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Abstract—Many Internet applications can benefit from an automatic scaling property where their resource usage can be scaled up
and down automatically by the cloud service provider.We present a system that provides automatic scaling for Internet applications in the
cloud environment. We encapsulate each application instance inside a virtual machine (VM) and use virtualization technology to provide
fault isolation. We model it as the Class Constrained Bin Packing (CCBP) problem where each server is a bin and each class represents
an application. The class constraint reflects the practical limit on the number of applications a server can run simultaneously. We develop
an efficient semi-online color set algorithm that achieves good demand satisfaction ratio and saves energy by reducing the number of
servers used when the load is low. Experiment results demonstrate that our system can improve the throughput by 180% over an open
source implementation of Amazon EC2 and restore the normal QoS five times as fast during flash crowds. Large scale simulations
demonstrate that our algorithm is extremely scalable: the decision time remains under 4 s for a system with 10 000 servers and 10 000
applications. This is an order of magnitude improvement over traditional application placement algorithms in enterprise environments.

Index Terms—Cloud computing, virtualization, auto scaling, CCBP, green computing

1 INTRODUCTION

ONE of the often cited benefits of cloud computing service
is the resource elasticity: a business customer can scale

up and down its resource usage as needed without upfront
capital investment or long term commitment. The Amazon
EC2 service [1], for example, allows users to buy as many
virtual machine (VM) instances as they want and operate
them much like physical hardware. However, the users still
need todecide howmuch resources are necessary and for how
long. We believe many Internet applications can benefit from
an auto scaling property where their resource usage can be
scaled up and down automatically by the cloud service
provider. A user only needs to upload the application onto
a single server in the cloud, and the cloud servicewill replicate
the application onto more or fewer servers as its demand
comes and goes. The users are charged only for what they
actually use—the so-called “pay as you go” model.

Fig. 1 shows the typical architecture of data center servers
for Internet applications. It consists of a loadbalancing switch,
a set of application servers, and a set of backend storage
servers. The front end switch is typically a Layer 7 switch [2]
which parses application level information in Web requests
and forwards them to the servers with the corresponding
applications running. The switch sometimes runs in a redun-
dant pair for fault tolerance. Each application can run on
multiple server machines and the set of their running
instances are often managed by some clustering software

such as WebLogic [3]. Each server machine can host multiple
applications. The applications store their state information in
the backend storage servers. It is important that the applica-
tions themselves are stateless so that they can be replicated
safely. The storage servers may also become overloaded, but
the focus of this work is on the application tier. The Google
AppEngine service, for example, requires that the applica-
tions be structured in such a two tier architecture and uses the
BigTable as its scalable storage solution [4]. A detailed com-
parison with AppEngine is deferred to Section 7 so that
sufficient background can be established. Some distributed
data processing applications cannot be mapped into such a
tiered architecture easily and thus are not the target of this
work. We believe our architecture is representative of a large
set of Internet services hosted in the cloud computing
environment.

Even though the cloud computing model is sometimes
advocated as providing infinite capacity on demand, the
capacity of data centers in the real world is finite. The illusion
of infinite capacity in the cloud is provided through statistical
multiplexing. When a large number of applications experi-
ence their peak demand around the same time, the available
resources in the cloud can become constrained and some of
the demand may not be satisfied. We define the demand
satisfaction ratio as the percentage of application demand that
is satisfied successfully. The amount of computing capacity
available to an application is limited by the placement of its
running instances on the servers. The more instances an
application has and themore powerful the underlying servers
are, the higher the potential capacity for satisfying the appli-
cation demand. On the other hand, when the demand of the
applications is low, it is important to conserve energy by
reducing the number of servers used. Various studies have
found that the cost of electricity is a major portion of the
operation cost of large data centers. At the same time, the
average server utilization in many Internet data centers is
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very low: real world estimates range from 5% to 20% [5], [6].
Moreover, work [7] has found that the most effective way to
conserve energy is to turn the whole server off. The applica-
tion placement problem is essential to achieving a high
demand satisfaction ratio without wasting energy.

In this paper, we present a system that provides automatic
scaling for Internet applications in the cloud environment.
Our contributions include the following.

We summarize the automatic scaling problem in the
cloud environment, and model it as a modified Class
Constrained Bin Packing (CCBP) problem where each
server is a bin and each class represents an application.
We develop an innovative auto scaling algorithm to solve
theproblemandpresent a rigorous analysis on thequality
of it with provable bounds. Compared to the existing Bin
Packing solutions, we creatively support item departure
which can effectively avoid the frequent placement
changes1 caused by repacking.
We support green computing by adjusting the placement
of application instances adaptively and putting idle
machines into the standbymode. Experiments and simu-
lations show that our algorithm is highly efficient and
scalable which can achieve high demand satisfaction
ratio, low placement change frequency, short request
response time, and good energy saving.
We build a real cloud computing system which supports
our auto scaling algorithm.We compare the performance
of our systemwith an open source implementation of the
Amazon EC2 auto scaling system in a testbed of 30 Dell
PowerEdge blade servers. Experiments show that our
system can restore the normal QoSfive times as fast when
a flash crowd happens.
We use a fast restart technique based on virtual machine
(VM) suspend and resume that reduces the application
start up time dramatically for Internet services.

The rest of the paper is organized as follows. Section 2
presents the architecture of the system. Section 3 formulates
the auto scaling problem. Section 4 describes the details of our

algorithm. Experiment and simulation results are presented
in Sections 5 and6, respectively. Section 7describes the related
work and Section 8 concludes.

