
PDiT: Interleaving Perception and Decision-making Transformers
for Deep Reinforcement Learning

Hangyu Mao
SenseTime Research

Beijing, China
maohangyu@sensetime.com

Rui Zhao
SenseTime Research
Shenzhen, China

zhaorui@sensetime.com

Ziyue Li
University of Cologne
Cologne, Germany

zlibn@wiso.uni-koeln.de

Zhiwei Xu
University of Chinese Academy of

Sciences
Beijing, China

xuzhiwei2019@ia.ac.cn

Hao Chen
University of Chinese Academy of

Sciences
Beijing, China

chenhao915@mails.ucas.ac.cn

Yiqun Chen
Gaoling School of AI, Renmin

University of China
Beijing, China

chenyiqun990321@ruc.edu.cn

Bin Zhang
University of Chinese Academy of

Sciences
Beijing, China

zhangbin2020@ia.ac.cn

Zhen Xiao
Peking University
Beijing, China

xiaozhen@pku.edu.cn

Junge Zhang
Institute of Automation, Chinese

Academy of Sciences
Beijing, China

jgzhang@nlpr.ia.ac.cn

Jiangjin Yin
Huazhong Agricultural University

Wuhan, China
jiangjinyin@mail.hzau.edu.cn

ABSTRACT
Designing better deep networks and better reinforcement learning
(RL) algorithms are both important for deep RL. This work studies
the former. Specifically, the Perception and Decision-making Inter-
leaving Transformer (PDiT) network is proposed, which cascades
two Transformers in a very natural way: the perceiving one focuses
on the environmental perception by processing the observation at the
patch level, whereas the deciding one pays attention to the decision-
making by conditioning on the history of the desired returns, the
perceiver’s outputs, and the actions. Such a network design is gen-
erally applicable to a lot of deep RL settings, e.g., both the online
and offline RL algorithms under environments with either image ob-
servations, proprioception observations, or hybrid image-language
observations. Extensive experiments show that PDiT can not only
achieve superior performance than strong baselines in different
settings but also extract explainable feature representations. Our
code is available at https://github.com/maohangyu/PDiT.

KEYWORDS
Deep Reinforcement Learning; Neural Architecture Design for Re-
inforcement Learning; Transformer for Reinforcement Learning

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

ACM Reference Format:
Hangyu Mao, Rui Zhao, Ziyue Li, Zhiwei Xu, Hao Chen, Yiqun Chen, Bin
Zhang, Zhen Xiao, Junge Zhang, and Jiangjin Yin. 2024. PDiT: Interleaving
Perception and Decision-making Transformers for Deep Reinforcement
Learning. In Proc. of the 23rd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10,
2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Deep reinforcement learning (RL) has made great progress in au-
tomating decisions in complex tasks, from virtual environments
such as mastering video games [31] to real-world applications such
as object grasp, autonomous driving, and 6-DoF manipulation [12].
These tasks usually involve multi-modal data.

Generally, an RL agent receives the environmental observations
(perception) and takes actions accordingly (decision-making) to
maximize the accumulated rewards. Dealing with environments
with multi-modal data can be rather challenging, and various deep
learning modules have been employed in perception and decision-
making to enhance performance.

For most of the deep RL models to perceive inputs in a specific
modality from the environment, the perception module needs to
be chosen accordingly. Commonly, Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), and Recurrent Neural Net-
work (RNN) with its variances have been adopted to encode low-
dimensional or proprioception observation [15], vision [5, 31], and
language [17], respectively. It will be more challenging when the
environment contains more than one modality. The intuitive so-
lution was combining different perception modules. For instance,
DreamerV3 [15] uses a combination of MLPs and CNN for a mixture

https://github.com/maohangyu/PDiT
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

-0.2

“go to the red ball”

Multi-modal Perception Decision Making

PDiT

specialization

Vanilla-PDiT

Figure 1: Perception and Decision Making.

of low-dimensional and image inputs. However, such a combination
inevitably complicates the models.

From the perspective of decision-making, deep modules such as
MLP are commonly used to parameterize the policy, e.g., in classic
RLmodels such as DQN [31] and Actor-Critic [36]. Given the nature
of RL as a sequential decision process, Transformer [43] has also
recently been adopted, proving that it is a powerful decision-maker.

However, when considering perception and decision-making
together in multi-modal environments, challenges emerge when
designing the model: an intuitive solution could still be stacking
various modules together. We denote Perception and Decision-
making as P and D for short: For example, CoBERL [3] use residual
network (P) and Transformer (D); Catformer [8] uses CNN (P) and
Transformer (D); when dealing with vision-language tasks, RT-1 [4]
uses residual network for vision (P), Universal-Sentence-Encoder
for language (D), and Transformer for action (D). The models tend
to be gradually over-designed and complicated.

In parallel, owing to the Transformer’s growing ability in vision-
language domains, such as Vision Transformer [2], Uni-Perceiver-
v2 [27], PaLM-E [10], it has been proved that Transformer has pow-
erful vision-language multi-modal perception. This development
largely encourages researchers to simplify the model design for a
multi-modal generalist agent. Ground-breaking offline RL works
such as Decision Transformer (DT) [6], Trajectory Transformer
(TT) [21], Gato [35], and MGDT [26] only use a single Transformer
sequence model: it encodes inputs from various tasks in different
modalities with a causal Transformer, and predict the next step’s
action with the same Transformer in an autoregressive manner. Un-
doubtedly, this simple design eases the model complexity; however,
fusing perception and decision-making in the same Trans-
former model could only be sub-optimal. Instead, delegating
perception and decision to two separate modules is intuitively more
efficient, and Stooke et al. [41] also proves that a specialized per-
ceiver and a specialized decision-maker could largely accelerate
learning. At the same time, a compact model design is still preferred
over the module-stacking models.

To this end, we propose the Perception and Decision-making
Interleaving Transformer (PDiT) network, which specializes in
perception and decisionwith two respective Transformers as shown
in Figure 1. Specifically, the PDiT network ismade up of a Perceiving
Transformer (perceiver) and a Deciding Transformer (decision-
maker): the perceiver processes the observation at the patch level to
learn a good environmental understanding, while the decision-maker

focuses on the good policy learning by conditioning on the history
of the desired returns, the perceiver’s outputs and the actions. We
first propose a Vanilla-PDiT, which naively stacks the Deciding
Transformer on top of the Perceiving Transformer.

