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Abstract—In permissioned blockchains, the bandwidth of con-
sensus nodes is mainly consumed by transaction ordering and
block distribution; hence, the allocation of consensus nodes’
bandwidth makes a significant difference to the system through-
put. Previous research focuses on the consensus layer and
attempts to optimize consensus protocols to improve throughput,
which, however, neglects the impact of data distribution on the
throughput and transfers performance bottlenecks to the network
layer. In fact, the overall throughput of permissioned blockchains
is co-determined by data production in the consensus layer and
data distribution in the network layer. This paper proposes
a novel data flow framework composed of Predis and Multi-
Zone. The former is a data production strategy for permissioned
blockchains that employ leader-based BFT protocols and the
latter, its corresponding network topology. Predis enables each
consensus node to contribute its idle bandwidth for block content
pre-distribution so that a much higher volume of transactions can
be confirmed in one consensus round, significantly increasing con-
sensus efficiency. Multi-Zone is a network topology to distribute
blocks. It can regulate the bandwidth consumption of consensus
nodes at a certain value during data distribution and effectively
reduce block propagation latency. To test our framework, we
implement Predis based on Hotstuff and PBFT, respectively,
and experiments show that Predis significantly improves their
throughput by 300% to 800%. Multi-Zone is implemented on
BFT-SMaRt and compared with random and star network
topologies, and it is shown that Multi-Zone holds excellent
scalability and the capability of reducing block propagation
latency by at least 50%.

Index Terms—permissioned blockchains, throughput, latency

I. INTRODUCTION

The permissioned blockchain, a distributed ledger that can

serve as a trusted ledger among mutually untrusted parties, is

widely adopted in business cooperations [1]. Data production

and distribution, as two major processes in permissioned

blockchains, exert significant impact on the system’s through-

put. The former is located in the consensus layer, where

consensus nodes pack transactions into a candidate block and

reach a consensus on its content, while the latter finds itself in

the network layer, where consensus nodes consume their own

bandwidth to distribute new blocks to full nodes.

PBFT (Practical Byzantine Fault Tolerance) [2] protocol is

widely used in mainstream permissioned blockchains, such

as [3]–[5]. It achieves O(n2) message complexity due to all-

to-all communication. Since then, PBFT has been extended

in several aspects (such as [6]–[9]). HotStuff [10] is another

milestone. It utilizes the chain structure and all-to-one voting

to reach O(n) message complexity and better scalability. From

then on, new proposals, such as Fireledger [11], Kauri [12],

Stratus [13], Leopard [14] and Narwhal [15], have been

advanced to improve throughput even further.

The improvement in the consensus layer may transfer

the throughput bottleneck to the network layer. To improve

throughput, recent solutions such as Narwhal [15], Stra-

tus [13], and Leopard [14] attempt to design blocks capable

of containing more transactions, which leads to larger blocks

whose propagation latency climbs linearly once their size

surpasses a certain limit [16], [17]. In addition, the rising

quantity of nodes, which usually leads to a longer propagation

latency, needs to be accompanied by a higher value of block

interval. For example, Bitcoin [18] sets up a block interval

of 10 minutes, provided that a block can propagate to most

of the nodes within this block interval. Data distribution is a

crucial factor affecting throughput, data propagation latency,

and data availability [19]–[21], yet research to appreciate its

significance remains to be covered.

In terms of data distribution, Compact [22], Xtreme [23],

Graphene [24], and Dino [25] compress block size, enabling

blocks to accommodate more transactions without prolonging

propagation latency. Fibre [26], Bloxroute [27], and Mar-

lin [28] employ a token incentive mechanism to introduce

relay nodes for the reduction of distribution latency. There

exist other proposals for improving the efficiency of data

distribution as well, such as [29]–[37]. These optimizations

require a better data production strategy to cooperate with to

unleash their potentials to the fullest.

The throughput of data production is mainly determined

by the bandwidth utilization of consensus nodes and block

propagation latency. On the other hand, data distribution

occupies the bandwidth of consensus nodes and determines

block propagation latency. Thus, its improvement requires a

solution of high-throughput data production and low-latency

data distribution. These two mutually influencing processes co-

determine the overall throughput of permissioned blockchains.

With this insight in mind, we propose a new data production

strategy Predis and its corresponding distribution mechanism

Multi-Zone for permissioned blockchains that adopt leader-
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based BFT consensus protocols (such as PBFT and HotStuff).

Predis and Multi-Zone constitute our data flow framework for

permissioned blockchains.

Predis allows each consensus node to continuously bundle

up transactions and multicast each of such bundles to other

nodes. In the end, parallel bundle chains constitute each node’s

transaction pool (mempool). At the start of every consensus

round, the leader cuts a slice of each bundle chain, constructs

a Predis block, and multicasts it to other nodes. The Predis
block is tiny and carries no transactions (block body) but

just metadata containing rules of block building and mapping

into multiple transactions. In this way, a large number of

transactions could be confirmed in one round.

Multi-Zone is devised to reach two goals: to keep the

bandwidth consumption by consensus nodes from growing in

distributing blocks as the number of full nodes rises; to harness

the bandwidth of full nodes effectively to scale down block

propagation latency. In Multi-Zone, the network is divided

into more than one zone. Each zone has a fixed number of

relayers (special full nodes) to receive stripes from consensus

nodes and forward them to other nodes. After receiving enough

stripes, a node can decode them to get a bundle and save that

bundle into its bundle chains. Once a new block is produced,

consensus nodes send its Predis block to the relayers in each

zone, which will in turn pass it on to other full nodes. A node

can then rebuild a new block with a Predis block and bundle

chains in its mempool. By virtue of the minimal sizes of Predis
blocks and efficacious data distribution in Multi-Zone, new

blocks can be swiftly propagated to the entire network.