2 SYSTEM ARCHITECTURE

The architecture of our system is shown in Fig. 2. We
encapsulate each application instance inside a virtual
machine (VM). The use of VMs is necessary to provide
isolation among untrusted users. Both Amazon EC2 and
Microsoft Azure use VMs in their cloud computing offering.
Each server in the system runs the Xen hypervisor which
supports a privileged domain 0 and one or more domain
U [8]. Each domain U encapsulates an application instance,
which is connected to a shared network storage (i.e., the
storage tier). The multiplexing of VMs to PMs (Physical
Machines) is managed using the Usher framework [9]. (We
use the terms “server”, “PM”, and “node” interchangeably
in this paper.) The main logic of our system is implemented
as a set of plug-ins to Usher. Each node runs a Usher local
node manager (LNM) on domain 0 which keeps track of the
set of applications running on that node and the resource
usage of each application. A L7 switch is in charge of
forwarding requests and responses.

The schedule procedure of our system can be described as
follows.

The LNM at each node and the L7 switch collect
the application placement, the resource usage of each
instance, and the total request number of each application
periodically. Then the information is forwarded to the
Usher central controller (Usher CTRL) where our “Appli-
cation Scheduler” runs.
The Application Scheduler is invoked periodically to
make the following decisions:
— application placement: for each application, we need

to decide the set of servers its instances run on.
— load distribution: for each application, we need to

predict its future resource demands based on the
request rate and past statistics, and then decide

Fig. 2. Overview of the system architecture.

Fig. 1. Two-tiered architecture for Internet applications.

1. starting an application instance at a new server or stopping an
application instance at an existing server.
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how to allocate its load among the set of running
instances. The load of an Internet application is
largely driven by the rate of user requests. We
profile the application to estimate the average load
incurred by each request. Then we analyze the
queues of pending requests in L7 switch to predict
the load on the servers.

The decisions are forwarded to the LNM and the L7
switch for execution. The list of action items for each
node includes:
— standby or wake up instructions
— application starts and stops
— the allocation of local resource among the applications
The LNMat the node adjusts the local resource allocation
of the VMs encapsulating the applications. Xen can
change the CPU allocation among the VMs by adjusting
their weights in its CPU scheduler. Memory allocation
among the VMs can be adjusted using the ballooning
technique. After that the Scheduler notifies the L7 switch
of the new configuration including:
— the list of applications
— for each application, the location of its running

instances and the probability of request distribution
among them

The L7 switch then starts processingWeb requests accord-
ing to the new configuration.

The decision interval of the Scheduler depends on how
responsive we want to be to application demand change.
Frequent placement changes are disruptive to application
performance and should be avoided.

It may seem from the discussion above that the Usher
CTRL is a central point of failure. Fortunately, it is not
involved in the normal processing paths of user requests. Its
failure only disrupts the updates on the load distribution and
application placement policy. Incoming user requests can still
be processed by the existing application instances. Should a
higher degree of fault-tolerance be desired, we can use the hot
mirroring technology developed by our group to create a
backup copy of the Usher CTRL [10].

We also notice that complicated applications can take a
long time (several minutes or much longer) to start and finish
all the initializations. Since we run each application inside a
VM, its entire running state can be suspended to the disk and
then resumedat a later time.We take advantage of this feature
to bypass the application start process by suspending a fully
started and initialized application instance to the disk. It can
then be resumed to start the application instance at the desired
server. The resumption time is independent of the start up
time of the application. It depends mostly on how fast the
server can read the suspended VM file from the disk. With
modern disk technology, the resumption time is typically
quite short, which reduces the cost of placement changes
significantly.

We evaluate the effectiveness of this technique using a
RUBiS [11] service within JBoss on Dell PowerEdge blade
serverswith Intel 5620 CPU and 10KRPMSAS disks. For this
relatively simple application, the start up time is close to
100 seconds, independent of the memory size. We consider
the application as fully started when it can respond to a user
request successfully. By resuming a previously created VM
snapshot, we can reduce the start time significantly for small

sized VMs: the start up time is reduced by 70% for a VMwith
1G memory.

To support green computing, we put idle servers into
the standby mode so that they can be waken up quickly in
an on-demand manner. We measured the electric power
consumption under various TPC-W workloads with the
built-in watt-meter in our blade systems. We find that an idle
blade server consumes about 130Watts, a fully utilized server
consumes about 205 Watts, while a server in standby mode
only consumes about 20 Watts. Therefore, putting an idle
server into standby mode can save about 85% energy, which
inspires us to hibernate the idle servers when the load of the
whole system is low, especially at night. When the demand
increases, We can easily resume a host from standby mode
to active state by using Wake-on-LAN (WOL) technology.
According toLinuxdocumentation [12], the standby-to-active
transition time is 1–2 seconds for ACPI S1 state (standby) and
3–5 seconds for ACPI S3 state (suspend to ram). This is
sufficient fast to react to changes in resource demands.

3 PROBLEM DEFINITION

In this section, we will summarize the automatic scaling
problem into formulation.

For an Internet application, there exist multi-dimensional
resource demands, such as CPU, memory, network band-
width, disk I/Obandwidth etc. Among them,we chooseCPU
andmemory as the representative resources to be considered.
This is modeled after Google AppEngine which hosts mostly
e-commerce applications and charges the users based on their
CPU consumption [4]. For those applications, memory is
typically the determining factor on how many applications
a server can run simultaneously, while CPU is the target
resource we need to allocate among the application instances.
However, we can deal with other types of bottleneck
resources as well (e.g, replace memory with disk space
for streaming media applications). We cannot handle appli-
cations with a larger number of simultaneous bottleneck
resources (CPU, memory, disk, network I/O, etc.), nor can
any of the existing commercial cloud computing offering
including Google AppEngine and Amazon EC2 auto-scaling
systems. This is typically not a problem in practice. A variant
of the bin packing problem called “vector bin packing”
seemingly considers multi-dimensional constraints, but can-
not be applied in this context as will be explained in Section 7.