However, our experiments find that Vanilla-PDiT cannot always
achieve the expected performance. Possible reasons are that the
vanilla version has no information exchange between the percep-
tion and decision; besides, stacking several Transformer blocks
may cause over-global attention and loss of focus [1, 9]. Since the
deciding layer is to make decisions, once the hidden deciding layer
receives the signal from the perceiving layer, it should directly take
actions instead of further embedding the input’s representations
abstractly by stacking multiple deciding layers.

Thus, we propose the final model, which builds a PDiT block by
interleaving the perceiving and deciding Transformer blocks and
then stacks 𝐿 PDiT blocks to form the network. In this way, both
perception and decision are considered, and they are still specialized
from the perspective of each PDiT block, and the performance is
better in practice. Our contributions are summarized:

• The core contribution is the proposed PDiT network (Vanilla-
PDiT and full PDiT), which is generally applicable to various
deep RL settings: (1) online and offline: the online RL
like PPO [36], the offline RL like CQL [24], and the offline
supervised learning like DT; (2)multi-modal inputs: the
environments with image observations like Atari, the en-
vironments with proprioception observations like MuJoCo,
and the environments with hybrid image-language observa-
tions like BabyAI; (3) multi-task reinforcement learning
without changing the network architecture.

• Furthermore, extensive experiments show that the full PDiT
can achieve superior performance than strong baselines in
different settings. Ablation study and feature visualization
give a better understanding of our methods.

2 RELATEDWORK
A Landscape. Recently, there is a trend of applying Transform-
ers to deep RL [18, 28, 46]. As shown in Figure 2, we categorize
the Transformer-based methods in two dimensions: a) Function
specialization: whether the two essential functions of environ-
mental perception and decision-making are fused in one model
or specialized with two models; b) Model architecture: whether it is
Transformer-only or X+Transformer, which combines a Transformer
with other deep 𝑋 modules such as CNN to perceive the environ-
ment. Specifically, we have the following four combinations: (1)
Specialized: X+Transformer methods such as GTrXL [33], Catformer
[8], CoBERL [3], DT [6] in Atari environment. For instance, Cat-
former [8] combines CNN with Transformer, where the CNN is
specialized for perception, and the Transformer is specialized for
decision. In practice, they need to change their perception mod-
ule when handling different observation types, which may hinder
their scalability in complex environments. (2) In contrast, the Fused:
Transformer-only methods like MGDT [26], TT [21], DT in Mu-
JuCo environment, Gato [35], are purely based on the Transformer,
which fuses the role of environmental perception and decision-
making simultaneously in one Transformer. These models signifi-
cantly simplified the model structure and improved the scalability,

Perception and Decision:
are specialized by two models

Perception and Decision:
are fused in one model

MGDT [28]
TT [23]

DT (MuJoCo) [7]
Gato [38]

Model Design:
Transformer Only

Model Design:
X for Perception + Transformer

Our PDiT

Catformer [9]
CoBERL [3]

DT (Atari) [7]

(2)

(1) (3)

(4)

Figure 2: The categories of Transformer-based RL methods,
in terms of function specialization (i.e., 𝑥-axis) and model
design (i.e., 𝑦-axis). Our PDiT combines the advantages of
recent methods. This illustration does not include all related
works for simplicity.

but such a perception-decision fusion in the same model could be
sub-optimal and slow in training [41]. For example, DT [6] mixes
environmental observations with returns and actions in one Trans-
former when testing on the MuJoCo tasks, but the performance can
be further improved by processing observations separately with
another Transformer, as shown by our experiments. (3) There are
no Fused: Transformer+X , which could be reasonable due to them
being potentially over-complicated. (4) The proposed PDiT is, to
the best of our knowledge, the first model that delegates percep-
tion and decision-making into two Transformers, leveraging
Transformer’s power of dealing with multi-modal data and making
sequential decisions.

Concurrent Work. StARformer [38], HDT [7], GDT [19] and
our preliminary work TIT [30] also apply two Transformers for
better scalability and performance. But we have fundamentally
different motivations and implementations: StARformer focuses
on balancing short-term and long-term dependencies with mixed
Transformer-CNN; HDT aims at hierarchical control with subgoal
prediction; GDT applies a causal graph to capture potential de-
pendencies between different concepts and facilitate temporal and
causal relationship learning; in contrast, our PDiT combines the
advantages of the existing methods by dividing environmental
perception and decision-making into two Transformers, and it is
applicable for many deep RL settings.

Applying Two Transformers in Other Fields. In multi-agent
reinforcement learning, two Transformers are used for asynchro-
nous action coordination [47]. In computer vision, some methods
apply two Transformers to handle tasks like image classification
and person search, e.g., TNT [16]., ViViT [2], DualFormer [29] and
COAT [45]. However, our PDiT and these works are totally dif-
ferent. Although both divide the image input into patches, it is
worth noting that this is a standard process for all Vision Trans-
formers. Besides, both have two Transformers but with different
designs. For example, TNT’s outer Transformer takes the coarse-
grain patches, and the inner one further takes the finer patches
from the coarse patch. For our PDiT, the perceiver’s input is the
multi-modal observation (image, proprioception, image-language),

and the decision-maker’s input is return-observation-action em-
bedding. The perceiving Transformer perceives the environment,
and the deciding one takes action. As a result, TNT can only be
used for vision tasks, but our PDiT is designed for RL tasks.