It is duly noticed that Narwhal [15], Leopard [14], Stra-

tus [13] and Predis make each consensus nodes pack trans-

actions into a microblock (similar to the bundle in Predis)

and multicast them to others. At the start of every consensus

round, the leader puts microblock identifiers instead of trans-

actions into a proposal (also called a candidate block) and

multicasts it to others. The idea that decouples the distribution

of transactions from the consensus process can effectively

improve throughput. However, there will then arise the issue

of data availability. Faced with this problem, Narwhal employs

reliable broadcast (RBC) in which every node needs to collect

nc − f certificates of the current microblock before piggy-

backing them into the next microblock; Leopard adopts RBC

for the first consensus round, after which the leader organizes

the microblock identifiers along with their certificates into a

proposal; Stratus introduces a provably available broadcast

(PAB) primitive in which every producer collects f + 1
certificates after multicasting a microblock to guarantee that at

least one honest node holds the microblock. In contrast to the

above operations, Predis discards the RBC primitive. Instead,

a mempool is devised as a chained structure to arrive at the

equivalent outcome of RBC. Therefore, Predis can be counted

as the simplest solution in which every node continuously

produces bundles and piggybacks its latest bundle height on

its bundle to secure data availability. Furthermore, with the

rising volume of transactions, the sizes of proposals in Predis
(Predis blocks) remain almost unchanged, while those of its

counterparts manifest linear growth.

In summary, this paper makes the following contributions:

1) We propose Predis, which enables consensus nodes

to contribute idle bandwidths for the pre-distribution

of block content and scales down the complexity of

bandwidth consumption in candidate block distribution

from linear level to constant level.

2) Multi-Zone is then advanced in our research. It divides

the network into several zones and combines the mul-

ticast tree [38] with erasure coding [39] to decrease

bandwidth spikes in data distribution and reduce data

propagation latency.

3) To test its performance, Predis is applied to PBFT and

HotStuff. Experimental results show that Predis delivers

a significant improvement in throughput from 300%

to 800%. Besides, we implement Multi-Zone based

on BFT-SMaRt [6]. Compared with star and random

network topologies, Multi-Zone proves to hold excellent

scalability and reduce block propagation latency by at

least 50%.

II. SYSTEM MODEL

There are three roles in a permissioned blockchain: client,

full node, and consensus node. A client signs its transaction

and submits it to a full node, which maintains the history of the

ledger and stands at the service of clients. A consensus node is

a special kind of full node that packs transactions into blocks

and extends the ledger. We assume the client is honest, and the

system contains N full nodes, with at most f malicious nodes.

The number of consensus nodes is nc = 3f + 1, (nc ≤ N).
Designed for leader-based BFT consensus protocols, Predis

inherits the Byzantine threat and communication models [2],

e.g., malicious nodes may produce arbitrary values, delay or

omit messages, and collude with each other yet can not forge

the signatures of honest nodes. Further, the network is partially

synchronous, whereby a known upper bound Δ on the time for

message transmission holds after a Global Stabilization Time

(GST), which is unknown.

In the network layer, malicious full nodes can only delay or

omit messages, which will be tackled by failure probability.

Since there are at most f malicious nodes, a node can resist

Eclipse attack [40] by connecting to more than f other

nodes. In addition, nodes in permissioned blockchains do

not communicate with nodes without permission. Therefore,

attacks involving the control of a massive amount of nodes

(such as [40], [41]) are ignored.

III. PREDIS

Leader-based consensus protocols [2], [10], [12] can not

make good use of bandwidth for two reasons. For one, only

in the proposing stage is leader’s bandwidth utilized — for the

rest of the process, it remains idle. For another, as for non-

leader nodes, their bandwidth almost stays inactive throughout

the whole round of consensus. Although Narwhal, Leopard,

and Stratus tried to change this situation, the solution that we
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Node 1's mempool

Tip List Matrix
bdl_1_5: [5,6,5,5]
bdl_2_6: [4,6,3,4]
bdl_3_5: [5,5,5,4]
bdl_4_5: [5,5,4,5]

bdl_1_1 bdl_1_4bdl_1_3bdl_1_2 bdl_1_5

bdl_2_1 bdl_2_4bdl_2_3bdl_2_2

bdl_3_1 bdl_3_4bdl_3_3bdl_3_2 bdl_3_5

bdl_4_1 bdl_4_4bdl_4_3bdl_4_2 bdl_4_5

bdl_2_5 bdl_2_6

1. Extract Tip List

2. Cut bundle chains

Bundle height list
[5, 5, 4, 4]

Predis block
Previous hash (p)
Bundle header list (b)
Merkle root (m)
Sign(p,b,m)

3. Build predis block

Candidate block
Previous hash (p)
Merkle root (m)
Sign(p,b,m)
Txes in [bdl_1_1: bdl_1_5]
Txes in [bdl_2_1: bdl_2_5]
Txes in [bdl_3_1: bdl_3_4]
Txes in [bdl_4_1: bdl_4_4]

bdl_1_5
Previous hash (p)
Tip list (t)
Merkle root (m)
Merkle stripe hash
Sign(p, t, m)
TX List

Fig. 1. An example of Predis block packing.

provide in this paper, Predis, can achieve the equivalent effect

with a simpler mechanism.

A. Parallel Bundle Chains

In Predis, transactions are unceasingly packed into bundles,

which, structured like blocks, contain hashes pointing to their

parents. Every bundle belongs to one parent and assumes one

child. Once a bundle is produced, the producer will have it

signed and multicast it to other consensus nodes. Eventually,

every node possesses nc parallel bundle chains.

The structure of a bundle is presented in Fig.1, bdl 1 5,

where the green part represents its header, the gray region, its

body. As can be seen, a header is constituted by its parent hash

(previous hash), a tip list, a Merkle root, and the signature of

its producer. The tip list contains the height of the latest bundle

that the producer received, e.g., node 1’s mempool at the top

left of Fig.1. When node 1 packs the next bundle, its tip list

is [5, 6, 5, 5], which means that, for the first bundle chain,

the bundle producer has received bundles whose heights are

no higher than 5, and for the second chain, no higher than 6,

and so forth. A node checks a bundle upon its reception. For

a valid bundle:

1) Its parent is valid. If its parent does not arrive together,

the node requests that from its producer.

2) Transactions in the TX list are valid.

3) Its tip list is more updated than that of the parent bundle.

4) There exist no other bundles in conflict with it.

If a bundle is judged as valid, it will be saved into the

mempool. A conflict bundle is another valid bundle that has a

different bundle header but shares the same parent bundle hash

with the current one. As a malicious node may pack conflict

bundles and forward them around, a ban list is established in

Predis to exclude nodes producing conflict bundles. Once two

conflict bundles are detected, an honest node will multicast

them to other nodes and register its producer into the ban list.

Eventually, a detected malicious node will be itemized in the

ban list of all honest nodes.