The auto scaling problem we want to solve is defined as
follows: Suppose we have a server set on which we need to
run a set of applications (denoted as ). The CPU capacity of
server ( ) is , the maximum number of application
instanceswhich can run on server simultaneously according
tomemory factor is , and the CPUdemand of application
( ) is . Let to be the application placement matrix
( means that application has an instance running on
server , otherwise ) and to be the application load
distribution matrix ( is the CPU resource allocated on
server for application ). is the energy consumption of an
active server during a decision interval. Then as mentioned
before, the inputs to our Application Scheduler contains the
current application placement matrix , the predicted CPU
demand of each application ( ) and the CPU and memory
resource capacity of each server ( and ). The outputs
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contain new application placement matrix and load distri-
bution matrix .

Our goals are to maximize the demand satisfaction ratio,
minimize the placement change frequency and minimize
energy consumption. Our optimization objectives can be
expressed as follows:

>

with the constraints

To simplify the problem described above, we make the
assumption that the servers are homogeneous with uniform
capacity ( and ). Then the auto scaling problem is similar
to the Class Constrained Bin Packing (CCBP) problem when
we label each application as a class and treat the CPU de-
mands of all classes as the items which need to be packed
into bins. The only difference is that the CCBP problem
does not have the “Minimize the placement change frequen-
cy” goal. Therefore, in order to solve our problem, we modi-
fied the CCBPmodel to support the “Minimize the placement
change frequency” goal and provide a new enhanced semi-
online approximation algorithm to solve it in the next section.
Note that the equations above are just a formal presentation of
the goals and constraints of our problem. We do not need to
solve them directly.

4 CCBP FORAUTOMATIC SCALING OFRESOURCES

In the traditional bin packing problem, a series of items of
different sizes need to be packed into a minimum number of
bins. The class constrained version of this problemdivides the
items into classes or colors. Each bin has capacity v and can
accommodate items from at most c distinct classes. It is “class
constrained” because the class diversity of items packed into
the same bin is constrained. The goal is to pack the items into a
minimum number of bins.

We can model our resource allocation as the Class Con-
strained Bin Packing (CCBP) problem where each server is a
bin and each class represents an application. Items from a
specific class represent the resource demands of the corre-
sponding application. The class constraint reflects the practi-
cal limit on the number of applications a server can run
simultaneously. For J2EE applications, for example, memory
is typically the bottleneck resource. The capacity of a bin

represents the amount of resources available at a server for
all its applications. We assume that the servers are homoge-
neouswith uniform capacity. This assumptionwill be relaxed
later in the section. In practice, the number of servers available
isfinite.Our algorithmhandles the casewhen all bins are used
up. The size of an item represents an amount of load for the
corresponding application. Bymaking all items the same unit
size, we can represent the item size as a unit of load equal to a
specific fraction of the server capacity. This is called the “load
unit”. The capacity v of a bin thus represents howmany units
of load a server can accommodate. The number of items
waiting to be packed from a specific class represents the
amount of resource needed by the corresponding application.
The resource needs of applications can vary with time. This is
modeled as item arrivals and departures: load increases
correspond to arrivals of new items, while load decreases
correspond to departure of already packed items.

Most online CCBP algorithms do not support item depar-
ture. Work [13] has a general discussion on item departure,
but does not describe any specific algorithm. Instead they
focus on proving the bounds on the approximation ratio for
any removal algorithm. Their result does not apply here
because they do not repack items after the departure. A key
contribution of our algorithm is the support for item depar-
ture which is essential to maintaining good performance in a
cloud computing environment where the resource demands
of Internet applications can vary dynamically.

Fig. 3 shows an example where we have two servers and
three applications. Each server can run at most two applica-
tions simultaneously (i.e., ). We set the load unit to 20%
(i.e., a unit of load represented by an item equals 20% the
capacity of a server). Each server can thus satisfy 5 units of
load (i.e., ). Let the resource demands of the applications
be 60%, 20%, and 120% of the server capacity, respectively.
This translates into 3, 1, and 6 items to be packed for their
corresponding classes.

The CCBP problem (like its traditional, non-class con-
strained version) is NP-hard [13]. A number of offline
approximation algorithms have been developed in the
literature [14], [15]. These algorithms assume that the entire

Fig. 3. Class constrained bin packing (CCBP).
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input sequence of items (including their departure) is known
in advance. This is unrealistic in our environment since
application resource demands can change unexpectedly. In
addition, they make no effort to minimize the shuffling of
already packed items,which can lead to significant overhead
due to application placement changes.

A key observation of our work is: not all item movements
are equally expensive. Recall that we need to make two
decisions in our system: application placement and load
distribution. Creating a new application instance on a server
is expensive. In the CCBPmodel, this corresponds to packing
the first item of a class into a bin. Adjusting the load distribu-
tion, on the other hand, is a much cheaper operation. It
involves updating the L7 switch with the new distribution
policy. In the CCBP model, this corresponds to adjusting the
number of items of an existing class in a bin. Based on this
observation, we develop a semi-online algorithm for CCBP
which packs the current item without any knowledge of
subsequent items in the input sequence. Our key idea is to
minimize application placement changes by adjusting the
existing load distribution. In the following, we will describe
the details of our algorithm.