3 APPROACH
We consider problems that can be formulated as a Markov Decision
Process (MDP), which is formally defined by a tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩,
where 𝑆 is the set of possible states 𝑠 ∈ 𝑆 ; 𝐴 represents the set of
possible actions 𝑎 ∈ 𝐴; 𝑇 (𝑠′ |𝑠, 𝑎) : 𝑆 ×𝐴 × 𝑆 → [0, 1] denotes the
state transition function; 𝑅(𝑠, 𝑎) : 𝑆×𝐴 → R is the reward function;
𝛾 ∈ [0, 1] is the discount factor. We use 𝑠𝑡 , 𝑎𝑡 and 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡)
to denote the state, action and reward at timestep 𝑡 , respectively.
Our goal is to learn a policy 𝜋 (𝑎𝑡 |𝑠𝑡) that can maximize E[𝑅𝑡]
where 𝑅𝑡 = Σ𝐻

𝑘=𝑡
𝛾𝑘−𝑡𝑟𝑘 is the discounted return, and 𝐻 is the time

horizon. Reinforcement learning [42] is a popular approach to solve
the MDP problems. In practice, the environment can be noisy, so we
can only get an observation 𝑜𝑡 , which contains partial information
of the state 𝑠𝑡 . We have to learn the policy based on the observation
history [𝑜𝑡−𝐾 ; ...;𝑜𝑡−1;𝑜𝑡], whichwill be represented by [𝑜𝑘]𝑡

𝑘=𝑡−𝐾
for simplicity and 𝐾 is the history horizon. This setting is called
partially-observable MDP (POMDP) [40]. Given these settings and
notations, we introduce our PDiT network as follows.

3.1 Vanilla-PDiT
Vanilla-PDiT is the minimal implementation of PDiT. As shown in
Figure 3, it stacks multiple perceiving Transformers to encode the
multi-modal input and multiple deciding Transformers to learn the
policy via the MDP decision sequences.

Specifically, the perceiving Transformer (which consists of 𝐿
perceiving blocks) focuses on the environmental perception by pro-
cessing the observation at the patch level, while the deciding Trans-
former (which is made up of 𝐿 deciding blocks) pays attention to
the decision-making (i.e., generating the action 𝑎𝑡) by conditioning
on the history of the desired returns [𝑅𝑘]𝑡

𝑘=𝑡−𝐾 , the perceiver’s
outputs [𝑧𝑘]𝑡

𝑘=𝑡−𝐾 and the actions [𝑎𝑘]𝑡−1
𝑘=𝑡−𝐾 .

However, naively stacking the deciding Transformer on top of
the perceiving one cannot always achieve the expected perfor-
mance, as shown in our experiments. We suppose this is because
there is no information interaction between the perceiving and
deciding blocks, which may hinder the representation learning for
reinforcement learning, as demonstrated by our feature visualiza-
tion. So we propose the full PDiT to improve the performance.

3.2 PDiT
As shown in Figure 4, the full PDiT first builds a PDiT block by one
perceiving block and one deciding block on the top, then stacks 𝐿
PDiT blocks to form the network. In this way, we interleave the
perceiving and deciding Transformer blocks, such that the informa-
tion can be fully fused in every PDiT block, while the perception
and decision are still specialized by the perceiving and deciding
blocks, respectively. In the following, we introduce the details.

3.2.1 Dealing with the Multi-modal Observations. Different
environments have different types of observations. As shown in
Figure 5, we consider three common types: image observation in

Perceiving Trm Block

Perceiving Trm Block

Deciding Causal Trm Block

Deciding Causal Trm Block

t-1 t-1 t-1 t t t

……

……

……

……

t-1

𝐿 blocks

𝐿 blocks

𝑂!

𝑹" 𝑧 𝑎 𝑹" 𝑧

𝑎

𝑎

𝑎

Data Flow of
Perceiver to
Decision-maker

Data Flow of
Deciding Block

Data Flow of
Perceiving Block

t

Figure 3: The architecture of the proposed Vanilla-PDiT.

𝑂!

Perceiving Trm Block

Deciding Causal Trm Block

t

Perceiving Trm Block

Deciding Causal Trm Block

𝐿 blocks

1
Observation Patch
position encoding

Observation Patch
embedding

* Integration Token
encoding

Data Flow of
Perceiver to
Decision-maker

Data Flow of
Deciding Block

……

……

Data Flow of
Perceiving Block

t-1 t……

PDiT Block

……

……

……

PDiT Block

PDiT Block

𝑧![0]

Dense
Connection

𝑎 𝑹#

𝑎

Figure 4: The architecture of the proposed full PDiT, which
stacks 𝐿 PDiT blocks (i.e., the grey rectangle). In each PDiT
block, there is a perceiving block and a deciding block that
are exactly the same as those of Vanilla-PDiT. Note that the
perceiving blocks in the same layer share model parameters
across different timesteps.

Atari, proprioception observation in MuJoCo, and hybrid image-
language observation in BabyAI.

(1) Transform into Sequential Input. To feed multi-modal
input into a Transformer, we will first “sequentize” the data.

Given an image observation 𝑜 ∈ R𝐻×𝑊 ×𝐶 , we split it into a
sequence of observation patches 𝑜𝑝 ∈ R𝑁×(𝑃2×𝐶) , where (𝐻,𝑊) is
the resolution of the original image observation;𝐶 is the number of

Image Observation

Car velocity
0.3

Car position
-0.2

Proprioception Observation

“go to the red ball"

Hybrid Image-Language Observation

-0.2 0.3

Linear
Projection

Linear
Projection

Linear
Projection

Word
Embedding

Figure 5: The illustration of generating the observation patch
embedding for different types of observations.

channels; (𝑃, 𝑃) is the resolution of each patch; and 𝑁 = 𝐻𝑊 /𝑃2

is the resulting number of patches, which is known as the context
length for the perceiving Transformer. After getting the observation
patches, wemap each patch 𝑜𝑝

𝑖
into the observation patch embedding

with a trainable linear projection 𝐸𝑝 :

𝑧0 = [𝑜𝑝1 𝐸
𝑝 ;𝑜𝑝2 𝐸

𝑝 ; ...;𝑜𝑝
𝑁
𝐸𝑝] ∈ R𝑁×𝐷𝑝

(1)

where 𝐸𝑝 ∈ R(𝑃2𝐶)×𝐷𝑝
, and𝐷𝑝 is the dimension of the observation

patch embedding.
Given a proprioception observation with 𝐷 entries, i.e., 𝑜 ∈

R𝐷 , we take each entry as an observation patch independently:
the sequence of observation patches will be 𝑜𝑝 ∈ R𝑁×1 where 𝑁
is equal to 𝐷 . This is convenient and reasonable since each entry
usually has atomic semantics, e.g., in the classic Mountain Car
environment, the 2 entries of observation represent the atomic
meaning of “Car position” and “Car velocity”, respectively. If there
is prior knowledge, we can generate the observation patches in
other ways (e.g., several entries as a patch). Then, we again use
a trainable linear projection 𝐸𝑝 ∈ R1×𝐷𝑝

to map the observation
patches into the observation patch embeddings.