B. Predis Block

As Predis organizes each node’s mempool into parallel

bundle chains, at the outset of every consensus round, for

each bundle chain, the leader cuts a slice of each bundle chain

and takes the last bundle header to construct a new proposal,

which is called Predis block. For a bundle chain, we suppose

all of the bundles of height lower than h have already been

confirmed in the last round. To cut that bundle chain, the

leader extracts the tip list from the latest bundle on each chain

and cuts at height h′(h′ >= h), which corresponds to the

minimum height of bundles received by the fastest nc − f
nodes (including the leader itself). Besides, as mentioned

above, the ban list is to eliminate malicious nodes, meaning

that neither will an honest node cut bundle chains produced

by banned nodes nor will it vote for a Predis block containing

bundles produced by banned nodes.

Fig.1 illustrates how leader node 1 packs a Predis block

from parallel bundle chains in its mempool. In this example,

there are four consensus nodes (four bundle chains), and the

packing goes as follows:

1) The leader extracts the tip list from each bundle chain’s

latest bundle and a tip list matrix is thus produced,

which represents the newest bundles received by every

consensus node. In our example, tip lists are extracted

by leader node 1 from bdl 1 5, bdl 2 6, bdl 3 5, and

bdl 4 5.

2) The resultant matrix in turn becomes the basis for the

leader to cut its bundle chains. In our example, leader

node 1 cuts according to the aforementioned cutting

rule, and a list of bundle height is obtained: [5, 5, 4,

4], meaning that bundles before and including bdl 1 5,

bdl 2 5, bdl 3 4, and bdl 4 4 will be put into the

candidate block.

3) The corresponding bundle headers of the bundle height

list are put into the Bundle header list, and the leader

compute the Merkle root for transactions in the bundle

height list. Finally, the previous block hash is written

into a Predis block and signed.

4) The leader multicasts that Predis block to other nodes.

The node performs the following check once it receives a

Predis block:

1) It has received the parent block, otherwise, it will initiate

a parent request towards other nodes.

2) The Predis block does not contain bundles produced by

nodes in its ban list. Further, there exist no other bundles

in conflict with bundle in the Predis block, otherwise

the node multicast conflict bundles to other nodes and

register its producer into the ban list.

3) The node has all of the bundles referred to in the bundle

header list, and the signature of the Predis block is valid.

If some bundles are missing, the node will request them

from the bundle producer and other available nodes.

4) The node collects all transactions according to the

bundle header list, computes the Merkle root, and then
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checks if the computed Merkle root is equal to that in

the Predis block.

If the Predis block is judged as valid, the node will proceed

to the voting stage; while if the block turns out to be illegal,

the node will refuse to vote.

C. Predis’s Safety

In the following paragraphs, bhij denotes the ith bundle chain

at height h that node j received. The collision-resistant hash

function D used in Predis guarantees that if D(x) = D(y),
then x = y. We use b.header to denote the header of a bundle

and b.body to denote its body.

Theorem 3.1: Bundle header’s consistency. If bhij and bhik
are both valid and bhij .header = bhik.header, then bhij = bhik.

Proof 3.1: The bundle header has a Merkle root computed

by transactions in the body. According to the hash function, it

can be proved that bijh .body = bhik.body, therefore, bhij = bhik.

Theorem 3.2: Bundle’s consistency. If bhij and bhik are valid,

and bhij = bhik, then bh
′

ij = bh
′

ik(h
′ ≤ h).

Proof 3.2: As bhij = bhik and they are both valid, they share

the same parent bundle hash. Furthermore, as bhij is valid, so

is bh−1
ij , and Theorem 3.1 decides that bh−1

ij = bh−1
ik , which

are also valid. Thus, it is arrived at that bh
′

ij = bh
′

ik(h
′ ≤ h).

Theorem 3.3: Predis’s consistency. If an honest leader

multicasts a Predis block, any two of the honest nodes who

vote for it will build up two candidate blocks of the same

content.

Proof 3.3: Suppose that the leader and two honest nodes

are i, j, and k, respectively. Without loss of generality, bhxi
is used to represent a bundle in the Predis block. If node j
votes for that block, then bhxi.header = bhxj .header. According

to Theorem 3.1, plus that bhxi.body = bhxj .body, we have bhxi =

bhxj . Then, with Theorem 3.2, bh
′

xj = bh
′

xk, (h
′ ≤ h). Therefore,

for all bundle chains that Predis block refers to, j and k can

construct two identical candidate blocks.

D. Predis’s Liveness

Predis can potentially harm the system’s liveness, but it has

features to handle these threats. The first case is when the

leader can not manage to collect enough votes for a Predis
block, and subsequently, the whole system is put to a forced

halt. To deal with this breakdown, every node sets up a timer

upon the arrival of a new bundle or a new Predis block,

and when time is out, it can suspect and replace the leader.

An honest node always multicasts its bundles to other nodes,

implying that if the leader is in a state of halt, at least nc − f
honest nodes will have it replaced. In the second case, some

bundles are missing in the received Predis block. Faced with

this situation, the node will refuse to vote for this block and

initiate requests for the missing ones from bundle producers

and other available nodes, which are obtainable from the latest

tip lists of bundles in its bundle chains. The cutting rule

determines that, when an honest node assumes leadership, it

will always cut the chain at a height where at least nc − f
nodes have received the corresponding bundle. This ensures

that a node can always access missing bundles from nc − 2f
honest nodes. If it is a malicious leader, it might not be able to

collect enough votes, presenting then the first situation above.

E. Potential Attacks

Forking Attack. When an honest node detects conflict

bundles, it will spread conflict bundle headers around and enter

the involved bundle producer into ban list. Besides, honest

leaders will never cut bundle chains in ban lists, and will

never contribute their vote to a Predis block containing bundles

generated by banned nodes. When a node is banned for a

period of time, it has the option to propose a new genesis

bundle to rejoin the bundle producing process, and others can

remove it from the ban list.

Censorship Attack. If a client’s transactions stay uncon-

firmed for longer than usual, the client will notify its full

nodes to consign these transactions to another consensus node.

A transaction will eventually be packed into a bundle after at

most f + 1 attempts. If a malicious node refuses to pack a

bundle into a Predis block, the honest node will suspect and

replace it when the timer of the bundle expires.