4.1 Details of Our Algorithm
Our algorithm belongs to the family of color set algorithms
[13], but with significant modification to adapt to our prob-
lem. A detailed comparison with the existing algorithm is
deferred to Section 7 so that sufficient background can be
established. We label each class of items with a color and
organize them into color sets as they arrive in the input
sequence. The number of distinct colors in a color set is at
most c (i.e., the maximum number of distinct classes in a bin).
This ensures that items in a color set can always bepacked into
the same bin without violating the class constraint. The
packing is still subject to the capacity constraint of the bin.
All color sets contain exactly c colors except the last onewhich
may contain fewer colors.

Items from different color sets are packed independently.
Agreedy algorithm is used topack itemswithin each color set:
the items are packed into the current bin until the capacity is
reached. Then the next bin is opened for packing. Thus each
color set has atmost oneunfilled (i.e., non-full) bin.Note that a

full bin may contain fewer than c colors. When a new item
from a specific color set arrives, it is packed into the corre-
sponding unfilled bin. If all bins of that color set are full, then a
new bin is opened to accommodate the item.

4.1.1 Application Load Increase
The load increase of an application ismodeled as the arrival of
items with the corresponding color. A naive algorithm is to
always pack the item into the unfilled bin if there is one. If the
unfilled bin does not contain that color already, then a new
color is added into the bin. This corresponds to the start of a
new application instance which is an expensive operation.
Instead, our algorithm attempts to make room for the new
item in a currently full bin by shifting some of its items into the
unfilled bin. Let be the color of the new itemand be any of
the existing colors in the unfilled bin. We search for a bin
which contains items of both colors. Let be such a bin. Then
wemove an item of color from bin to the unfilled bin. This
makes room for an item in bin where we pack the new item.

Ifwe cannot find a binwhich contains both colors, we see if
we can shift the items using a third color as the intermedi-
ate. More specifically, we search for two bins:

bin contains colors and
bin contains colors and

If we can find such two bins, we proceed as follows:
move an item of color from bin to the unfilled bin
move an item of color from bin to bin
pack the item in bin

This process is illustrated in Fig. 4 (left). (Recall that v is the
capacity of the bin and c is the class constraint.) More gener-
ally, we can have a chain of colors , , such that

is the color of the new item
is an existing color in the unfilled bin

every two adjacent colors in the chain share a bin2

The length of the chain is bounded by the number of colors
in the color set (i.e., the class constraint). As long as such a
chain exists,we can accommodate thenew itemby shifting the
existing items along the chain. Note that the itemmovements
here are hypothetical and used only to calculate the new load

Fig. 4. Arrival of a new item (left) and departure of an existing item (right).

2. Note that the “share a bin” relation between the colors is not
transitive.
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distribution. No physical movement of any application
occurs. Also note that the chain length is bounded by a
constant and does not increase with the numbers of applica-
tions or servers in the system. If we cannot find such a chain,
the new color has to be added into the unfilled bin which
requires starting anewapplication instance. If the color set has
no unfilled bin, then a new bin is allocated. If all bins are used
up, then the load increase cannot be satisfied.

4.1.2 Application Load Decrease
The load decrease of an application is modeled as the depar-
ture of previouslypacked items.Note that thedeparture event
here is associatedwith a specific color, notwith a specific item.
The algorithm has the freedom to choose which item of that
color to remove.

The challenge here is to maintain the property that each
color set has atmost oneunfilledbin.Ourdeparture algorithm
works as follows. If the color set does not have an unfilled bin,
we can remove any item of that color and the resulting bin
becomes the unfilled bin. Otherwise, if the unfilled bin con-
tains the departing color, a corresponding item there can be
removed directly. In all other cases, we need to remove an
item from a currently full bin and then fill the hole with an
item moved in from somewhere else. Let be the departing
color and be any of the colors in the unfilled bin.We need to
find a bin which contains items of both colors. Let be such a
bin. We remove the departing item from bin and then move
in an item of color from the unfilled bin.More generally, we
canfind a chain of colors andfill the hole of the departing item
by shifting the existing items along the chain. The procedure is
similar to theprevious case for application load increase. Fig. 4
(right) illustrates this process for a chain with three colors.

If we cannot find such a chain, we start a new application
instance to fill the hole:

remove an itemof the departing color from any binwhich
contains that color.
select a color in the unfilled bin and add that color into
the departing bin.
move an item of color from the unfilled bin to the
departing bin.

If the unfilled bin becomes empty, we can remove it from
the color set and shut down the corresponding server since all
application instances there receive no load.

It might seem counter-intuitive that a decrease in applica-
tion load can result in the start of a new application instance.
However, this is inevitable ifwewant to consolidate servers to
save energy.

4.1.3 Application Joins and Leaves
When the last item of a specific color leaves, that color can be
removed from its color set. This corresponds to shutting down
the last instance of an application when its load reduces to
zero.3When a color is removed from its color set, that color set
becomes unfilled (i.e., non-full). The challenge here is to
maintain the property that there is at most one unfilled color
set in the system. This is important because each color set is
packed independently.

Our basic idea is to fill up the unfilled sets (except the last
one) while minimizing its impact on the existing color
assignment. We first check if there are any pending requests
to add new colors into the system. If there are, we allocate
the new colors to the unfilled sets first using the following
add_new_colors procedure.

procedure add_new_colors:
Sort the list of unfilled color sets in descending order of
their cardinality.
Use a greedy algorithm to add the new colors into those
sets according to their positions in the list.
If we run out of the new colors before filling up all but the
last unfilled sets, use the consolidate_unfilled_sets pro-
cedure below to consolidate the remaining unfilled sets
until there is only one left.
If there are still new colors left after filling up all unfilled
sets in the system, we partition the remaining new colors
into additional color sets using a greedy algorithm.