Given a hybrid image-language observation, the image will
be processed as above, and the language will be processed using
Word Embedding [25]. We concatenate them and get a total number
of 𝑁 = 𝐻𝑊 /𝑃2 + 𝑁𝑤 observation patch embeddings, where 𝑁𝑤 is
the number of words in the language. Our method is motivated by
Vision-Language Pre-training [22].

(2) Integration Token Encoding. After getting the observa-
tion patch embeddings, a trainable integration token 𝑧𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛0 ∈
R1×𝐷𝑝

is added:

𝑧0 = [𝑧𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛0 ; 𝑧0] ∈ R(1+𝑁)×𝐷𝑝

(2)

(3) Observation Patch Position Encoding.We then add the
observation patch position encoding, which is a trainable parameter
𝐸
𝑝
𝑝𝑜𝑠 , to retain positional information:

𝑧0 = 𝑧0 + 𝐸𝑝𝑝𝑜𝑠 𝐸
𝑝
𝑝𝑜𝑠 ∈ R(1+𝑁)×𝐷𝑝

(3)

The resulting 𝑧0 serves as the input of the perceiving Transformer.

3.2.2 Interleaving Perceiver and Decision Maker. Now we
introduce the PDiT block.

(1) Perceiving Transformer Block. The concrete operations
in the 𝑙-th perceiving block 𝑧𝑙 = P-Trm𝑙 (𝑧𝑙−1) are as follows:

𝑧𝑙 = 𝑧𝑙−1 +MSA(LN(𝑧𝑙−1)) 𝑙 = 1, ..., 𝐿 (4)
𝑧𝑙 = 𝑧𝑙−1 + FFN(LN(𝑧𝑙−1)) 𝑙 = 1, ..., 𝐿 (5)

where MSA(·), LN(·), and FFN(·) stand for the multi-headed self-
attention, layer normalization, and feed-forward network used in
the original Transformer [43]. There is no mask in the MSA so that
all patches in an observation can be used for good environmental
perception. Moreover, the perceiving block can build the spatial
relationships among observation patches within an observation by
computing interactions between two observation patches.

For any layer 𝑙 , there are 1+𝑁 tokens in 𝑧𝑙 (i.e., 𝑧𝑙 ∈ R(1+𝑁)×𝐷𝑝
),

and the integration token 𝑧𝑙 [0] ∈ R1×𝐷𝑝
will serve as the integrated

representation of all tokens.
(2) Deciding Transformer Block. As shown in Figure 4, the

input of the deciding block is the trajectory across 𝐾 timesteps. We
use the superscript 𝑡 and the subscript 𝑙 to represent the timestep
and the layer, respectively. The input of the 𝑙-th deciding block is:

𝑦𝑙−1 = [𝑅𝑡−𝐾
𝑙−1 ; 𝑧𝑡−𝐾

𝑙
[0];𝑎𝑡−𝐾

𝑙−1 ; ...;𝑎𝑡−1
𝑙−1 ;𝑅𝑡

𝑙−1; 𝑧𝑡
𝑙
[0]] (6)

The detailed operations in the 𝑙-th deciding block𝑦𝑙 = D-Trm𝑙 (𝑦𝑙−1)
can be shown as follows:

𝑦𝑙 = 𝑦𝑙−1 +MSA(LN(𝑦𝑙−1)) 𝑙 = 1, ..., 𝐿 (7)
𝑦𝑙 = 𝑦𝑙−1 + FFN(LN(𝑦𝑙−1)) 𝑙 = 1, ..., 𝐿 (8)

There are causal masks in the MSA so that the deciding block can
build the temporal relationships among different trajectory tokens
across 𝐾 timesteps, which is helpful for decision-making in the
POMDP setting.

(3) PDiT Block. As shown in Figure 4, the PDiT block com-
bines one perceiving block and one deciding block. Formally, the
operations in the 𝑙-th PDiT block are:

𝑧𝑘
𝑙

= P-Trm𝑙 (𝑧𝑘𝑙−1) 𝑘 = 𝑡 − 𝐾, ..., 𝑡 (9)

𝑦𝑙−1 = [𝑅𝑡−𝐾
𝑙−1 ; 𝑧𝑡−𝐾

𝑙
[0];𝑎𝑡−𝐾

𝑙−1 ; ...;𝑎𝑡−1
𝑙−1 ;𝑅𝑡

𝑙−1; 𝑧𝑡
𝑙
[0]] (10)

𝑦𝑙 = D-Trm𝑙 (𝑦𝑙−1) (11)

In Eq. (9), the perceiving blocks in the same layer share model
parameters across different timesteps, so the number of model
parameters in PDiT is comparable to existing methods.

Note that for any layer 𝑙 , there are 2+3𝐾 tokens in 𝑦𝑙 . This is
because there are 3 tokens (i.e., 𝑅, 𝑧 [0], 𝑎) for each timestep before
𝑡 and 𝑅𝑡 , 𝑧𝑡 [0] for timestep 𝑡 . We use the last token 𝑦𝑙 [−1] as the
representation of all tokens, which is a conventional operation for
causal Transformers.

(4) PDiT Backbone Network. We stack 𝐿 PDiT blocks to form
the full PDiT network, ensuring that the spatial-temporal infor-
mation is fully fused for good representation and decision. Then,
we apply a dense connection design to concatenate the last token
𝑦𝑙 [−1] from all PDiT blocks and apply an FFN upon the concatena-
tion to generate the final action:

𝑎𝑡 = FFN([𝑦1 [−1];𝑦2 [−1]; ...;𝑦𝐿 [−1]]) (12)

We found that the dense connection is empirically helpful for per-
formance in the experiments.

3.2.3 Why interleaving the perceiving and deciding blocks
is better (than stacking all deciding blocks to the end)? Possi-
ble reasons are as follows. First, the outer is to make decisions. Once
it receives the output from the perceiving, it should directly take ac-
tions instead of further abstractly embedding the representations by
stacking multiple deciding blocks. Second, this interleaving design

Table 1: PPO, CQL, and DT cover a lot of RL settings.

