
we test the bandwidth consumption of Dino under block
capacity with 2MB, 4MB, 8MB and 16MB, respectively. For
a larger block capacity, we set a longer block interval to
let miner have enough transactions to package. The results
are shown in Fig. 9. For a fixed block capacity, the size of
Dino blocks increases slowly with the increase of transaction
generation rate because the bitset filters out many redundant
transactions. When the transaction generation rate is 7 tx/s,
the bitsets in Dino can filter out around 20 transactions.
When the transaction generation rate is 112 tx/s, the bitsets in
Dino can filter out at most 1000 transactions. The higher the
transaction generation rate is, the more redundant transactions
the two bitsets can filter out. The low costs of bitsets make it

Fig. 9. Scalability to larger transaction generation rates.

possible for Dino to have good scalability to higher transaction
generation rates.

D. Block Propagation Latency

We measure block dissemination latency to reach a certain
number of nodes in the network with different protocols.
Fig. 10 shows that as the block size increases, the block prop-
agation latency of Compact and Graphene protocols increase,
while Dino’s block propagation latency is almost constant. It
takes much more time for Compact and Graphene blocks to
reach the final 5% nodes that have poor bandwidth. However,
as the Dino block is much smaller and its block size stays
almost constant when the block increases from 1 MB to 32
MB, it takes less time for a Dino block to reach the last 5%
nodes. When the block increases to over 8 MB, Dino has a
substantial advantage over Compact and Graphene. Consider
the time for a block to reach 95% nodes of the network(t95),
the probability for a fork to occur is approximately as:

P (fork|Interval = 600sec) = 1− e
−t95
600 (6)

When the block size is 32 MB, the forking rate under Dino
protocol is 0.58%, which is still smaller than current Bitcoin’s
forking rate [18]. The result shows that Dino can help improve
TPS without degrading system security.

VI. DISCUSSION

A. Malicious Nodes

The fact that Dino needs two honest peers sounds like a
strong assumption. However, current transaction and block
transmission protocols all need two honest peers. A Dino node
can still identify double-spending transactions, invalid blocks
and DoS attacks by itself and disconnect from malicious
nodes. Furthermore, Dino helps block propagate faster among
the blockchain network, improving system security. We believe
rational miners and nodes are willing to use it.

B. Privacy Leakage

Dino needs two peers to tell each other which transactions
they have received in their receiving lists periodically, which
may bring extra privacy concerns for a node whose peer nodes
may know the time when it received a transaction [3] [22].
For nodes who are extremely concerned about their privacy,
they do not need to send received transaction messages

(a) block with 1MB (b) block with 8MB (c) block with 16MB (d) block with 32MB

Fig. 10. Block propagation latency with different block capacities.

periodically. When a recipient asks for a block, it should
send a block request message which contains a received
transaction message to the sender. This variation sacrifices
block transmission latency to obtain higher privacy and lower
bandwidth consumption.

C. Network Churn

Dino is not suitable for those nodes who connect or dis-
connect with other nodes frequently. Previous work shows
that 80% of connections among nodes keep for at least one
day [23], and that the average share of peers connected for
at least one day varies between 55% and 75% [24]. As long-
time connections occupy a large proportion, Dino can produce
a marked effect for those peers.

D. Backward Compatibility

Dino does not change the consensus protocol of Bitcoin or
Bitcoin cash and can be deployed incrementally (as long as
the two peers at both ends of the connection support it). Since
we do not deploy Dino to other blockchains to test Dino’s
performance and compatibility, it is not guaranteed that Dino
fits all permissionless blockchains, especially when miners
gain less on-chain transaction fee but obtain much more off-
chain profit by colluding with others.

VII. RELATED WORK

A. Block Compression

The XThin [14] demands the recipient to provide a Bloom
filter [25] that contains all transactions in its mempool to the
sender. Once the sender receives the Bloom filter, it transmits
an 8-byte short transaction hash list of all transactions and
missing transactions to the recipient. The Compact [6] is
similar to XThin. For the Compact in Bitcoin, the recipient
does not need to send a Bloom filter, and the sender transmits
a 6-byte short transaction hash list directly.

The Xthinner [8], an improved protocol based on XThin,
contains two optimizations. One is compressing the short
transaction from 8 bytes to 3 bytes. The other is using a
state machine to encode a 3-byte transaction hash to save
bandwidth further. The Graphene [7], which is better than
Xthinner [26], combines Bloom filters and invertible bloom
lookup tables (IBLT) [27]. In Graphene, the recipient needs to
send transaction volume in its mempool to the sender when it
asks for a block, and the sender responds with a Bloom filter

and an IBLT to help the recipient reconstruct a new block.
However, five messages are needed to transmit a block if the
recipient misses some transactions in the new block, and its
bandwidth consumption still grows with transaction volume
in a block. Velocity [28] is a block propagation method that
utilizes rateless erasure coding.