The consolidate_unfilled_sets procedure below consoli-
dates unfilled sets in the system until there is only one left.

procedure consolidate_unfilled_sets:
Sort the list of unfilled color sets in descending order of
their cardinality
Use the last set in the list (with the fewest colors) to fill the
first set in the list (with the most colors) through the fill
procedure below. Remove the resulting full set or empty
set from the list.
Repeat the previous step until there is only one unfilled
set left in the list.

The fill( , ) procedure below uses the colors in set to
fill the set .

procedure fill( , ):
Sort the list of colors in in ascending order of their
numbers of items.
Add thefirst color in the list (with the fewest items) into .
Use “item departure” operation in and “item arrival”
operation in tomove all items of that color from to .
Then remove that color from the list.
Repeat the above step until either becomes empty or
becomes full.

4.2 Analysis of the Approximation Ratio
The quality of a polynomial time algorithm is measured by
its approximation ratio to the optimal algorithm :

where is the list of the input sequence and and
are the number of bins used under the algorithm and
the optimal algorithm, respectively [16]. Since the problem
is NP-hard, no polynomial time optimal algorithm exists.
Hence, theOPT algorithmhere serves as an unrealistic upper
bound.

To analyze the approximation ratio of our algorithm, we
define the following notation:
m: the total number of colors in the system
: the number of items of the th color

c: the class constraint
v: the capacity of a bin

3. Another possibility is to leave the last instance there to make sure
that each application has at least one instance running in the system.
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Let and the average load . We
have

Together with the results in [13], we have

We can disregard the operation in our analysis when
OPT( ) approach infinity. Then the above formula becomes

The specific values of v and L depend on how the capacity
of servers are discretized. Since both variables are represented
as multiples of items, we can use their ratio to
represent the average application load in multiples of the
server capacity. Then we have

Note that 1/v is the load unit. Fig. 5 shows how the
approximation ratio changes with the parameters. The figure
indicates that the approximation ratio is determined mostly
by the product of c and t which reflects the total load of all
applications in a color set. This ratio is small for reasonably
large c and t. It indicates that our algorithm uses a small
number of servers to satisfy all application demandswhen the

load is low, andachieves good satisfaction ratiowhen the load
is high. Thiswill be backedupbyour experiments in Section 5.

4.3 Practical Considerations
In this subsection, we examine some implementation issues
that need to be considered in practice.

4.3.1 Server Equivalence Class
Our algorithm assumes that the physical servers are homo-
geneous with uniform capacity. (The VMs are obviously
heterogeneous just like in Amazon EC2.) This is typical for
bin packing algorithms in the literature.4 One may wonder
how realistic this assumption is in practice.

Servers in large data centers are often acquired in large
batches where each batch contains a large number of servers
with identical hardware. Of course, the servers in a large data
center are not all identical. Multiple generations of hardware
are likely to co-exist. We can divide the servers into “equiva-
lence classes” based on their hardware settings and run our
algorithm within each equivalence class. Our algorithm also
assumes that the items have the same unit size. This is not a
restriction in practice because the item size is used as the load
unit to represent a certain percentage of server capacity. As
long as the servers have uniform capacity, the item sizes are
identical.

4.3.2 Class Constraint
In a cloud computing environment, it is not possible to run
every application on every machine due to resource con-
straint. For e-commerce applications, physical memory is
typically the bottleneck resource that limits how many appli-
cations a server can run simultaneously. This limit is modeled
explicitly in our algorithm as the class constraint and can be
enforcedby the cloud serviceprovider [17].Note that it is not a
limit imposed by our algorithm.We only need to run enough
applications to drive the server busy, e.g., to saturate its CPU
cycles. As analyzed previously, our algorithm works well
when the aggregate load of applications in a color set is high.
For Internet applications, this typically means that the CPU
demand relative to the memory consumption is high. For

Fig. 5. Approximation ratio as the parameters change.

4. A version of the problem called VCCBP allows the bins to be of
different sizes.However, the goal there is tominimize the total size of bins
used, which is not applicable to our settings.
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those applications, a fairly conservative class constraint is
usually sufficient to saturate the servers. Aswewill see later in
the evaluation, the demand satisfaction ratio of our algorithm
is not sensitive to the particular choice of the class constraint
used.

Note that we do not require the applications or the VMs
encapsulating them to have identical memory requirements.
We use the self-ballooning technique in Xen 4.0 to adjust the
memory allocation among the VMs [18]. This technique
allows the hypervisor to collect the unused memory from
the VMs into a shared pool which can then be accessed by the
needy guest OS. It also allows the hypervisor to withhold a
certain amount of memory as reserve which can be allocated
to the VMs in an on-demand manner.

4.3.3 Load Change
The load of data center applications can change continuously.
We only need to invoke our algorithm periodically or when
the load changes cross certain thresholds. The actions in each
step of the algorithm are consolidated and executedwhen the
algorithm finishes. Hence, if a flash crowd requires an appli-
cation to add a large number of servers, all the servers are
started in parallel. As we will see later in the simulations, our
algorithm is highly efficient and can scale to tens of thousands
of servers and applications.

The amount of load change during a decision interval may
correspond to the arrivals or departures of several items in a
row. A large load unit reduces the overhead of our algorithm
because the same amount of load change can be represented
by fewer items. It also increases the stability of our algorithm
against small oscillation in load. On the other hand, it can lead
to inefficient use of server resources and decrease the satis-
faction ratio of application demands. The granularity of load
change we can capture is limited by the load unit.