Setting PPO CQL DT

Online / Offline
√
/ × × /

√
-

On-Policy / Off-Policy
√
/ × × /

√
-

Policy Gradient / Q-Learning
√
/ × × /

√
-

RvS [11] - -
√

encourages the information interaction between the perceiving and
deciding blocks (but not mixed or fused up). Third, stacking too
deep transformer layers may also cause losing focus.

3.3 Training Methods
This paper focuses on designing networks that are generally appli-
cable to different deep RL settings, so we restrain ourselves from
modifying the RL training algorithms and use the existing algo-
rithms to train PDiT. Specifically, we train PDiT with PPO [36]
based on Stable-baseline3 1, CQL [24] based on D3rlpy 2, and Re-
inforcement Learning via Supervised Learning (RvS) [11] based
on the official Decision Transformer (DT) 3. As shown by Table 1,
these algorithms cover a lot of RL settings. We refer the readers to
their original papers for more details.

4 EXPERIMENT
4.1 Setting
4.1.1 Evaluation Environments. We use Atari 4, MuJoCo5, and
BabyAI 6 as the evaluation environments. Specifically, Atari has
image observations and discrete action spaces; MuJoCo has propri-
oception observations and continuous action spaces; while BabyAI
has hybrid image-language observations and discrete action spaces.
We consider these environments because they are credible bench-
marks and their settings are diverse.

4.1.2 Baseline Deep Networks. Since PDiT is based on Transform-
ers, we will mainly compare it with other Transformer-based net-
works. (1) Environment with image observations: we compare with
NatureCNN [31], ResNet [37], ResNet + Transformer (i.e., Catformer
[8]), ResNet + Transformer + Gating + LSTM (i.e., CoBERL [3]).
(2) Environments with proprioception observations and hybrid
observations: we compare with MLP, DT [6], Transformer-based
Behavior Cloning (i.e., GATO [35]).

4.1.3 Hyperparameter Tuning. To ensure fair comparison, we fol-
low recent works [6, 19] and report results of most baselines from
their original papers. We believe that these results are already tuned
to the best by the original authors. For baselines run by us (only
ResNet, Catformer, CoBERL and GATO), the common hyperparam-
eters (e.g., training steps, learning rate, discount factor) are set as

1https://stable-baselines3.readthedocs.io/
2https://d3rlpy.readthedocs.io/
3https://github.com/kzl/decision-transformer/
4https://www.gymlibrary.dev/environments/atari/
5https://www.gymlibrary.dev/environments/mujoco/
6https://minigrid.farama.org/environments/babyai/

Table 2: The episode returns for online Atari environments (trained by PPO). For NatureCNN, we report numbers directly
from the official Stable-baseline3; other numbers are run by us. Compared to other CNN-based and Transformer-CNN-mixed
networks, PDiT achieves the highest average performance with five independent runs (improving ResNet by 15.0%). Best result
is in boldface, and the second best is underlined.

Breakout MsPacman Pong SpaceInvaders Average

NatureCNN 398±33 1754±172 20.989±0.105 960±425 783.25
ResNet 397±57 1807±405 21.000±0.000 1700±511 981.25
ResNet + Transformer (i.e., Catformer) 242±41 1579±461 19.980±0.139 1427±597 817.00
ResNet + Transformer + LSTM + Gating (i.e., CoBERL) 358±34 2190±327 19.460±1.557 821±314 847.12
PDiT (ours) 411±68 2246±326 20.750±1.577 1837±168 1128.69

Table 3: The episode returns for offline MuJoCo (trained by RvS). We also include several concurrent methods (i.e., StARformer
and GDT). DT and GDT results are reported from original papers; StARformer are taken from GDT; GATO is run by us. PDiT
achieves the highest average performance over five runs (beat DT, StARformer, and GDT by 6.4%, 40.7%, and 2.8%).

Dataset Environment Name DT GATO PDiT (ours) StARformer GDT

Medium
Halfcheetah 42.6±0.1 42.9±1.7 42.8±2.3 42.9±0.1 42.9±0.1
Hopper 67.6±1.0 58.7±2.5 68.2±2.4 59.5±4.2 65.8±5.8
Walker2d 74.0±1.4 77.8±1.2 77.6±0.6 73.8±3.5 77.8±0.4

Medium-Replay
Halfcheetah 36.6±0.8 36.9±3.8 40.8±2.3 36.8±3.3 39.9±0.1
Hopper 82.7±7.0 33.8±4.3 89.6±2.7 29.2±4.3 81.6±0.6
Walker2d 66.6±3.0 64.7±0.8 74.1±0.6 39.8±5.1 74.8±1.9

Average-normalized 61.68 52.47 65.52 47.00 63.80
Average-original 4065.94 3443.94 4325.27 3074.53 4209.11

Table 4: The episode returns for offline MuJoCo (trained by CQL). We also compare other offline RL algorithms, i.e., BEAR
[23], BRAC-v [44] and AWR [34]. Here, CQL-MLP numbers are reported from the original paper; BEAR, BRAC-v and AWR are
reported from the D4RL paper [13]. Compared to baselines, PDiT achieves the highest performance (improving MLP by 42.5%).

Dataset Task Name CQL-MLP PDiT (ours) BEAR BRAC-v AWR

Medium
Halfcheetah 44.4 42.6±0.1 41.7 46.3 37.4
Hopper 58.0 100.8±0.2 52.1 31.1 35.9
Walker2d 79.2 84.1±0.9 59.1 81.1 17.4

Medium-Replay
Halfcheetah 46.2 47.8±0.1 38.6 47.7 40.3
Hopper 48.6 99.2±1.7 33.7 0.6 28.4
Walker2d 26.7 53.6±3.7 19.2 0.9 15.5

Average-normalized 50.52 71.35 40.73 34.62 29.15
Average-original 3312.25 4719.00 2651.08 2238.44 1869.03

the open-source code repositories, while some specific hyperpa-
rameters (e.g., the number of network layers, embedding size) are
tuned using the random grid-search as PDiT.