Duplicate Transactions. The performance of Predis can be

subject to deterioration out of Byzantine clients’ dispatch of

identical transactions to multiple nodes. This type of attack

also exists in Narwhal, Stratus, and Leopard. One possible

counter-measure is transaction partition in Mir-BFT [42].

However, we leave the exploration of applying this solution to

future research.

F. Performance Analysis

Throughput. Suppose there are nc consensus nodes, the

uploading bandwidth of the ith (i ∈ [1, nc]) node is xi B/s, the

average propagation delay is ls seconds, each transaction is b
bytes, and each consensus round costs tc seconds. In Predis, it

takes at least ls seconds for node i to distribute a bundle b i n,

and the receiver j spends another ls seconds on distributing a

bundle b j m that contains a tip list to confirm the reception

of b i n. Thus, only bundles produced 2× ls seconds before

can be packed into a Predis block by the leader.

Propose, Write, and Accept are used to represent three

phases in PBFT, and Pi,Wi, and Ai (i ≥ 1) denote each phase

in the ith consensus round, respectively. We suppose each

phase costs ls seconds, and each consensus round of PBFT

is 3× ls seconds. When P2 starts, bundles produced in P1 can

be packed into a Predis block. When Pi(i ≥ 3) starts, bundles

produced between Wi−2 and Pi−1 can be packed into a Predis
block, which demonstrates that a Predis block contains bundles

produced within exactly one consensus round. As a node needs

to distribute a bundle to nc − 1 nodes, the throughput of nc

nodes during one consensus round is T bytes, as shown in

Eq 1. The TPS of Predis-based PBFT (hereafter, P-PBFT) is

in Eq.2, which shows that the throughput of Predis will decline

gracefully when the number of nodes increases.

T =

nc∑

i=1

xi · tc
nc − 1

(1)
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TPS =
T

b · tc
=

nc∑

i=1

xi

b · (nc − 1)
(2)

We use Propose and Vote to represent procedures in chained

HotStuff, and Pi and Vi (i ≥ 1) denote phases in the ith
consensus round. When Pi(i ≥ 3) phase starts, bundles

produced between Pi−2 and Vi−2 can be packed into a Predis
block. Like in PBFT, a Predis block in HotStuff contains

bundles produced within exactly one round. Thus, the TPS

of nc nodes during one round of HotStuff can be denoted

by Eq 1, which implies that P-PBFT has the same TPS as

Predis-based HotStuff (hereafter, P-HS), except that the latter

manages a lower latency.

Nevertheless, the experiments in Section V can hardly reach

the throughput in Eq.2 because:

1) The pre-condition for a leader to cut a bundle is that at

least nc − f nodes have received it;

2) Voting and replying to clients also occupy bandwidth,

making it unlikely to channel all bandwidth for bundle

production;

3) Implementation and parameter-setting also affect the

throughput.

Block Size. As a Predis block carries no transactions, its

size does not increase with the rising volume of transactions

of its corresponding candidate block, thus countable as a con-

stant. Suppose there are ntx transactions in a candidate block

and nc consensus nodes; Predis reduces the leader’s bandwidth

consumption of candidate-block dispatch from O(nc × ntx)
to O(nc), another manifestation of Predis’s superiority over

Narwhal, Stratus, and Leopard. In section IV, we will show

that when combines Predis and Multi-Zone, it also costs O(nc)
bandwidth to send a new block to full nodes.

IV. MULTI-ZONE

A. Overview of Multi-Zone

Existing permissioned blockchains underestimate the im-

pacts of network topology on the system throughput and

usually adopt star or random topologies. In star topology, when

the number of nodes increases, the bandwidth overhead of

consensus nodes grows linearly, and the throughput decreases

significantly. The random network topology, widely employed

in large-scale blockchains such as Bitcoin and Ethereum [43],

usually uses the gossip [44] for data dissemination. In permis-

sioned blockchains, nodes remain online unless crash failures

happen, and their network environment is more static than in

public blockchains. As a result, data propagation latency may

be the most critical in permissioned blockchains, motivating

us to design Multi-Zone to introduce multicast trees [38] for

the swift distribution of data produced in Predis.

Multi-Zone divides the network into nz areas, each of

which counts as a zone. Their quantity is determined upon

the initial construction of permissioned blockchain, and their

division is based on the locality or connectivity of nodes, for

instance, west-coast or east-coast zones. There are three types

of full nodes in Multi-Zone, consensus nodes, relayer nodes

Zone 2

Digest

Digest

s1

1

s3

3

s2

2

s4

4

s1 s4

s3 s2

s1 s3 s2 s4
s1,s2,s3,s4

s1,s2,s3,s4

Zone 3

Zone 1

Zone 4

Fig. 2. Multi-Zone’s topology. si denote ith stripe.

(hereafter, relayer), and ordinary full nodes (hereafter, ordi-

nary nodes). Relayers receive data from consensus nodes and

forward data to other relayers and ordinary nodes. Ordinary

nodes receive data from other ordinary nodes and relayers.

Fig.2 shows a Multi-Zone network with four consensus

nodes (1,2,3, and 4) and four zones. Nodes connected with

dashed double arrows constitute a full mesh topology. Upon

receiving a bundle, a consensus node decodes that bundle into

several stripes and send them to relayers, and relayers forward

stripes to other nodes. Upon the reception of enough stripes,

a node can successfully decode a bundle. When there are

enough relayers in a zone, other nodes do not need to connect

to consensus nodes but to subscribe for data to relayers. For

example, ordinary node E can four stripes from A, B, C and

D. To keep the network robust, nodes in a zone can connect to

those in neighbor zones and exchange data digest with gossip

protocols. In the case that some data are missing, a receiver

will pull the original data from a digest sender.

B. Robustness Analysis

The most straightforward method of data distribution is to

apply a hash function mapping every zone to a consensus

node. Every consensus node sends data to one relayer, which

forwards data to ordinary nodes. However, if a malicious

consensus node declines to send data, a relayer will have no

data to receive. The counter strategy is to ensure that at least

qc(qc > f) consensus nodes should send data to one relayer,

and we should also factor in the problem of single point of

failure, where the network will be rendered fragile if there is

only one relayer for one zone.