4.3.4 Optimization
In our algorithm, each color set has at most one unfilled bin.
The number of colors in the unfilled bin sometimes is smaller
than the class constraint. When the number of color sets is
large, the aggregate unfilled capacity in those bins is non-
negligible. The demand satisfaction ratio can be improved if
we use the unfilled capacity to satisfy the applications whose

demands are not completely satisfied, even if they belong to
different color sets. More specifically, we sort the list of
unfilled bins with spare color slots in descending order of
their capacity. We also sort the list of applications in descend-
ing order of their unsatisfied demand. Then we use a greedy
algorithm to put those applications into the unfilled bins:
whenabin is full or reaches the class constraint,wemoveon to
the next one in the list. By allowing temporary violation of the
color set property, we can improve the demand satisfaction
ratio when the resources are tight. Note that the class con-
straint in the original CCBP problem is never violated.

5 EXPERIMENTS

We evaluate the effectiveness of our system in experiments.
The Web applications used in the experiments are Apache
servers serving CPU intensive PHP scripts. Each application
instance is encapsulated in a separate VM. The servers are
connected over a Gigabit ethernet. The client machines run
httperf to invoke the PHP scripts on the Apache servers. This
allows us to subject the applications to different degrees of
CPU load by adjusting the client request rates. We consider a
server as “full” when its capacity reaches 80%. This leaves
some room for additional load increase as we start some of its
applications on other servers. To save time on the experi-
ments, we configure the Application Scheduler with an
aggressive two minutes interval between invocations. This
allows us to complete the experiments in a timely manner. In
practice, we expect the Scheduler to runmuch less frequently.
We configure the algorithm to run nomore than four applica-
tions on each server (i.e., ). The load unit is 1%.

5.1 Load Shifting
We first evaluate the effectiveness of load shifting in our
algorithm to avoid application placement change. Fig. 6
shows the experiment with three servers and three applica-
tions. The servers are with Intel E5420 CPU and 8 GB of RAM
and run Xen-3.3.1. We keep the scale of the experiment small
so that we can present results for all servers. In the next
subsection, we will present experiments with a group of 30
servers. Different shades are used to distinguish the applica-
tions in Fig. 6. Application 1 and 3 run on server 1, application
2 and 3 run on server 2, and application 2 runs on server 3.
Server 3 is the only serverwith spare capacity (i.e., the unfilled
bin). All applications belong to the same color set. We first
increase the load on application 1 gradually. Without load
shifting, a new instanceof the applicationhas to start on server
3. With load shifting, the algorithm shifts the load of applica-
tion 3 onto server 2 and gives the released capacity to appli-
cation 1. Since server 2 is also fully utilized, the algorithm
shifts the load of application 2 onto server 3 in order to
accommodate the migrated load of application 3 from server
1. As a result, the load on server 3 increases as we increase the
load on application 1, even though application 1 does not run
on server 3. In other words, we use the spare capacity in the
unfilled bin to absorb the demand increase in the full bin.

After it reaches a stable state, we decrease the load on
application 1 gradually and the reverse process happens. The
algorithm shifts the load on application 3 from server 2 to
server 1 in order to keep server 1 full. It shifts the load of

Fig. 6. Load shifting to avoid placement change.
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application 2 from server 3 to server 2 in order to keep server 2
full. As a result, the load on server 3 decrease in order tofill the
gap left by application 1, even though application 1 does not
run on server 3.

Note that around 1450 seconds, there is a drop in the load
on server 1 for about 100 seconds. Thus the system seems to
have two unfilled bins during that period. This is because the
decision algorithm executes only periodically. The load
decrease on application 1 happens shortly after a run of the
algorithm has just finished. The Scheduler does not know
about the load change until it executes again two minutes
later. During this period, the L7 switch continues forwarding
the requests according to the existingdistribution. Thus a load
decrease on application 1 leads to a corresponding load
decrease on server 1. As soon as the Scheduler executes again,
it uses load shifting to fill the gap.

5.2 Auto Scaling
We evaluate the auto scaling capability of our algorithmwith
nine applications and 30 Dell PowerEdge servers with Intel
E5620 CPU and 24 GB of RAM. The servers run Xen-4.0 and
Linux 2.6.18. The results are shown in Figs. 7 and 8. We
increase the load of one application dramatically to emulate
a “flash crowd” event while keeping the load of the other
applications steady. Fig. 7 (left) shows the request rate of the
flash crowd application and the number of active servers (i.e.,
APMs) used by all applications over the course of the experi-
ment. Initially, the load in the system is low and only a small
number of servers are used. When the flash crowd happens,
our algorithm detects the skyrocketing request rate quickly
and scales up the server resources decisively. The figure
shows that it uses up all 30 servers during the peak demand.

Then we reduce the request rate of the application gradually
to emulate that the flash crowd is over. The algorithm scales
down the server resources accordingly to conserve energy.

In the above experiment, a server on average spends 39%of
the time in standby mode due to green computing. This
translates into roughly 51 Watts power-saving per server or
1530Watts for the group of 30 servers used in the experiment.

The middle and the right figures in Fig. 7 show the reply
rate and the percentage of errors for the flash crowd applica-
tion during the experiment. Fig. 8 shows the response time for
all applications. The reply rate indicates how many requests
got successful replies. It can be seen as the throughput of the
application. As a target for comparison, we use the Scalr open
source implementation of auto scaling in Amazon EC2 [17].
Scalr adjusts the number ofVMinstances for an application on
EC2 dynamically based on the observed load. It considers
each application individually and has no notion of the “class
constraint”. Hence, it can be seen as a “classless” algorithm
which does not set a fixed number on howmany applications
a server can run simultaneously. Of course, its application
placement still needs to consider if the candidate server has
enough resources to accommodate the application.