4.2 Result
Training with PPO under Atari Environments. The results are
shown in Table 2. As can be seen, the conventional NatureCNN
and ResNet can achieve satisfactory scores in most Atari envi-
ronments. Compared to these conventional networks, ResNet +
Transformer (i.e., Catformer) and ResNet + Transformer + LSTM +

Gating (i.e., CoBERL) can achieve better average performance than
NatureCNN but are worse than ResNet. It is because these mixed
CNN-Transformer methods are unstable across different tasks, e.g.,
CoBERL gets a very high score in MsPacman, but the lowest score
in SpaceInvaders. Compared to these baselines, PDiT achieves good
performance in most testing cases.

Training with RvS under MuJoCo Environments. As ob-
served in Table 3, PDiT is better than DT and GATO, especially
in practical datasets with complex distributions. Specifically, PDiT
matches or exceeds DT and GATO by a small margin in “Medium”

Table 5: The episode returns for offline BabyAI tasks.

DT GATO PDiT (ours)

GoToRedBall 0.969±0.01 0.985±0.00 0.994±0.00
GoToLocal 0.884±0.02 0.923±0.03 0.991±0.00
PickupLoc 0.719±0.02 0.755±0.01 0.954±0.01
PutNextLocal 0.342±0.01 0.435±0.02 0.881±0.01
Average 0.729 0.775 0.955

datasets generated from a single policy. In contrast, PDiT outper-
formsDT andGATO by a largemargin in “Medium-Replay” datasets
(also known as the “Mixed” datasets) that combine multiple policies.
Since the mixed datasets with complex distributions are more likely
to be common in practice, as mentioned in [24], we expect that
PDiT will work better than DT and GATO in practical applications.

Training with CQL under MuJoCo Environments. In the
previous experiments, we find that training with RvS can sometimes
result in small improvements. One possible reason may be that the
ability of RvS to stitch offline data is not as strong as TD-learning.
Thus, we test whether training with CQL, the state-of-the-art in
offline TD-learning, can further improve PDiT. The results in Table
4 show that PDiT can improve CQL-MLP by 42.5% on average.

Training with RvS under BabyAI Environments. The results
shown in Table 5 demonstrate that PDiT is obviously better than
DT and GATO under environments with hybrid image-language
observations and sparse rewards.

Summary: All of the above results together prove that the pro-
posed PDiT is generally applicable to a lot of RL settings, i.e., dif-
ferent RL training algorithms and evaluation environments with
diverse characteristics.

More Results:We provide more results on other classical sce-
narios and multi-task reinforcement learning in the Appendix 4.
To highlight, we perform multi-task reinforcement learning with
one compact network, our PDiT, without changing the network
architecture. We use multiple tasks (e.g., GoToRedBall, GoToObj,
and GoToSeq) to train PDiT, then evaluate PDiT on each task sep-
arately. PDiT with multi-task learning achieves a better average
return than baselines with single-task learning.

4.3 Ablation Study
We consider the following ablation networks:

(1) Existing networks like DT: There is one Transformer,
which is worse than PDiT as shown by Table 2 and 3.

(2) w/o Perceiver: This removes the perceiving Transformer
of PDiT, so only the deciding Transformer is used. In this
network, the input of the deciding blocks is the observa-
tion embedding, which is generated by linearly mapping the
whole observation with a trainable parameter.

(3) w/o Decision-maker: This removes the deciding Trans-
former of PDiT, so only the perceiving Transformer is used.
In this network, the 𝐾 observations are stacked in the same
way as DQN and then processed by the perceiving blocks to
generate the action.

Observation NatureCNN ResNet Catformer Vanilla-TINT Enhanced-TINTObservation NatureCNN ResNet Catformer Vanilla-PDiT PDiTObservation NatureCNN ResNet Catformer Vanilla-TINT Enhanced-TINTObservation NatureCNN ResNet Catformer Vanilla-TINT Enhanced-TINTObservation NatureCNN ResNet Catformer Vanilla-TINT Enhanced-TINTObservation NatureCNN ResNet Catformer Vanilla-TINT Enhanced-TINTObservation NatureCNN ResNet Catformer Vanilla-TINT Enhanced-TINT

Po
ng

Sp
ac
eI
nv
ad
er
s

t=1

t=2

t=1

t=2

Figure 6: The feature gradient visualization of 5 different
methods. The first column shows the original observations
randomly generated from Pong and SpaceInvaders: in the
observations, objects need to be perceived.

(4) Vanilla-PDiT: There are two Transformers, but they are
stacked naively as mentioned in Section 3.1.

(5) w/o Dense: There are two Transformers, but the dense con-
nection design is removed from the PDiT. In this network,
only the output of the last PDiT block is used to generate
the action (i.e., 𝑎𝑡 = FFN(𝑦𝐿 [−1]]).

The ablation results are shown in Table 6. (1) Compared to PDiT,
Vanilla-PDiT has the maximum performance degradation. It implies
that although two Transformers are necessary for PDiT, naively
combining them cannot get the expected performance, and the
design of interleaving the perception and decision makes the most
contribution. (2) Besides, “w/o Dense” has the second worst per-
formance: this result verifies that the dense connection design is
important. This is intuitive and reasonable since the dense net-
work feeds all the outputs of each deciding Transformer to the
final output, with more abundant information. As far as we know,
previous studies have shown that the dense connection is also im-
portant for networks that are based on the CNN [20] and MLP
[32, 39], but PDiT is the first work to demonstrate this for purely
Transformer-based networks. (3) Furthermore, both “w/o Perceiver”
and “w/o Decision-maker” perform worse than PDiT, which indi-
cates that both perceiving and deciding blocks are necessary for
good performance.

4.4 Visualization
4.4.1 Feature Gradient Visualization. We visualize the feature
gradient of different methods by Grad-CAM [14], which is a typical
method for visualization and explainability of deep networks. The
results are shown in Figure 6.

From the spatial perspective, PDiT generates more explain-
able gradient maps than other methods.As can be seen in Figure
6, the gradient of NatureCNN, ResNet, and PDiT is highly corre-
lated with the objects in the observations in most cases. In contrast,

Table 6: The episode returns of ablation networks for online Atari environments (trained by PPO).