As Multi-Zone is located in the network layer, node failure

probability is employed to attend to malicious behaviors such

as message delay or omission. It is supposed that the node

failure probability of an honest node is ph, and that of

a malicious node is pb(pb = 1), and the general failure

probability of a node is pc, as in Eq.3. According to [45],

the annual failure rate of a server is approximately 3%, which

is why we consider pc as approximately equal to f
N .

pc =
f

N
× pb + (1− f

N
)× ph ≈ f

N
(3)
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Algorithm 1: Check and become a relayer

Data: Node O and Consensus node set Nc

1 Sr ← O.GetZoneRelayers(O.GetZone()));

2 Sp ← A set of |Nc| stripes;

3 for relayer R ∈ Sr do
4 Sset ← R.RelayedStripes();

5 s = O.GetStripeCanSub(Sset,max = |Sset|/2);

6 O.Send(subscribe(s), R);

7 Sp ← (Sp − s);
8 end
9 if Sp �= ∅ then

10 for stripeId s ∈ Sp do
11 O.Send(subscribe(s), s);

12 end
13 if O received accept-subscribe msg then
14 O.SetStripeSender(msg);

15 O.AddRelayedStripe(Sp);

16 if msg.getSender() ∈ Nc then
17 O.SetRelayer(True);

18 O.Send(relayerAlive(Sp), O.ZoneNeighbors());

(
f

N
)nzr ≤ pr (4)

We suppose there are nzr relayers in a zone and a robustness

threshold probability pr. When (pc)
nzr ≤ pr, there is a high

probability that ordinary nodes can always receive data from

at least one relayer. nzr can be computed from f , N , pr,

and Eq 4. In Multi-Zone, we set that nzr = nc and qr = nc,

allowing a node to receive data from relayers with a probability

higher than 99.98% when nc ≥ 4. This setting enables Multi-
Zone to distribute data using the multicast tree [38] and erasure

encoding [39] to reduce the bandwidth overhead of consensus

nodes in data distribution.

C. Network Construction

When a node joins a permissioned blockchain network for

the first time, it usually generates a transaction and sends it

to the consensus node to register its identity. Then, consensus

nodes pack that transaction into a new block and distribute

it to other nodes. After receiving the new block, a node will

discover the newcomer and accepts its network connection.

For any two nodes, the order of appearance of registered

transactions in the blockchain can be used as a basis to decide

which node joined the network earlier.

Algorithm 1 shows the logic of a node on whether it will

become a relayer or not. When a node joins the network for

the first time, it delivers a getRelayer message to its neighbors

to acquire the current set of relayers. From line 3 to line

7: O can subscribe for at most half of the stripes to each

relayer. A subscribe message contains stripes for which the

sender subscribes. When the stripe sender crashes, a node

can re-subscribe for that stripe to another node. From line

9 to line 13: if there are still some stripes with no senders,

node O will subscribe for those stripes to consensus nodes and

become a relayer. From line 14 to 22: when node O receives

accept-subscribe messages, it records its stripe sender. An

accept-subscribe message means that the sender accepts node

O’s subscribe request. If the message sender is a consensus

node, it becomes a relayer. A relayer periodically multicasts

relayerAlive messages to its neighbors, which contains the

identity of the relayer and its relayed stripes.

D. Data Flow in Multi-Zone

In Multi-Zone, consensus nodes only forward stripes and

Predis blocks to relayers. When a consensus node receives

a new bundle, it encodes that bundle into nc stripes with

erasure coding, and the ith consensus node sends the ith
stripe to its subscribers. In sending a stripe, the sender should

attach the bundle header and a Merkle proof of the stripe

to detect whether the stripe is tampered (The Merkle Stripe

hash in Fig.1 is used to examine the correctness of a stripe).

Hence, a relayer can decode a bundle by receiving stripes

from all consensus nodes in parallel, mitigating the influence

of node failure. However, if all relayers in a zone receive

stripes directly from consensus nodes, it will impose a heavy

bandwidth burden on them. Multi-Zone, on the contrary, allows

relayers in a zone to send stripes to each other to reduce the

bandwidth overhead of consensus nodes.

Fig.3 shows an example of how relayers forward data to

each other. In Fig.3(a), when node A joins the network, it

subscribes to four consensus nodes 1, 2, 3, and 4 for four

stripes. In Fig.3(b), node B enters and subscribes to A for half

of the stripes (1 and 2) and subscribes to nodes 3 and 4 for

the other two stripes. When node B accepts accept-subscribe
messages from consensus nodes, it becomes a relayer and

multicasts a relayerAlive message to other nodes. Multi-Zone
sets up a subscription preference for each relayer that they

subscribe to other relayers. When node A receives a relay-
erAlive message, it subscribes to B for stripes (3 and 4) and

sends an un-subscribe message to nodes 3 and 4, respectively.

In Fig.3(c), when node C arrives, it subscribes to node A and

B for stripes 1 and 3, respectively, and it subscribes to node

2 and 4 for stripes 2 and 4. When node A and B receive

relayerAlive messages from node C, they will subscribe to

node C for stripes 2 and 4. When there are nc relayers in a

zone, other newcomer nodes connect and subscribe to those

relayers for stripes. In Fig.3(d), ordinary node E can receive

four stripes from four relayers. If a relayer reaches its upper

limit of the manageable amount of subscriptions, it will send a

reject-subscribe message to decline the following subscription

requests. This message will contain the available children of

the relayer, to which the declined can subscribe.

A Predis block has only several bundle headers, and it is far

less than the size of a bundle. Therefore, each consensus node

sends Predis block to relayers when a new block is produced,

and then the relayers forward the Predis block to ordinary

nodes. In addition, every node can rebuild the original block

with Predis block and bundle chains in its mempool and the

missing bundles can be acquired from Predis block senders.
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Fig. 3. Network construction in Multi-Zone.

There are two strategies of transaction dissemination in

Multi-Zone. The first one allows every full node to make a

connection with a consensus node and delivers transactions

to it. The second path is that, the client selects a consensus

node and writes the identity of the target consensus node on

its transaction. Afterwards, the client sends the transaction

to its full node, which helps spread transactions to other

nodes. Eventually, the target consensus node will receive the

transaction.