As we can see from the figure, at the beginning of the flash
crowd, both algorithms experience reduced throughput and
increased response time. Both have a certain percentage of
requests result in errors. This is because it takes time to start
and warm up the new VM instances. However, this period is
much shorter for our algorithm than for Scalr: our algorithm
restores to the normal QoS in less than five minutes, while
Scalr still suffers much degraded performance even after
25 minutes. Auto scaling in Scalr is performed on a per
application basis and no load shifting (like that in Fig. 6) is
performed across the applications. It is possible for some
applications to have unsatisfied demands while other appli-
cation servers still have unfilled capacity.

6 SIMULATIONS

The previous section has demonstrated the effectiveness of
our system in real experiments. This section evaluates the
performance of our application scheduling algorithm in large
scale simulation. Our simulator uses the same code base for
the scheduling algorithm as the real implementation in the
previous section. This ensures the fidelity of our simulation
results.

The input to our simulation includes the resource capacity
of each server, the memory demand of each application
instances, and the total CPU demand of each application in

Fig. 7. Left figure: request rate and #servers used. Middle and right figures: comparison with Scalr.

Fig. 8. Comparison of the response time.
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every decision interval. We assume that all servers are homo-
geneous. We define the “demand ratio” as the ratio between
the aggregate demand of all applications and the aggregate
capacity of all servers. We denote it as D. For example,

means that the average server utilization will be
90% if all application demand is satisfied. Then according to
the class constraint ( ) and the memory capacity of the server
( ), we set the max memory demand of application
instances to be . The total CPU demand is allocated to the
set of applications as follows: According to the demand ratio
( ) and the totalCPUcapacity of all servers ( ),we canget
the the total CPU demand of all applications as .
Each application selects a randomnumber between 0 and 1 as
its weight. Then the CPU demand is allocated proportional to
their normalized weights. During each decision interval, the
demand of each application changes randomly by 20%.

We define a server as active if it has at least one application
instance running. We call it an APM (Active Physical
Machine). Otherwise, it is inactive and could potentially
be turned off to save energy. The simulator invokes our
scheduling algorithm according to the prepared input and
computes performance metrics such as the number of APMs
in the system, the decision time, the application demand
satisfaction ratio, and the number of placement changes. Each
data point is repeated 200 times and the average is taken.

6.1 Application Demand Ratio
The first set of experiments are conducted in a group of one
thousand servers with one thousand applications. We
increase the demand ratio (D) from 0.05 to 0.99. The results
are shown in Figs. 9 and 10. Fig. 9 shows that the number of
APMs increaseswith the demand and reaches 100%when the
demand is very high. It decreases slightly with the class
constraint when the demand is low, but the effect is small.
The average decision time in each run of the algorithm is
shown in Fig. 10 (left). Note that the decision time is based on
the real execution of the actual code used in the deployment.
The figure indicates that the decision time increases with the
demand ratio andwith the class constraint. This ismostly due
to the search time tofind a chain of itemswhen the application
demand changes as described in Section 4.1.1. The longest
decision time is less than 0.8 second, which is very fast for a
system of this size. The middle figure shows that the demand
satisfaction ratio remains at 100% until and then
decreases slightly. Somewhat surprisingly, the class constraint

has essentially no impact on the satisfaction ratio: when the
class constraint increases from 4 to 32 (i.e., by a factor of 8), the
satisfaction ratio remains essentially unchanged. This is due to
the optimization in Section 4.3.4 which allows us to satisfy
more application demands during high load, even when the
class constraint is small. This shows that theperformanceofour
algorithm is not sensitive to the specific choice of the class
constraint. The right figure shows the number of placement
changes broken down into application starts and stops. Both of
them increase with the demand ratio and decreases with the
class constraint: when each server can run a larger number of
applications simultaneously, there is less need for placement
change. This ismore profoundwhen thedemand ishigh. There
are more application starts than stops because some applica-
tion instances keep running throughout the simulation. Note
that we do not migrate VMs.

6.2 Scalability
Weevaluate the scalability of the algorithmby increasingboth
the number of servers and the number of applications from
1000 to 10,000. Fig. 11 (left) shows how the decision time
increases with the system size. As we can see from the figure,
our algorithm is extremely fast, even when implemented in
Python: the decision time is less than 4 seconds when the
system size reaches 10,000. The middle figure shows that the
demand satisfaction ratio is independent of the system size
(depends on D as shown previously). The right figure shows
that the number of placement changes increases linearly with
the system size. Again the class constraint has a bigger impact
when the demand is higher. When averaged over the number
of servers, each server experiences roughly a constant number
of placement changes for any given demand ratio.

6.3 Application Number
Next we vary the ratio between the applications and the
servers by increasing the number of applications from 200
to 2000. The number of servers is fixed at 1000. The results are
shown in Fig. 12. The leftfigure shows that the decision time is
longer (but remains under 0.5 second) when there are more
applications and when the class constraint is larger. The
middle figure shows that the satisfaction ratio is little affected
by the number of applications. The right figure shows that
when the demand is high, more applications lead to more
placement changes. This is because for a given class con-
straint, more applications means fewer running instances for
each application. Again a larger class constraint helps reduce
placement churns. Both of them have a much smaller impact
when the demand is lower.