Breakout MsPacman Pong SpaceInvaders Average Improve

One Transformer w/o Perceiver 276±59 1588±516 19.350±2.441 1363±91 811.59 -28.09%
w/o Decision-maker 229±83 1591±396 20.180±2.034 1295±233 783.80 -30.56%

Two Transformers
Vanilla-PDiT 169±91 748±205 9.600±6.445 752±77 419.65 -62.82%
w/o Dense 121±34 1372±192 18.620±3.267 938±256 612.41 -45.74%
Full PDiT 411±68 2246±326 20.750±1.577 1837±168 1128.69 -

Inner Attention Weights Outer Attention Weights 𝑂𝑡𝑂𝑡−1𝑂𝑡−2𝑂𝑡−3 Perceiving Attention Deciding Attention𝑂!"# 𝑂!"$ 𝑂!"% 𝑂!
0 20 40 60 80

0

 2

0

 4

0

60

 8
0

𝑡 𝑡 − 1 𝑡 − 2 𝑡 − 3

𝑡
𝑡−

1
𝑡−

2
𝑡−

3

Figure 7: The attention weights visualization of PDiT. Observations (i.e., the first four images) are randomly generated from
Pong. The fifth and last images are the attention weights of the perceiving block and the deciding block, respectively.

Catformer and Vanilla-PDiT have disorganized gradient maps, and
they sometimes generate unexplainable gradients, as shown by the
Pong case. Furthermore, in the SpaceInvaders task, the gradient
values are often positively-correlated with the density of the in-
vaders (namely, the attention color is darker where there are many
invaders that are close to the agent).

From the temporal perspective, PDiT generates more stable
gradient maps than other methods. For example, when the ob-
servation changes slightly over a small time step, its gradient map
does not change significantly. Thus, PDiT may learn consistent
temporal representations for good decision-making, which may
explain its stable performance across different tasks. In contrast,
gradient maps of NatureCNN and Catformer have changed a lot.

4.4.2 Attention Weight Visualization. In the above section, we
have visualized the feature gradient of different methods by Grad-
CAM. In this section, we visualize the attention weights of the MSA
operation from the perceiving and deciding Transformers of our
PDiT, as shown in Figure 7.

The analyses from the spatial perspective. For the PDiT’s
perceiving block: Here, we use the integration token as the key in the
MSA operation because it serves as the integrated representation
of all observation patches. As we can see, the observation image’s
top and bottom regions get higher attention weights since the top
region is the game score, and the bottom region contains the paddles
and balls, which are important for the game. In contrast, the central
region of the observation image is mainly the background, which
may have little influence on the game, so the attention weight
values of the middle part are small. Based on this visualization,
we conclude that the perceiving Transformer of PDiT can indeed
capture important spatial information for good decision-making.

The analyses from the temporal perspective. From the decid-
ing block’s perspective: Here, we use four observations to form the
observation history to match the setting of the original DQN [31].
As we can see, the current observation 𝑜𝑡 usually gets the highest

attention weights (i.e., the color on the diagonal is darker); more-
over, the observation (e.g., 𝑜𝑡−1) close to the current timestep gets
higher attention weight than the far away ones (e.g., 𝑜𝑡−3 and 𝑜𝑡−2);
therefore the most updated information can be attended and used
for decision-making. Based on this visualization, we conclude that
PDiT (and the deciding Transformer) can indeed capture important
temporal information for good decision-making.

5 CONCLUSION AND FUTUREWORK
This paper proposed the Perception and Decision-making Interleav-
ing Transformer (PDiT) network for deep RL. The key insight is
cascading two specialized Transformers in a very natural way: the
perceiving one processes the observations for good environmen-
tal perception, while the deciding one focuses on good decision-
making. As far as we know, specializing perception and decision
by a pure Transformer-based network is achieved for the first time.
The experiments demonstrated that PDiT can achieve good results
in many RL settings. Furthermore, PDiT can extract explainable
representations from both spatial and temporal perspectives.

With the goal to conceptually demonstrate the potential advan-
tages of interleaving perception and decision-making for deep RL,
we simply implement PDiT using the basic Transformer [43]. We
expect that PDiT could further improve the performance with more
advanced Transformers and dedicated optimization skills (although
this is not the focus of this paper). We give more discussions about
the limitations and future directions in Appendix 5.

ACKNOWLEDGMENTS
The authors would like to thank Dong Li, Jianye Hao and the
anonymous reviewers for their insightful comments. This work is
supported by Basic Cultivation Fund project, CAS (JCPYJJ-22017),
Strategic Priority Research Program of Chinese Academy of Sci-
ences (XDA27010300), and the National Natural Science Foundation
of China (Grants No. 62302189).

REFERENCES
[1] Gosthipaty Aritra Roy and Paul Sayak. 2023. Investigating Vision Transformer

representations. https://keras.io/examples/vision/probing_vits/
[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and

Cordelia Schmid. 2021. ViViT: A Video Vision Transformer. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV). 6816–6826. https://doi.org/
10.1109/ICCV48922.2021.00676

[3] Andrea Banino, Adria Puigdomenech Badia, Jacob CWalker, Tim Scholtes, Jovana
Mitrovic, and Charles Blundell. 2022. CoBERL: Contrastive BERT for Reinforce-
ment Learning. In International Conference on Learning Representations.

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. 2022. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817 (2022).

[5] Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. 2023. Open-
world multi-task control through goal-aware representation learning and adap-
tive horizon prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 13734–13744.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Decision transformer:
Reinforcement learning via sequence modeling. Advances in neural information
processing systems 34 (2021), 15084–15097.

[7] André Correia and Luís A Alexandre. 2022. Hierarchical Decision Transformer.
arXiv preprint arXiv:2209.10447 (2022).

[8] Jared Q Davis, Albert Gu, Krzysztof Choromanski, Tri Dao, Christopher Re,
Chelsea Finn, and Percy Liang. 2021. Designing stable transformers via sensitivity
analysis. In International Conference on Machine Learning. PMLR, 2489–2499.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning
Representations.

[10] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

[11] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. 2021.
RvS: What is Essential for Offline RL via Supervised Learning?. In International
Conference on Learning Representations.

[12] Richard Evans and Jim Gao. 2016. Deepmind AI reduces Google data centre
cooling bill by 40%. DeepMind blog 20 (2016), 158.