E. Fix the Number of Relayers

In Multi-Zone, when a relayer is ready to leave the network,

it will send a leave message to the earliest-joining node among

its subscribers; while upon the departure of an ordinary node,

it will multicast a leave message to its subscribers. On the

receiving end of leave messages, if the sender is found to be

a relayer, the receiver will subscribe to consensus nodes for

stripes and becomes a new relayer; if the sender turns out to

be an ordinary node, the receiver will resort to other available

nodes for stripe subscription. To prove its online status, a

node is required to send heartbeat messages periodically to its

neighbors, and a node will disconnect itself with its neighbor

if the neighbor’s heartbeat is time-out.

Furthermore, a node conducts periodical checks on the

number of relayers in its zone according to relayerAlive
messages it received. If the number of relayers is less than

nc, the node will become a new relayer. This way, when a

relayer crashes, there will be more than one node to fill up the

vacancy. In Multi-Zone, the number of relayers is maintained

at nc through nodes’ periodical multicasting and processing of

relayerAlive messages. In addition, a relayer will adjust itself

to be an ordinary node when it finds itself to be redundant, as

shown in Algorithm 2. In line 4, we can see that, if a node

multicasts a relayerAlive message that contains an empty stripe

set, it means that the relayer becomes an ordinary node. From

line 7 to line 13: when two relayers relay the same stripes, the

one that enters earlier will only relay one stripe and subscribe

for other stripes to the later-entering one. If O relays only one

kind of stripe, any node that enters later than O will subscribe

to O. This specific design directs redundant relayers to turn

Algorithm 2: Process relayerAlive message.

Data: Node O, relayerAlive message M
1 R ← M.GetRelayer();

2 Sr ← R⋃O.GetZoneRelayers(O.GetZone());

3 Po,Pm ← O.RelayedStripes(),R.RelayedStripes();

4 if Pm = ∅ then
5 O.removeRelayer(R);

6 else if O.IsRelayer() then
7 To, Tm ← O.GetJoinTime(), M.GetJoinTime();

8 Pom ← Po

⋂Pm;

9 if To ≤ Tm or |Pm| = 1 then
10 if To ≤ Tm then
11 Pom -= 1;

12 O.Send(subscribe(Pom), R);

13 Po -= Pm;

14 for stripe s ∈ Pm do
15 sd ← O.GetStripeSender(s);

16 if s /∈ sd.RelayedStripes() then
17 O.Send(subscribe(s), R);

18 end
19 O.UpdateRelayer(R);

20 O.Send(relayerAlive(M), O.ZoneNeighbors());

21 if O.IsRelayer() and Po = ∅ then
22 O.SetRelayer(false);

23 O.Send(relayerAlive(∅), O.ZoneNeighbors());

into ordinary nodes and subscribe for stripes to other relayers.

Lines 14 to 18 tell that a relayer will subscribe to another

relayer if the current one does not relay anymore. Lines 21

to 23 show that, once a relayer finds that it stops relaying,

it will become an ordinary node and multicast a relayerAlive
message with an empty stripe set.

F. Backup connections

In Multi-Zone, a node can subscribe for nc stripes to nc

nodes, although decoding a bundle only takes nc − f stripes.

The rest of the f connections can be used to enhance the

network’s robustness and attenuate the impact of node churn.

A relayer may receive stripes from only one consensus node

but can still connect to other consensus nodes for data pulling.

Besides, every ordinary node establishes connection (called

backup connection) with nodes in neighboring zones. Along

such a connection, nodes deliver data digests to synchronize

with each other on the state of the ledger.

V. EVALUATION

We implement Predis on BFT-SMaRt [6] and HotStuff [46],

and utilize ECS of Alibaba to examine its performance in LAN

and WAN environments. Equipped with 4 cores and 8 GB

memory, each instance is ecs.c7.xlarge. In the experiments,

unless otherwise specified, the following configurations are

adopted:

1) In WAN, the network bandwidth is 100 Mbps, and

the instances are located in 4 regions: Ulanqab (CN-
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(a) Parameter Effects on P-PBFT (b) Parameter Effects on P-HS (c) Compare P-PBFT and PBFT (d) Compare P-HS and HS

Fig. 4. Predis’s improvement on PBFT and HotStuff.

north), Shanghai (CN-east), Chengdu (CN-southwest),

and Shenzhen (CN-south).

2) In LAN, the traffic control command is used to set a

latency of 25 ms and a bandwidth of 100 Mbps for each

instance to emulate the WAN environment;

3) The result of every experiment is the average of 5 runs,

and every data point is measured when the system is

running stable.

4) Every bundle has 50 transactions and every transaction

has 512 bytes.

A. Predis

Predis’s throughput will be shown in throughput-latency

experiments, in which latency refers to the time elapsed from

when a client sends a transaction to replicas to when the client

receives a reply.

Improvement on PBFT and HotStuff. Fig.4 shows Pre-
dis’s improvement of PBFT and HotStuff in WAN envi-

ronment. Fig.4(a) and (b) show the throughputs of PBFT,

HotStuff, P-PBFT, and P-HS with different bundle sizes and

batch sizes when nc = 4. Bundle size refers to the volume

of transactions in a bundle, while batch size refers to that in

a batch or block. As can be seen, in PBFT and HotStuff, the

throughput of the 800-batch size is about 3K∼6K higher than

that of the 400-batch size. In Predis, the throughput under 50-

bundle size is approximately equal to that under 100-bundle

size, and is about 5K∼7K higher than that under 25-bundle

size. Although different parameter settings lead to different

levels of throughput, Predis can always achieve a much higher

level than PBFT and HotStuff (almost 300%). According

to above experimental results and experiments in [10], the

following experiments are set with a bundle size of 50 and

a batch size of 800.

Fig.4(c) and (d) show the throughput of Predis when the

number of consensus nodes, nc, is 4, 8, and 16, respectively.

In Predis, a newcomer node consumes the bandwidth of others,

degrading throughput, yet simultaneously, it also contributes

its bandwidth to bundle production, which improves through-

put. As a consequence, as we can see, as nc rises, Predis’s

throughput declines slowly, which is in consistent with our

analysis in Eq.2, while PBFT and HotStuff manifest rapid

decreases in throughput under the same condition. Evidently,

compared with P-PBFT, P-HS can reach a higher level of

(a) Small scale in the WAN

(b) Large scale in the LAN

Fig. 5. Compare Predis with Narwhal and Stratus.

throughput. This is because HotStuff has a lower message

complexity in the favor of P-HS’s utilization of more band-

width for bundle production. On the whole, when nc is 4,

8, and 16, it is observed that P-PBFT’s throughput is about

300%∼800% of PBFT’s, and P-HS’s throughput is about

200% of HotStuff’s. This experiment demonstrates that Predis
can provide PBFT and HotStuff with better scalability.