7 RELATED WORK

The traditional bin packing problem has been extensively
studied in the literature (see the survey in [19]). The vector bin
packing problem considers multi-dimensional constraints
when packing items into a minimum number of bins [20].
One may think we can consider the CPU demand and the
memory requirement of an Internet application as individual
elements in the vector and use vector bin packing to solve our
problem. Unfortunately, the memory requirement of Internet
applications has to be satisfied as a whole: a major portion of

Fig. 9. Number of APMs as the demand increases.
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the memory is consumed anyway even when the application
receives little load. This is especially true for Java applications
whose memory usage may depend on the past load due to
garbage collection. Hence, we cannot divide the memory
requirement and satisfy it in a piecemeal manner across the
servers. None of the existing bin packing problems can be
applied in our environment.

TheClassConstrainedMultipleKnapsackproblem(CCMK)
aims to maximize the total number of packed items under the
restriction that each knapsack has a limited capacity and a
boundon thenumberof different types of items it canhold [21],
[22]. Unlike CCBP, it does not attempt tominimize the number
of knapsacks used. Hence, unlike our algorithm, it does not
support green computing when the system load is low.

A number of approximation algorithms have been devel-
oped for CCBP. Most of them are offline algorithms which
do not support item departure. The rest are strict online
algorithmswhich do not allowmovements of already packed

items. In the case of item departure, the departed item is
removed but the rest of the items in the bins are not re-packed.
When a color set becomes unfilled due to application leaves,
those algorithms do not maintain the property that there is
at most one unfilled color set in the system. This can degrade
the performance severely because each color set is packed
independently. It has been shown that the existing color set
algorithms perform poorly in the face of frequent item depar-
ture [13]. They cannot be applied in a cloud computing envi-
ronment where the application demands change dynamically.

Resource provisioning for Web server farms has been
investigated in [23]–[26]. Some allocate resources in the gran-
ularity of whole servers which can lead to inefficient resource
usage. Some do not consider the practical limit on the number
of applications a server can run simultaneously [25]. Bhuvan
et al. support shared hosting, but manage each application
instance independently [23]. They do not provide the auto-
scaling property. Mohit et al. group applications into service

Fig. 12. Performance of the algorithm as the number of applications increases.

Fig. 11. Scalability of the algorithm as the number of servers and applications increases.

Fig. 10. Performance of the algorithm as the demand increases.
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classes which are then mapped onto server clusters [24].
However, they do not attempt to minimize the placement
changes when application demands vary and is mostly for
offline use. Zhang et al. organize a set of shared clusters into a
network and study resource allocation across shared clusters
[26], which is not the focus of this paper.

Process migration has been studied in various contexts,
e.g., [27]. Unlike virtualization technology, it does not capture
the execution environment of the runningprocesses.Nor does
it support the auto scaling of the processes based on the
observed demand.

Application placement in enterprise environments has
been studied in [28]–[31]. They run multiple applications on
the same set of servers directly without using VMs or Sand-
box. Their approach is suitable when the applications are
trustworthy (e.g., enterprise applications). It is not suitable for
a cloudenvironmentwhere applications come fromuntrusted
users. Unlike ours, their decision algorithm has no concern on
green computing and is based on a set of heuristics with no
provable bounds or optimality. Our algorithm can scale to an
order of magnitude more servers than those in [28], [29]
because the complexity of our algorithm is much lower.

Like our system, the Google AppEngine service provides
automatic scaling forWeb applications. The users are charged
by the CPU cycles consumed, not by the number of applica-
tion instances. Its internal algorithmused is not disclosed.Our
algorithmpotentially canbeused to implement such a service.
The applications in AppEngine must run inside a sandbox
with severe restrictions on what they can do. At the time of
this writing, it supports mostly applications written in Java
and Python5 or Google’s own Go programming language.
This makes it difficult to port legacy applications onto their
platform. In contrast, porting an existing application onto our
VMplatform is much easier. It gives the users great flexibility
in choosing their favorite programming languages, operating
systems, libraries, etc.

There are also some cloud vendors providing auto-scaling
solutions for cloud users (see the survey in [32]). Users are
allowed to define a set of rules to control the scaling actions.
However, the rules and the load balancing strategies they
used are very simple. Just like the Scalr in Amazon EC2 [17],
they perform the scaling actions simply when some condi-
tions are met and balance the load evenly across all instances.
Since they do not take the state of the whole system into
consideration, they cannot reach a globally optimal decision.

8 CONCLUSIONS AND FUTURE WORK

Wepresented the design and implementation of a system that
can scale up and down the number of application instances
automatically based on demand. We developed a color set
algorithm to decide the application placement and the load
distribution. Our system achieves high satisfaction ratio of
application demand even when the load is very high. It saves
energyby reducing the number of running instanceswhen the
load is low.

There are several directions for future work. Some cloud
service providers may provide multiple levels of services to

their customers. When the resources become tight, they may
want to give their premium customers a higher demand
satisfaction ratio than other customers. In the future, we plan
to extend our system to support differentiated services but
also consider fairnesswhen allocating the resources across the
applications. We mentioned in the paper that we can divide
multiple generations of hardware in a data center into “equiv-
alence classes” and run our algorithm within each class. Our
future work is to develop an efficient algorithm to distribute
incoming requests among the set of equivalence classes and to
balance the load across those server clusters adaptively. As
analyzed in the paper, CCBP works well when the aggregate
load of applications in a color set is high.Another direction for
future work is to extend the algorithm to pack applications
with complementary bottleneck resources together, e.g., to
co-locate a CPU intensive application with a memory inten-
sive one so that different dimensions of server resources can
be adequately utilized.
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