[13] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
2020. D4RL: Datasets for Deep Data-Driven Reinforcement Learning.
arXiv:2004.07219 [cs.LG]

[14] Jacob Gildenblat and contributors. 2021. PyTorch library for CAM methods.
https://github.com/jacobgil/pytorch-grad-cam.

[15] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. 2023. Mas-
tering diverse domains through world models. preprint arXiv:2301.04104 (2023).

[16] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang.
2021. Transformer in transformer. Advances in Neural Information Processing
Systems 34 (2021), 15908–15919.

[17] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent q-learning for
partially observable mdps. In 2015 aaai fall symposium series.

[18] Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. 2022. On Trans-
forming Reinforcement Learning by Transformer: The Development Trajectory.
arXiv preprint arXiv:2212.14164 (2022).

[19] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. 2023. Graph Decision
Transformer. arXiv preprint arXiv:2303.03747 (2023).

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2261–2269. https://doi.org/10.
1109/CVPR.2017.243

[21] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Reinforcement learning as
one big sequence modeling problem. In ICML 2021 Workshop on Unsupervised
Reinforcement Learning.

[22] Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt: Vision-and-language trans-
former without convolution or region supervision. In International Conference on
Machine Learning. PMLR, 5583–5594.

[23] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. 2019.
Stabilizing off-policy q-learning via bootstrapping error reduction. Advances in
Neural Information Processing Systems 32 (2019).

[24] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-
tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[25] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word
embeddings to document distances. In International conference on machine learn-
ing. PMLR, 957–966.

[26] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman,
Sergio Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski,
et al. 2022. Multi-game decision transformers. Advances in Neural Information
Processing Systems 35 (2022), 27921–27936.

[27] Hao Li, Jinguo Zhu, Xiaohu Jiang, Xizhou Zhu, Hongsheng Li, Chun Yuan, Xiao-
hua Wang, Yu Qiao, Xiaogang Wang, Wenhai Wang, et al. 2023. Uni-perceiver
v2: A generalist model for large-scale vision and vision-language tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2691–2700.

[28] Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng
Ye. 2023. A Survey on Transformers in Reinforcement Learning. arXiv preprint
arXiv:2301.03044 (2023).

[29] Yuxuan Liang, Pan Zhou, Roger Zimmermann, and Shuicheng Yan. 2022. Dual-
Former: Local-Global Stratified Transformer for Efficient Video Recognition. In
Computer Vision – ECCV 2022, Shai Avidan, Gabriel Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer Nature Switzerland,
Cham, 577–595.

[30] Hangyu Mao, Rui Zhao, Hao Chen, Jianye Hao, Yiqun Chen, Dong Li, Junge
Zhang, and Zhen Xiao. 2022. Transformer in Transformer as Backbone for Deep
Reinforcement Learning. arXiv preprint arXiv:2212.14538 (2022).

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[32] Kei Ota, Tomoaki Oiki, Devesh Jha, Toshisada Mariyama, and Daniel Nikovski.
2020. Can Increasing Input Dimensionality Improve Deep Reinforcement Learn-
ing?. In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti
Singh (Eds.). PMLR, 7424–7433. https://proceedings.mlr.press/v119/ota20a.html

[33] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Sid-
dhant Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb
Noury, et al. 2020. Stabilizing transformers for reinforcement learning. In Inter-
national conference on machine learning. PMLR, 7487–7498.

[34] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. 2019. Advantage-
weighted regression: Simple and scalable off-policy reinforcement learning. arXiv
preprint arXiv:1910.00177 (2019).

[35] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexan-
der Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost To-
bias Springenberg, et al. 2022. A generalist agent. arXiv preprint arXiv:2205.06175
(2022).

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[37] Rutav M Shah and Vikash Kumar. 2021. RRL: Resnet as representation for
Reinforcement Learning. In Proceedings of the 38th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 139), Marina
Meila and Tong Zhang (Eds.). PMLR, 9465–9476. https://proceedings.mlr.press/
v139/shah21a.html

[38] Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S Ryoo. 2022.
StARformer: Transformer with State-Action-Reward Representations for Visual
Reinforcement Learning. In Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIX. Springer,
462–479.

[39] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg.
2020. D2rl: Deep dense architectures in reinforcement learning. arXiv preprint
arXiv:2010.09163 (2020).

[40] Matthijs TJ Spaan. 2012. Partially observable Markov decision processes. In
Reinforcement Learning. Springer, 387–414.

[41] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. 2021. Decoupling
representation learning from reinforcement learning. In International Conference
on Machine Learning. PMLR, 9870–9879.

[42] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[44] Yifan Wu, George Tucker, and Ofir Nachum. 2019. Behavior regularized offline
reinforcement learning. arXiv preprint arXiv:1911.11361 (2019).

[45] Rui Yu, Dawei Du, Rodney LaLonde, Daniel Davila, Christopher Funk, Anthony
Hoogs, and Brian Clipp. 2022. Cascade Transformers for End-to-End Person
Search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 7267–7276.

[46] William Yuan, Jiaxing Chen, Shaofei Chen, Lina Lu, Zhenzhen Hu, Peng Li, Dawei
Feng, Furong Liu, and Jing Chen. 2023. Transformer in Reinforcement Learning
for Decision-Making: A Survey. (2023).

[47] Bin Zhang, Hangyu Mao, Lijuan Li, Zhiwei Xu, Dapeng Li, Rui Zhao, and Guo-
liang Fan. 2023. Stackelberg Decision Transformer for Asynchronous Action
Coordination in Multi-Agent Systems. arXiv preprint arXiv:2305.07856 (2023).

https://keras.io/examples/vision/probing_vits/
https://doi.org/10.1109/ICCV48922.2021.00676
https://doi.org/10.1109/ICCV48922.2021.00676
https://arxiv.org/abs/2004.07219
https://github.com/jacobgil/pytorch-grad-cam
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://proceedings.mlr.press/v119/ota20a.html
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v139/shah21a.html
https://proceedings.mlr.press/v139/shah21a.html

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Vanilla-PDiT
	3.2 PDiT
	3.3 Training Methods

	4 Experiment
	4.1 Setting
	4.2 Result
	4.3 Ablation Study
	4.4 Visualization

	5 Conclusion and Future Work
	Acknowledgments
	References