Comparison with SOTA. As Narwhal and Stratus are

open-sourced state-of-the-art (SOTA) protocols, we conduct

comparisons between them and Predis in both WAN and

LAN environment. To ensure the fairness of the comparison,

one worker is employed in Narwhal, Stratus, and Predis for

transaction packing, and every bundle or microblock contains

at most 50 transactions. As for the number of microblock

8



identifiers, the default settings (1000) of Narwhal and Stratus

are adopted.

Fig.5 shows experiment results in the WAN and LAN. In

both environments, Predis displays superior performance in

terms of throughput and latency. In Narwhal and Stratus, the

leader needs to put the identifier of each microblock into a

proposal, which implies that the size of a proposal increases

with the rising number of identifiers. As a result, they have to

restrict the number of identifiers in a proposal in case large-

size proposals prolong consensus time and degrade throughput.

However, in Predis, as nc bundle headers are always enough

to represents cutting bundles, the leader can put bundles into

a Predis block as many as possible. Therefore, once nc is

fixed, the bandwidth overhead of the leader for broadcasting

a Predis block will be a constant. In our experiment, it is

observed that when nc is 80, a Predis block mapping into

50,000 transactions is no more than 2.5 KB, which is far less

than the sizes of such blocks in Narwhal and Stratus (30 KB).

In Predis, the leader’s bandwidth overhead of broadcasting

proposals will not increase when the transaction volume in

proposal increases, which allows a Predis block to aggres-

sively contain more transactions and do not worry about in-

creasing transmission delay of proposals. In addition, Narwhal

and Stratus use RBC and PAB to guarantee data availability,

that is to say, every node replies a certificate upon the reception

of a microblock, while those in Predis do not need to,

enabling Predis a lower message complexity and higher degree

of bandwidth utilization. The two factors mentioned above

constitute the reason why Predis has a higher throughput

(4K∼6K higher) than Narwhal and Stratus. As shown in,

Narwhal has the highest latency because every node has to

collect nc − f certificates; Stratus has lower latency because

its node needs to collect f + 1(< nc − f) certificates; and

Predis has the lowest latency because nodes do not need to

collect certificates at all.

Predis under Faults. We present two typical cases where

malicious nodes cause the deterioration of Predis’s perfor-

mance: (1) Malicious nodes neither produce bundles nor vote;

(2) Malicious nodes refuse to vote and randomly send bundles

to nc − f − 1 nodes. In the latter case, the leader can not

receive quorum votes before the missing bundles are found by

certain nodes. Fig.6 shows Predis’s throughput under a system

breakdown with 8 nodes. In case 1, the throughput of 8 − f
working nodes is about 8−f

8 of that under a normal situation.

In case 2, it costs at least one extra round trip time to obtain

missing bundles, leading to a higher latency. However, the

throughput in case 2 is higher than that in case 1 because the

malicious node is still producing bundles. Its throughput is

less than that in the normal situation since sending missing

bundles consumes the nodes’ bandwidth. It should be noted

that if it costs too much time to fetch those missing bundles,

nodes may switch the view to maintain the system’s liveness.

B. Multi-Zone

In this section, Multi-Zone’s impact on throughput and block

propagation latency will go under test in the LAN environ-

(a) P-PBFT under faults.

(b) P-HS under faults.

Fig. 6. Predis under faults with 8 nodes.

ment. We realize Multi-Zone on BFT-SMaRt, and employ

an open-source Reed-Solomon implementation [47] to encode

bundles.

Effect on Throughput. Since the throughput of the random

topology is determined by the tunable number of full nodes in

connection to consensus nodes, we only compare the effects

of the star and Multi-Zone on the throughput of the consensus

layer. In our experiment, we fix the transaction generation rate

at 26,000 txes/s, and conduct throughput comparison while

the number of consensus and full nodes in the network is

being raised up. As we can see in Fig.7, in the star topology,

the throughput declines almost linearly as full nodes grow in

number, because every newcoming full node will consume

a piece of the bandwidth of the consensus layer. On the

other hand, the throughput of Multi-Zone is determined by

the number of zones, and when the zone number is a fixed

value, its throughput will not decrease as the number of full

nodes increases. When there are more than 24 full nodes,

the throughput of a 12-zone Multi-Zone is always higher than

that of the star topology. Contrary to our intuition, when the

number of full nodes is fixed, the throughput of star and Multi-
Zone increase as nc climbs. For example, in Multi-Zone, the

throughput when nc = 8 is 3K higher than that when nc = 4,

similarly, the throughput when nc = 32 is about 3K higher

than that when nc = 16 in the star topology. The reason behind

is that, in Predis, a larger nc implies more consensus nodes
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(a) nc = 4 (b) nc = 8 (c) nc = 16 (d) nc = 32

Fig. 7. Compare the impact of Multi-Zone and star on throughput.

(a) block size <= 1MB (b) block size <= 5MB (c) block size <= 10MB (d) block size > 10MB

Fig. 8. Block propagation latency of star, random and Multi-Zone.

can contribute their bandwidth to the consensus process and

share the bandwidth overhead of data distribution. Overall,

this experiment demonstrates Multi-Zone can alleviate the

throughput degradation caused by the increasing number of

full nodes.

Effect on Block Propagation Latency. Random topologies

are widely used in blockchain networks. In our experiment, we

implemented random topologies on BFT-SMaRt and compared

their block propagation latencies to those of Multi-Zone and

the star topology. To compare with our data flow framework,

consensus nodes in the star and random topologies do not send

bundles but rather send complete blocks to full nodes every

time a new block is produced. As a large number of consensus

nodes requires more full nodes to form a proper comparison,

we employ eight nodes to form a small scale of consensus

nodes, and 100 nodes to form a large scale of full nodes, the

remaining nodes are clients. Since Fair and Efficient Gossip

(FEG) [48] is the state-of-the-art protocol in Hyperledger

Fabric, we implemented and used it in the random topology

for block distribution in our experiment. Parameters in the

FEG protocol are set to the best values described in the paper.