B. Network Topology

Kadcast [29] utilizes the structured overlay topology of
Kademlia [30] and realizes an efficient broadcast operation
with tunable overhead. However, it does not focus on reducing
block size and can not be deployed incrementally. There are
also some third-party relay networks, such as bloXroute [31],
Marlin [32] and Fiber network [33]. Those proposals introduce
the block delivery network (BDN) concept into the blockchain
network from the traditional content delivery network (CDN).
They are orthogonal to our work because we focus on re-
ducing the bandwidth consumption of transmission blocks by
reducing block size. In contrast, they focus on reducing block
propagation latency by introducing relay nodes.

VIII. CONCLUSION

This paper presents a block dissemination protocol that
transmits block construction rules instead of block content.
We show that current block propagation protocols suffer
from increasing bandwidth consumption brought by large
transaction volume. Further, we also discuss the necessary
conditions for a block transmission protocol that scales to a
larger transaction volume. Using these conditions, we propose
Dino and give a quantitative analysis of its performance. We
deployed Dino into Bitcoin and Bitcoin Cash to compare
it with the state-of-art protocols and tested its performance
in simulation experiments. Our results illustrate that Dino
has a substantial advantage of scaling to larger transaction
volume and higher transaction generation rates. Finally, our
work points out a new direction of block transmission that is
promising to overcome the contradiction between blockchain
networks’ performance and security.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their comments. This work was supported by the
National Natural Science Foundation of China under Grant
No.61872397. The contact author is Zhen Xiao.

REFERENCES

[1] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings. IEEE, 2013, pp. 1–10.

[2] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 906–917.

[3] M. Grundmann, T. Neudecker, and H. Hartenstein, “Exploiting transac-
tion accumulation and double spends for topology inference in bitcoin,”
in International Conference on Financial Cryptography and Data Secu-
rity. Springer, 2018, pp. 113–126.

[4] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in International conference on financial cryptography and
data security. Springer, 2014, pp. 436–454.

[5] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in bitcoin,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 692–705.

[6] M. Corallo, “Bip152: Compact block relay,” 2016. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

[7] A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and
S. Katkuri, “Graphene: efficient interactive set reconciliation applied to
blockchain propagation,” in Proceedings of the ACM Special Interest
Group on Data Communication, 2019, pp. 303–317.

[8] J. Toomim, “Benefits of ltor in block entropy encoding,” 2018.
[9] P. Tschipper, “Buip010: Xtreme thinblocks,” in Bitcoin Forum (1

January 2016). https://bitco. in/forum/threads/buip010-passed-xtreme-
thinblocks, vol. 774, 2016.

[10] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in International conference on financial cryptography and
data security. Springer, 2016, pp. 106–125.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, 1987, pp. 1–
12.

[12] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Min-
sky, “Bimodal multicast,” ACM Transactions on Computer Systems
(TOCS), vol. 17, no. 2, pp. 41–88, 1999.

[13] (2015) Bitcoin core commit 5400ef. [Online]. Available: https:
//bit.ly/2Q2Djux

[14] P. Tschipper. (2016) Buip010 xtreme thinblocks. [Online]. Available:
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/

[15] “C++ bitset.” [Online]. Available: http://www.cplusplus.com/reference/
bitset/bitset/

[16] J. Toomim. (2018) Block propagation data from bitcoin cash’s stress
test. [Online]. Available: https://medium.com/@j 73307/block-propaga
tion-data-from-bitcoincashs-stress-test-5b1d7d39a234

[17] “Dsn bitcoin monitoring.” [Online]. Available: https://www.dsn.kastel
.kit.edu/bitcoin/?ref=hackernoon.com#propagation

[18] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 3–16.

[19] “Global bitcoin nodes distribution.” [Online]. Available: https:
//bitnodes.io/

[20] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourced proofs of retrievability,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 831–843.

[21] Verizon. (2021) Verizon latency. [Online]. Available: http://www.veri
zonenterprise.com/about/network/latency/.

[22] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee, “Txprobe: Discovering bitcoin’s net-
work topology using orphan transactions,” in International Conference
on Financial Cryptography and Data Security. Springer, 2019, pp.
550–566.

[23] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,
“Erlay: Efficient transaction relay for bitcoin,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 817–831.

[24] T. Neudecker, Characterization of the bitcoin peer-to-peer network
(2015-2018). KIT Karlsruher Institut für Technologie, Fakultät für
Informatik, 2019.

[25] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[26] J. Toomim, “Block propagation data from bitcoin cash’s stress test,”
2018.

[27] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,”
in 2011 49th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 2011, pp. 792–799.

[28] N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic, and K. S. Can-
dan, “Velocity: Scalability improvements in block propagation through
rateless erasure coding,” in 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE, 2019, pp. 447–454.

[29] E. Rohrer and F. Tschorsch, “Kadcast: A structured approach to broad-
cast in blockchain networks,” in Proceedings of the 1st ACM Conference
on Advances in Financial Technologies, 2019, pp. 199–213.

[30] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[31] U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, “bloxroute:
A scalable trustless blockchain distribution network whitepaper,” IEEE
Internet Things J., 2018.

[32] M. Labs. (2019) Design and analysis of a decentralized relay network.
[Online]. Available: https://www.marlin.pro/whitepaper

[33] J. Toomim, “Fast internet bitcoin relay engine (fibre). 2017. homepage,”
August1, 2017.