In addition, every node is set to be randomly connected to 8

nodes, a typical configuration in Bitcoin, Ethereum, and other

random networks. As the fan-out parameter in the random

topology is set to 4, we let every non-consensus node have at

most 24 subscribers in Multi-Zone so that nodes in the two

topologies have identical bandwidth overheads. The average

block propagation latency of 100 blocks is measured.

Fig.8 shows the average propagation latency of blocks

propagated to different percentages of nodes. Fig.8(a) and (b)

show that the star topology has the shortest latency when

the block size is smaller than 5 MB. When the block size

is under 1 MB, the latency of random topology is shorter

than that of Multi-Zone with 3 zones due to its larger fan-out

number. However, as can be seen in Fig.8(c) and (d), when

the block size exceeds 5 MB (the maximum block is 40 MB),

Multi-Zone’s latency is the shortest. In addition, Multi-Zone
with 12 zones has the shortest latency because increasing the

number of zones leads to a lower height of multicast trees and

block propagation latency, which is about 50% and 18% of the

latency of the star and random topologies.

In Multi-Zone, each bundle is distributed when it is pro-

duced, and when a new block is produced, each node only

needs to send a Predis block to other nodes, which is why

Multi-Zone’s block propagation latency increases slowly as the

block size increases. On the country, it costs more bandwidth

and longer time to send a block in the star and random

topologies. When the block is larger than 5 MB, the random

topology exhibits the poorest latency performance because

it randomly chooses several nodes and will ignore sending

blocks to some nodes. We observe that the FEG protocol may

waste bandwidth by sending duplicate data and is not efficient

when distributing large blocks. This experiment shows that

Multi-Zone helps the consensus layer and the network layer

obtain a higher throughput and a shorter block propagation

latency, respectively. For the computing overhead of encoding

and decoding bundles, we observe that decoding and encoding

only costs several microseconds, which is acceptable.

VI. RELATED WORK

As this paper presents a novel data flow framework en-

compassing data production in the consensus layer and data
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distribution in the network layer, we provide an overview of

related work from the perspectives of data distribution and

data production, respectively.

A. Data Production.

Predis is specifically designed for leader-based Byzantine

Fault Tolerance (BFT) protocols in a partially synchronous

network. Consequently, our primary focus is on examining re-

lated work that is based on the partially synchronous network.

Leader-based BFT protocols have received intensive research

attention and many works have been dedicated to improving

its performance [11]–[15], [49]. For example, Prime [50]

comes up with the concepts of local order and global order

to provide resilience against a malicious leader who degrades

the throughput of PBFT. Kauri [12] improves the throughput

of HotStuff by leveraging dissemination/aggregation trees to

upgrade the bandwidth utilization of the leader. Compared

to Prime and Kauri, Predis demonstrates a higher degree of

bandwidth utilization and throughput since it allows all nodes

to contribute bandwidth to the consensus process.

However, Narwhal, Stratus, and Leopard also enable all

nodes to participate in block production. In comparison to

these works, Predis offers two advantages: (1) Predis employs

a single-chain structure for its mempool, achieving the same

effect as reliable broadcast with lower message complexity

overhead; (2) Predis avoids the issue of block size increasing

linearly with the number of transactions it contains. This

means that as the transaction volume increases, the sizes

of proposals in Predis (referred to as Predis blocks) remain

stable,unlike the linear growth seen in its counterpart models.

These design choices in Predis contribute to higher throughput

and lower latency.

Mir-BFT [42] and ISS [49] take a different approach by

transitioning from a single leader consensus to a multiple

leaders consensus model. As a result, all nodes are involved

in block production, leading to a higher throughput. In com-

parison, Predis still adheres to the setting of having a single

leader, resulting in a lower voting message complexity and

higher bandwidth utilization.

B. Data Distribution.

Lots of research [17], [22], [48] have demonstrated the im-

portance of block propagation latency for blockchain security

and data availability. Existing work tries to improve block

dissemination efficiency by optimizing data dissemination

strategies, data compression approaches, and network topolo-

gies. To ameliorate data dissemination strategy, Kadcast [29],

[30] proposes a new block propagation protocol based on

Kademlia [51]. PiChu [31] and Velocity [32] disseminate a

block by dividing it into several chunks to reduce the overhead

of low-bandwidth nodes. Drabkin [52] provides a scalable

Byzantine resilience dissemination approach. In comparison to

these works, Multi-Zone absorbs their core ideas and becomes

a more comprehensive scheme.

For a more efficient way of block compression, Com-

pact [22] and XThin [53] adopt short transaction hashes to

replace transactions. Graphene [24] introduces the invertible

bloom lookup table [54] to compress the block. Dino [25]

provides a new protocol that transfers the block construction

rules to reduce the bandwidth consumption of transmitting a

block to a constant complexity. In comparison to these works,

Predis and Multi-Zone can also reduce the block transmission

overhead to the constant level, similar to Dino. However, they

only focus on the block synchronizing, while our work focus

on the entire data flow of the blockchain.

To improve the network topology, Fiber [26] acts as a

relay network to speed up block propagation for Bitcoin.

BloXroute [27] and Marlin [28] employ a token incentive

scheme to introduce relay nodes, reducing data dissemination

latency. However, these solutions might lead to the central-

ization of the network and threaten the system’s security.

Additionally, other works [34]–[37] require nodes to conduct

periodic probes and keep their neighbors updated. In com-

parison, Predis and Multi-Zone constitute a holistic data flow

framework that optimizes all aspects of the work involved.

Predis improves throughput by designing a new mempool with

a chain structure. Multi-Zone divides the network into several

zones to reduce the bandwidth overhead of the consensus

layer in data distribution and improve network scalability.

Additionally, it enhances data dissemination efficiency by

using multicast trees and erasure coding to pre-distribute the

content of a block (bundles) before the block is produced.

VII. CONCLUSION

In this paper, we argue that the throughput of permissioned

blockchains is determined by both data production and dis-

tribution. This perspective motivates us to propose a new

data flow framework for permissioned blockchains, in which,

Predis enables each consensus node to contribute its idle band-

width to pre-distribute block content in parallel, and Multi-
Zone reduces the bandwidth overhead of consensus nodes in

block distribution and significantly reduces block propagation

latency. We hereby provide a novel viewpoint to design the

data distribution strategy for a large-scale blockchain network.
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